JPS6118123A - Thin film forming apparatus - Google Patents

Thin film forming apparatus

Info

Publication number
JPS6118123A
JPS6118123A JP13833984A JP13833984A JPS6118123A JP S6118123 A JPS6118123 A JP S6118123A JP 13833984 A JP13833984 A JP 13833984A JP 13833984 A JP13833984 A JP 13833984A JP S6118123 A JPS6118123 A JP S6118123A
Authority
JP
Japan
Prior art keywords
oil
reaction
reaction chamber
shielding plate
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13833984A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Mamoru Tashiro
田代 衛
Minoru Miyazaki
稔 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP13833984A priority Critical patent/JPS6118123A/en
Publication of JPS6118123A publication Critical patent/JPS6118123A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To make it possible to cause optical-exciting vapor-phase reaction for a long time, by removing repeatedly deteriorated oil and coating new one, when forming a film over a large area substrate. CONSTITUTION:Substrates 1 each having a face to be treated are held by holders 1', in close proximity to halogen heaters 3 in a reaction chamber 2. Ultraviolet rays from a low-pressure mercury-vapor lamp 9 being a reacting optical source pass through a compound quartz plate 29 serving as a transmission shielding plate and then through oil 16 priferable Von Brann oil for preventing reaction byproducts from being deposited onto the shielding plate, and irradiate the surfaces to be treated of the substrates 1 being arrayed above the reaction chamber. The oil 16 is supplied from a new-oil reservoir 10 and is exhausted to an old-oil reservoir 10' after being mixed with the reaction byproducts so that the oil can be coated at 30min-5hr intervals by a wiping coater 11.

Description

【発明の詳細な説明】 r発明の利用分野J 本発明は光励起化学気相反応により薄膜形成を行う装置
であって、大面積の被形成面に均一に量産性の優れた被
膜を形成するため、光照射室に2針イル等を繰り返しコ
ート/ワイプ(塗布/除去)する手段を有するCVD 
(気相反応)装置に関する。
[Detailed Description of the Invention] rField of Application of the Invention J The present invention is an apparatus for forming a thin film by photoexcited chemical vapor phase reaction, and is used to form a film uniformly on a large surface with excellent mass productivity. , CVD with means for repeatedly coating/wiping (applying/removing) a two-needle irradiation chamber, etc.
(Gas phase reaction) device.

「従来技術1 気相反応による薄膜形成技術として、光エネルギにより
反応性気体を活性にさせる光CVD法が知られている。
``Prior Art 1'' As a technique for forming a thin film using a gas phase reaction, a photo-CVD method is known in which a reactive gas is activated by light energy.

この方法は、従来の熱CVD法またはプラズマCVD法
に比べ低温での被膜形成が可能であるに加えて、被形成
面に損傷を与えないという点で優れたものである。
This method is superior to the conventional thermal CVD method or plasma CVD method in that it is possible to form a film at a lower temperature and it does not damage the surface on which it is formed.

しかし、かかる光CVD法を実施するに際し、その−例
を第1図に示すが、反応室(2)内に保持された基板(
1)、その基板の加熱手段(3)、さらに基板に照射す
る低圧水銀灯(9)とを有している。ドーピング系(7
)には反応性気体の励起用の水銀バプラ(13)および
排気系(8)にはロータリーポンプを具備している。ド
ーピング系よりの反応性気体、例えばジシランが反応室
(2)に導入され、反応生成物である例えばアモルファ
ス珪素を基板(基板温度250℃)上に形成するに際し
、反応室の紫外光透光用の遮蔽板、代表的には石英窓に
も同時に多量に珪素膜が形成されてしまう。このため、
この窓への被膜形成を防ぐため、この窓にフォンプリン
オイル(弗素系オイルの一例) (20)を薄(コート
シている。
However, when carrying out such a photo-CVD method, an example of which is shown in FIG.
1), a means for heating the substrate (3), and a low-pressure mercury lamp (9) for irradiating the substrate. Doping system (7
) is equipped with a mercury bubbler (13) for excitation of reactive gases and a rotary pump in the exhaust system (8). When a reactive gas such as disilane from the doping system is introduced into the reaction chamber (2) and a reaction product such as amorphous silicon is formed on the substrate (substrate temperature 250°C), the reaction chamber is used to transmit ultraviolet light. At the same time, a large amount of silicon film is also formed on the shielding plate, typically the quartz window. For this reason,
In order to prevent the formation of a film on this window, this window is coated with a thin coat of Fontprin oil (an example of fluorine-based oil) (20).

しかし、このオイルは、窓への被膜形成を防ぐ作用を有
しつつも、このオイル上にも少しづつ同時に反応生成物
が形成され、ここでの光吸収により被膜形成の厚さに制
限が生じてしまう欠点を有する。
However, although this oil has the effect of preventing the formation of a film on the window, reaction products are also formed little by little on this oil, and the light absorption here limits the thickness of the film formation. It has the disadvantage of being

また、低圧水銀灯が大気圧に保持されているため、この
圧力のため石英を厚くしなければならない。そして、こ
の水銀灯と石英窓との間の大気により紫外光特に185
nmの短紫外光が吸収されてしまう。
Also, because low-pressure mercury lamps are held at atmospheric pressure, the quartz must be thicker because of this pressure. The atmosphere between the mercury lamp and the quartz window causes ultraviolet light, especially 185
nm short ultraviolet light is absorbed.

大面積の基板の形成に対し、大きな窓とすると、その室
が真空に対し破損しやすい等の欠点を有している。
When forming a large-area substrate, a large window has the disadvantage that the chamber is easily damaged by vacuum.

このため、その対策として、特開昭59−68923「
薄膜形成技術」にみられるごとく、拡散炉方式 ′があ
る。この形成装置においては、フオンプリンオイルの代
わりに内側より不活性気体を窓内壁に噴射したものであ
る。するとこの気体により、石英の内壁への反応生成物
の付着を防ぐことができるとしている。しかしこの場合
、ガスの供給等反応炉内の圧力の変化によりきわめて微
妙であり、かつこの不活性気体を反応炉中に多量に流さ
なければならないため、反応性気体が不活性気体により
希釈されてしまうという欠点を有する。
Therefore, as a countermeasure to this problem,
As seen in ``Thin Film Formation Technology,'' there is a diffusion furnace method. In this forming device, an inert gas is injected from the inside onto the inner wall of the window instead of fluoroplastic oil. This gas can then prevent reaction products from adhering to the inner walls of the quartz. However, in this case, changes in the pressure inside the reactor due to gas supply etc. are extremely delicate, and a large amount of this inert gas must be flowed into the reactor, so the reactive gas is diluted by the inert gas. It has the disadvantage of being stored away.

「問題を解決するための手段」 本発明はこれらの問題を解決するため、窓上にオイルを
コート(塗布)し、このオイル上にも生成物ができた時
、これらをワイプ(拭き払う)することにより除去し、
さらに新しくオイルコート(塗布)することにより、反
応室を大気に触れさせることなく連続的に被膜形成を行
わしめることを特徴とする。
"Means for Solving the Problems" In order to solve these problems, the present invention coats (applies) oil on the windows, and when products are formed on this oil, they are wiped off. removed by
Furthermore, by applying a new oil coating (coating), a film can be continuously formed without exposing the reaction chamber to the atmosphere.

さらに低圧水銀灯のある光源室を真空(0,1〜10t
orr)とし、ここでの185nmの紫外光の吸収損失
を少なくした。またこの光源室と反応室との圧ズを概略
同一(差厚は高々10torr一般には0.1torr
)とすることにより、石英窓の厚さを従来の10mmよ
り2〜3mmと薄<シ得るため、石英での光吸収損失が
少ないという特長を合わせ有する。
Furthermore, the light source room containing the low-pressure mercury lamp is vacuumed (0.1 to 10 tons).
orr) to reduce absorption loss of 185 nm ultraviolet light. In addition, the pressure difference between the light source chamber and the reaction chamber is approximately the same (the difference in thickness is at most 10 torr, generally 0.1 torr).
), the thickness of the quartz window can be reduced to 2 to 3 mm from the conventional 10 mm, which also has the advantage of less light absorption loss in the quartz.

「作用j これらの特性のため、窓への反応性気体の付着およびそ
れに伴う反応室への透過紫外光量の減少を完全に防ぐこ
とができた。
``Effect j'' These characteristics made it possible to completely prevent the adhesion of reactive gases to the window and the associated decrease in the amount of transmitted ultraviolet light into the reaction chamber.

また、反応室を大気に触れさせずに窓の不要物をワイプ
するため、1回の被膜形成毎に反応室内を新たなオイル
を手で塗るため大気に触れさせる必要がない。このため
、ロード・ロック方式とし得、バックグラウンドレベル
の真空度を10−’torr以下とすることができた。
In addition, since unnecessary materials on the windows are wiped without exposing the reaction chamber to the atmosphere, new oil is manually applied to the inside of the reaction chamber each time a film is formed, so there is no need to expose the reaction chamber to the atmosphere. Therefore, it was possible to use a load-lock system, and it was possible to reduce the background level of vacuum to 10-'torr or less.

そして非酸化物生成物である珪素等の半導体被膜、窒化
珪素、金属アルミニュームの光励起により被膜形成をさ
せることができた。
Films could be formed by optical excitation of non-oxide products such as semiconductor films such as silicon, silicon nitride, and metal aluminum.

「実施例j 以下本発明を第2図に示した実施例により、その詳細を
記す。
``Example j'' The present invention will be described in detail below using an example shown in FIG.

第2図において、被形成面を有する基板(1)(ここで
はシリコンウェハを使用)はホルダ(1°)に保持され
、反応室(2)内のハロゲンヒータ(3)(上面を水冷
(28) )に近接して設けられている。反応室(2)
と光源室(5)、及びヒータ(3)が配設された室は、
反応に支障のない気体(窒素または水素)を(27)よ
り(12)に供給し、または(12’)より排気するこ
とにより、概略同一真空度に保持されている。予備室(
4)よりロード・ロック方式により基板、ホルダを挿入
・配設し、反応室(2)にゲート弁を開として位相し、
さらに(6)を閉として反応室と予備室との間が仕切ら
れている。
In Fig. 2, a substrate (1) having a surface to be formed (a silicon wafer is used here) is held in a holder (1°), and a halogen heater (3) in a reaction chamber (2) (the upper surface is water-cooled (28 ) is located close to ). Reaction chamber (2)
The room where the light source room (5) and heater (3) are installed is
By supplying a gas (nitrogen or hydrogen) that does not interfere with the reaction to (12) from (27) or exhausting from (12'), approximately the same degree of vacuum is maintained. Preparatory room (
4) Insert and arrange the substrate and holder using the load-lock method, and open the gate valve in the reaction chamber (2).
Furthermore, the reaction chamber and the preliminary chamber are partitioned off by closing (6).

ドーピング系(7)は、流量計(21)、バルブ(22
)を有する配管(23)〜(26)が設けられ、これら
により、反応後固体生成物を形成させる反応性気体を反
応室(2)へ供給させた。反応後はコントロール(19
)を経、排気させた。排気系は圧力制御バルブ(17)
 、ターボ分子ポンプ(18) 、 ロータリーポンプ
(19)よりなり、ロータリーポンプオイル及び大気の
逆流をターボ分子ポンプ(18)により防いでいる。
The doping system (7) includes a flowmeter (21) and a valve (22).
) were provided to supply the reaction chamber (2) with the reactive gases which formed the solid product after the reaction. After the reaction, control (19
) and then evacuated. The exhaust system is a pressure control valve (17)
, a turbo molecular pump (18), and a rotary pump (19), and the turbo molecular pump (18) prevents backflow of rotary pump oil and atmosphere.

排気系(8)はコック(20)により予備室を真空引き
をする際はそちら側を開とし、反応室側を閉とするまた
反応室を真空引きする際は逆に予備室側を閉とした。
When evacuating the preliminary chamber using the cock (20), the exhaust system (8) is opened on that side and closed on the reaction chamber side, and conversely, when the reaction chamber is evacuated, the preliminary chamber side is closed. did.

反応用光源は低圧水銀灯(9)(ウシオ電機製)と裏面
の水冷(28′)をし、光源の温度側m(30〜50℃
)をした。紫外光源は、低圧水銀灯(185nm、 2
55nmの波長を発光する発光長40cn+、照射強度
20n+14/cm”、ランプ電力40讐)ランプ数1
5本である。
The light source for the reaction is a low-pressure mercury lamp (9) (manufactured by Ushio Inc.) with water cooling (28') on the back side, and the temperature side of the light source is 30-50℃.
)Did. The ultraviolet light source was a low-pressure mercury lamp (185 nm, 2
Number of lamps: 1 (light emission length 40cn+, irradiation intensity 20n+14/cm", lamp power 40mm) that emits a wavelength of 55nm
There are 5 pieces.

この紫外光は、透光性遮蔽板としての合成石英(29)
を経て反応生成物の遮蔽板上への生成を阻害する手段で
あるオイル(16)特にフォンブリンオイルを透過し、
反応室(2)の上方に配設された基板(1)の被形成面
上を照射した。
This ultraviolet light is absorbed by synthetic quartz (29) as a translucent shielding plate.
The oil (16), which is a means of inhibiting the formation of reaction products on the shielding plate, passes through, especially Fomblin oil,
The surface to be formed of the substrate (1) disposed above the reaction chamber (2) was irradiated.

このオイル(16)は新しい池のオイルダメ(10)、
反応後の生成物が混合するオイルダメ(10’)とワイ
パ/コータ(11)によ°す30分〜5時間に1度塗布
し直している。即ちパイトンゴム等の弗素系ゴムのへら
上に作られたワイパ/コータを図面では移動させた。使
用済の石英板上のオイルのワイプはワイパとして強い圧
力で石英板に押しつけて成就した。新しいオイルのコー
トはコータ(11)として弱い圧力で軽く触れさせて移
動させることにより成就した。オイルの粘度とこのコー
タの接触圧力を調整することにより、塗布の厚さを実質
的に可変できζ手で塗る従来のオイルに比べ、°厚さの
均一さと精度の均一さによって、例えば3μ±0.6μ
以内にすることができた。従来は0〜100μの間でば
らついてしまった。
This oil (16) is a new pond oil (10),
Recoating is performed once every 30 minutes to 5 hours using an oil dam (10') where the products after the reaction are mixed and a wiper/coater (11). That is, a wiper/coater made on a spatula of fluorine-based rubber such as Python rubber is moved in the drawing. Wiping of oil on a used quartz plate was accomplished by pressing the wiper against the quartz plate with strong pressure. A coat of fresh oil was achieved by moving the coater (11) by lightly touching it with light pressure. By adjusting the viscosity of the oil and the contact pressure of this coater, the coating thickness can be virtually varied.Compared to traditional oils that are applied by hand, the uniformity of the thickness and the uniformity of precision, for example 3μ± 0.6μ
I was able to do it within. Conventionally, it varied between 0 and 100μ.

ヒータは反応室の上側に位置した「デイポジッション・
アップ」方式とし、フレークが被形成面に付着してピン
ホールの原因を作ることを避けた。
The heater is located in the "day position" above the reaction chamber.
The "up" method was used to avoid flakes from adhering to the surface to be formed and causing pinholes.

加えてヒータの熱が水銀灯を加熱し、水銀灯の昇温によ
る発光波長の長波長化を避けた。
In addition, the heat from the heater heated the mercury lamp, thereby avoiding the emitted light wavelength from becoming longer due to increased temperature of the mercury lamp.

反応室はステンレスであり、光源室をも反応室と同様に
真空引きをした。その結果、従来例に示される如く、大
面積の照射用に石英板の面積を大きくすると圧力的に耐
えられないという欠点を本発明は有していない。即ち、
紫外光源も真空下に保持された光源室と反応室とを囲ん
だステンレス容器内に真空に保持されている。このため
、5cIIIX5cmの大きさではなく 30co+ 
x 30cmの大きさの基板をも何等の工業的な問題な
く作ることができ得る。
The reaction chamber was made of stainless steel, and the light source chamber was also evacuated in the same manner as the reaction chamber. As a result, the present invention does not have the disadvantage of not being able to withstand pressure when the area of the quartz plate is increased for irradiation of a large area, as shown in the conventional example. That is,
The ultraviolet light source is also kept under vacuum in a stainless steel container surrounding a light source chamber and a reaction chamber that are kept under vacuum. Therefore, instead of the size of 5cIIIX5cm, it is 30co+
A substrate as large as 30 cm x 30 cm can also be produced without any industrial problems.

図面の場合の被形成有効面積は30cm X 30c+
nであり、直径6インチの基板(1)4枚がホルダ(1
゛)に配設され得る構成として、基板の温度はハロゲン
ヒータ(3)により加熱し、室温〜500℃までの所定
の温度とした。
In the case of the drawing, the effective area to be formed is 30cm x 30c+
n, and four substrates (1) with a diameter of 6 inches are placed in a holder (1).
As a configuration that can be installed in (2), the temperature of the substrate is heated by a halogen heater (3) to a predetermined temperature ranging from room temperature to 500°C.

さらに、本発明による具体例を以下の実験例1〜3に示
す。
Further, specific examples according to the present invention are shown in Experimental Examples 1 to 3 below.

実験例1・・・・・シリコン窒化膜の形′成例反応性気
体としてアンモニアを(25)より30cc/分、モノ
シランを(23)より8cc/分で供給し、基板温度3
00℃とした。基板は直径6インチのウェハ4枚とした
。反応室(2)内圧力は2.5torrとした。
Experimental Example 1 Formation example of silicon nitride film As reactive gases, ammonia was supplied from (25) at 30 cc/min and monosilane was supplied from (23) at 8 cc/min, and the substrate temperature was 3.
The temperature was 00°C. The substrates were four 6-inch diameter wafers. The pressure inside the reaction chamber (2) was 2.5 torr.

30分の反応で1500人の膜厚が形成された。その被
膜形成速度は50人/分であった。水銀の蒸着等を用い
た励起を行わず直接光励起である。被膜の5点のばらつ
きは±5%以内に入っていた。
A film with a thickness of 1,500 people was formed in a 30-minute reaction. The film formation rate was 50 people/min. Direct optical excitation is used without excitation using mercury vapor deposition or the like. The variation of the 5 points of the coating was within ±5%.

実験例2・・アモルファスシリコン膜の形成例ジシラン
(SiJ6)を(24)より供給した。(26)より反
応性気体の励起助成用にクリプトンを供給した。また(
27)より水素を供給した。クリプトンの励起助成によ
り被形成面に2000人の膜厚を60分間のディボジソ
ションで形成させることができた。
Experimental Example 2: Formation example of amorphous silicon film Disilane (SiJ6) was supplied from (24). (26), krypton was supplied to assist in excitation of the reactive gas. Also(
27), hydrogen was supplied. With the aid of krypton excitation, a film with a thickness of 2,000 layers could be formed on the surface in 60 minutes of deposition.

基板温度は250℃、圧力3.5torrとした。The substrate temperature was 250° C. and the pressure was 3.5 torr.

さらに他の基板形成をしても同じ厚さの被膜を得ること
ができた。
Furthermore, even if other substrates were formed, a film of the same thickness could be obtained.

実験例3・・・金属アルミニュームの形成例AI(CH
z)+を代表例とするメチルアルミニュームを(23)
より15cc/分で供給した。(25) 、 (27)
より水素を30cc/分で供給した。すると、メチルア
ルミニュームは光源室を水銀を用いることなく分解し、
金属アルミニューム膜を4000人の厚さに作ることが
できた。被膜形成速度は230八/分(圧力3torr
+温度300℃)を得ることができた。
Experimental example 3...Metal aluminum formation example AI (CH
z)+ is a typical example of methylaluminum (23)
It was supplied at a rate of 15 cc/min. (25), (27)
Hydrogen was supplied at a rate of 30 cc/min. Then, methylaluminum decomposes the light source chamber without using mercury,
We were able to create a metal aluminum membrane with a thickness of 4,000 people. Film formation rate is 2308/min (pressure 3 torr)
+ temperature of 300°C).

これはエチルアルミニュームAI(Cz■、)3等のア
ルキル化合物でもよい。
This may be an alkyl compound such as ethylaluminum AI (Cz■, )3.

さらにワイパ/コータを繰り返し、10時間でも反応室
を大気に触れさせることなく同じ膜厚のアルミニューム
を作ることができた。
By repeating the wiper/coater process, it was possible to produce aluminum with the same thickness even for 10 hours without exposing the reaction chamber to the atmosphere.

「効果」 本発明は、以上の説明より明らかなごとく、大面積の基
板上に被膜を形成するにあたり、繰り返し劣化したオイ
ルを除去、新しいオイルをコートすることにより、長時
間の光励起気相反応を同時に行うことができるようにな
った。
``Effects'' As is clear from the above description, the present invention enables long-term photoexcited gas phase reactions by repeatedly removing degraded oil and coating with new oil when forming a film on a large-area substrate. Now they can be done at the same time.

特に活性のアルミニュームを形成した際、その生成アル
ミニューム中に酸素の混入を防ぐことができ、金属色の
アルミルニームを凹凸の段差部にも十分周りこんで良好
なステップカバレージより得ることができた。
In particular, when active aluminum is formed, it is possible to prevent oxygen from entering the formed aluminum, and it is possible to obtain metallic-colored aluminum neem with good step coverage by sufficiently encircling uneven steps. .

なお本発明は珪素および窒化珪素、アルミニュームにお
いてその実験例を示したが、それ以外にM(CH3)−
即ちMとしてIn、Cr、Sn、Mo+Ga+W、Ge
を用いてもよい。また鉄、ニッケル、コバルトのカルボ
ニル化物を反応性気体として用い、鉄、ニッケル、コバ
ルトまたはその化合物の被膜を形成することは有効であ
る。
Although the present invention has shown experimental examples using silicon, silicon nitride, and aluminum, it is also possible to use M(CH3)-
That is, as M, In, Cr, Sn, Mo+Ga+W, Ge
may also be used. It is also effective to form a film of iron, nickel, cobalt or a compound thereof by using a carbonylated product of iron, nickel, or cobalt as a reactive gas.

前記した実験例においてドーパントを同時に添加できる
。また光源として低圧水銀灯ではな(工  ・キシマレ
ーザ(波長100〜400nm) 、アルゴンレーザ、
窒素レーザ等を用いてもよいことはいうまでもない。
In the experimental examples described above, dopants can be added at the same time. Also, do not use a low-pressure mercury lamp as a light source.
It goes without saying that a nitrogen laser or the like may also be used.

また透光性遮蔽板は合成石英またはSG石英のみならず
、セラミック等を用いることも可能である。
Further, the light-transmitting shielding plate can be made of not only synthetic quartz or SG quartz, but also ceramic or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来より公知の光励起CVO装置を示す。 第2図は本発明の光励起CVD装置を示す。 FIG. 1 shows a conventionally known optically pumped CVO device. FIG. 2 shows a photo-excited CVD apparatus of the present invention.

Claims (1)

【特許請求の範囲】 1、光励起熱化学反応を用いた薄膜形成装置において、
光源室に配設された発光源と、前記光源室と反応室とを
仕切る透光性遮蔽板と、前記反応室に配設された光照射
がなされる被形成面を有する加熱された基板とを有し、
前記遮蔽板の前記反応室側表面に反応生成物の形成を阻
害する手段と、該手段を前記遮蔽板表面に塗布または除
去する手段とを具備することを特徴とする薄膜形成装置
。 2、特許請求の範囲第1項において、遮蔽板の表面に弗
素系オイルを塗布または除去する手段をコート/ワイプ
により成就することを特徴とする薄膜形成装置。
[Claims] 1. In a thin film forming apparatus using photoexcited thermochemical reaction,
A light emitting source disposed in a light source chamber, a translucent shielding plate separating the light source chamber and a reaction chamber, and a heated substrate having a surface to be formed on which light is irradiated disposed in the reaction chamber. has
A thin film forming apparatus comprising: means for inhibiting the formation of reaction products on the reaction chamber side surface of the shielding plate; and means for applying or removing the means on the surface of the shielding plate. 2. The thin film forming apparatus according to claim 1, wherein the means for applying or removing the fluorine-based oil on the surface of the shielding plate is accomplished by coating/wiping.
JP13833984A 1984-07-04 1984-07-04 Thin film forming apparatus Pending JPS6118123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13833984A JPS6118123A (en) 1984-07-04 1984-07-04 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13833984A JPS6118123A (en) 1984-07-04 1984-07-04 Thin film forming apparatus

Publications (1)

Publication Number Publication Date
JPS6118123A true JPS6118123A (en) 1986-01-27

Family

ID=15219600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13833984A Pending JPS6118123A (en) 1984-07-04 1984-07-04 Thin film forming apparatus

Country Status (1)

Country Link
JP (1) JPS6118123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353430A (en) * 1986-08-25 1988-03-07 Yamada Mitsue Pressure measuring apparatus
JPH01101411A (en) * 1987-10-14 1989-04-19 Sokkisha Co Ltd Micro-device for level

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154839A (en) * 1980-12-15 1982-09-24 Hughes Aircraft Co Device and method for coating optochemical vapor phase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154839A (en) * 1980-12-15 1982-09-24 Hughes Aircraft Co Device and method for coating optochemical vapor phase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353430A (en) * 1986-08-25 1988-03-07 Yamada Mitsue Pressure measuring apparatus
JPH01101411A (en) * 1987-10-14 1989-04-19 Sokkisha Co Ltd Micro-device for level

Similar Documents

Publication Publication Date Title
JPS61127121A (en) Formation of thin film
US4857139A (en) Method and apparatus for forming a layer
US4597986A (en) Method for photochemical vapor deposition
JPH049369B2 (en)
US5225378A (en) Method of forming a phosphorus doped silicon film
JPS60245217A (en) Thin film formation equipment
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS6118123A (en) Thin film forming apparatus
JPS6118125A (en) Thin film forming apparatus
JPS6118124A (en) Thin film forming apparatus
JPH0689455B2 (en) Thin film formation method
JPS6152231B2 (en)
JPS61196528A (en) Thin film forming apparatus
JPS6246515A (en) Thin film forming method
JP3174787B2 (en) Optical CVD equipment
JPH0351292B2 (en)
JPS6129120A (en) Thin film forming device
JPS61196529A (en) Thin film forming apparatus
JPS61127120A (en) Formation of thin film
JPS61196527A (en) Thin film forming apparatus
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPS61232611A (en) Forming device for thin film
JPS61144014A (en) Thin film formation
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPH0978245A (en) Formation of thin film