JPH0573042B2 - - Google Patents

Info

Publication number
JPH0573042B2
JPH0573042B2 JP16293085A JP16293085A JPH0573042B2 JP H0573042 B2 JPH0573042 B2 JP H0573042B2 JP 16293085 A JP16293085 A JP 16293085A JP 16293085 A JP16293085 A JP 16293085A JP H0573042 B2 JPH0573042 B2 JP H0573042B2
Authority
JP
Japan
Prior art keywords
gas
halogen
film
amorphous
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16293085A
Other languages
Japanese (ja)
Other versions
JPS6224605A (en
Inventor
Hidekuni Sugawara
Taketoshi Nakayama
Takeshi Masumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Tokin Corp
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp, Shingijutsu Kaihatsu Jigyodan filed Critical Tokin Corp
Priority to JP16293085A priority Critical patent/JPS6224605A/en
Publication of JPS6224605A publication Critical patent/JPS6224605A/en
Publication of JPH0573042B2 publication Critical patent/JPH0573042B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、磁気記録用の各種薄膜磁気ヘツド等
に応用し得る特にハロゲンガスを含有せしめたア
モルフアス磁性薄膜に関する。 従来の技術 アモルフアス磁性薄膜は近年大幅な需要増を示
しており、金属、合金のみならず、酸化物、ホウ
化物、炭化物、窒化物などの化合物の薄膜も、各
種ガス雰囲気中で容易につくられている。 金属、合金の成膜は、使用する原料、ターゲツ
トの形状の加工が容易であり、広く行なわれてい
るが、化合物の成膜技術は、含有させるガス元素
および軽元素により、その作製方法は異なる。 又、ハロゲン特にFを含有する化合物は非常に
多く、磁性材料(ハロゲン化物磁性体)、光電材
料(エレクトロルミネツセンス、フオトクロミツ
ク)、光学材料(フツ化物ガラス)があり、有機
フツ素化合物としては、フツ素界面活性物質(フ
ツ素系プラスチツク)、生物活性物質(農薬、医
薬、色素、毒薬)があり、非常に活性な分野から
安定な分野まで多岐に亙つている。 磁性材料の分野については、ハロゲン化物磁性
体と呼ばれ、F、Cl、Brは1価の陰イオンであ
るため、2価以上の価数になる鉄続磁性イオンと
化合すると、成分比濃度が1:2以下となり、磁
気臨界温度が常温以下になる。そのため、応用上
重要な磁性体が少ない。ハロゲン化物磁性体は
MF2、MF3、AMF3(ペロブスカイト型)、
A2MF4の結合形態があり、磁性体の種類では、
反強磁性体、メタ磁性体、無色透明強磁性体、絶
縁性磁性体がある。これらは、ハロゲン元素と金
属元素が結晶として結びついた化合物であり、ハ
ロゲン含有量の多い分野である。 しかしながら、これらはいずれも結晶構造が結
晶体であり、非晶質のものはない。 発明が解決しようとする問題点 本発明は、ハロゲンガスを含有したアモルフア
ス磁性薄膜を提供することにより、アモルフアス
材料のもつ熱的不安定さおよび不完全さをなく
し、又、表面状態をさびにくくせんとするもので
ある。 本発明は、かかるハロゲンガスを含有せしめた
新規な組成のアモルフアス磁性薄膜を提供するも
のである。 問題点を解決するための手段 本発明は、下記のとおりのアモルフアス磁性薄
膜である。 QxMyR(100-x-y) (ただし、Qはハロゲン元素でありF、Cl、Br、
Iのいずれか1種又は2種以上、MはB、C、
Al、Si、P、Ti、V、Cr、Mn、Ni、Zr、Nb、
Moのいずれか1種又は2種以上の組み合せ、R
はFe、Coのいずれか1種又は2種の組み合せか
らなり、 x=0.1〜25原子% 50原子≧x+y≧10原子% である。) かかる薄膜は反応性成膜法によつて得ることが
できる。 本発明ではハロゲンガス、F、Cl、Br、Iを
含有することにより、Fe、Coをベースとしたア
モルフアス構造を有する磁性薄膜が作製される。 Qのハロゲンガスの含有量は0.1原子%未満で
はハロゲンガス含有の効果、アモルフアス形成効
果がなく、25原子%を越えるとハロゲン化合物の
形成が始まるので、ハロゲンガスの含有量は0.1
〜25原子%に限定した。かかるQ元素は、ハロゲ
ン元素でF、Cl、Br、Iのいずれか1種又は2
種以上であり、アモルフアス薄膜を得るために
は、アモルフアス形成元素が10at%以上必要であ
る。そこで、本発明では同じくアモルフアス成形
能を有する下記M元素とQ元素との合計で10原子
%以上と限定した。ハロゲン元素のF、Cl、Br、
Iはこの順に原子半径が大きくなる。アモルフア
ス形成能と原子半径が大きく関係していることは
良く知られている。又、電気陰性度、電子親和力
とも大きい。そのため、本発明では、Cl、Br、
IもFと同じ特性を示している。そこで、実施例
ではFを代表例として示しているが、他のCl、
Br、IもFと容易に置き換えることができる。
なお、Cl、Br、I元素については、Fの場合と
同一の成膜方法でそのアモルフアス形成能を確認
している。又Mはアモルフアス形成元素Qと磁性
薄膜の磁気特性の向上に必要なものである。その
含有量はQとの含量で10原子%以上50原子%まで
である。B、C、Al、Si、P、Ti、V、Cr、
Mn、Ni、Zr、Nb、Moはアモルフアス形成元素
として良く知られており、本発明においては、か
かる元素の1種又は2種以上の組合せで、前記Q
元素と化合させている。このM元素の量はQの量
との計で10原子%ないし50原子%と規定している
が、下限の10原子%はアモルフアス形成能として
の必要量であり、上限の50原子%はこれを超える
と得られた膜の磁気特性、特に飽和磁化量が極端
に低下するため、実用に供せられなくなるからで
ある。RのFeとCoのいずれか1種又は2種の組
み合せは、磁性材料の基本元素である。 ここで反応性成膜法を定義すると「それによつ
て生成される化合物薄膜の少なくとも1つの組成
は気相となつている状態で行なわれる成膜技術。」
となる。 成膜方法としては、例えばRf、DC、対向ター
ゲツト、イオンビーム、蒸着、クラスターイオン
ビーム、トライマグ高速スパツター法等が挙げら
れるが、一例として反応性スパツタリングについ
て説明する。 反応性スパツタリングの金属原子と反応性ガス
が化合する場所は、一般にはターゲツトと基板上
で起こると考えられている。勿論、放電空間中で
の衝突化合も発生するが、3次元空間内の衝突と
なり、基板面上での移動原子の衝突のような2次
元空間での衝突や、ターゲツトへのイオン等の衝
突などと比較して頻度が小さいこと、プラズマの
温度が高く、たとえクラスター同士や原子同士の
衝突が起つても、化合により生じた熱エネルギー
の逃げ場がなく、結局すぐに分解することにな
る。勿論、この衝突と化合、分解のプロセス内で
原子の飛翔するエネルギーが減少すると考えて差
しつかえない。そのため、基板への原子の衝突エ
ネルギーも未反応に比較すると弱くなる。 次に反応性ガスとして使用するハロゲンガスに
ついて説明する。ハロゲンガスプラズマを用いた
技術にはドライエツチング技術がある。プラズマ
エツチングはシリコンを基板とする各種半導体デ
バイス、集積回路、特にLSI、超LSIの基本技術
として広く実用化されている。プラズマを用いた
エツチング反応では、いわゆる非平衡状態での化
学反応が主反応でありエツチング対象となる材料
と反応ガスのみならず、材料の微視的表面状態が
エツチング特性に大きく影響する。 これらのエツチングでは、不活性ガス(Ar、
Ne、He等)を用いるものと、反応性ガスラジカ
ルとして、CF4、CF4+O2、CF4+H2、C3F3
CCl4、BCl3を用いるものがある。 プラズマエツチングの基本反応としては、減圧
雰囲気内において反応性ガスを導入して高周波電
力を印加すると、グロー放電を生じ、低温の非平
衡ガスプラズマが発生する。このプラズマ中には
基本構成粒子である電子イオンがあり、大部分は
電気的に中性の原子や分子である。多くの場合、
励起状態にあり化学的な活性度が高く、容易に化
学反応をおこす。プラズマエツチングで使用され
る基本ガスの一例としてCF4ガスは共有結合的性
格で熱的に安定であり、紫外線、放射線照射に対
しては高い抵抗性を示す。CF4を用いたグロー放
電プラズマ中ではCF4は次の様に解離して化学的
に活性度の高い励起状態にあるF原子が生ずる。 CF4+e-→CF3+F※ +e-→C+CF4 (F※ :活性度の高い励起状態にあるF原子) この様にプラズマ中に生成された活性なハロゲ
ン原子は、エツチングされる材料と化学的に反応
して揮発性、又は蒸気圧の高い反応生成物をつく
ることでエツチングが生ずる。 以上の様にハロゲンガスはプラズマエツチング
の領域では広く使われているが、スパツタリング
の反応性ガス、つまり、成膜中にハロゲンガスを
含有する試みはまだ行なわれていない。 反応性成膜法としては、活性な純ハロゲンガス
をチヤンバー内に導入することも考えられるが、
問題点としてはガス自体が非常に活性であり、腐
食、火事、人体への吸入などの事故を未然に防ぐ
ことができれば、反応性成膜法は当然成立する。 しかしながら、純ハロゲンガスのボンベの製造
は困難であり、さらにAr等の混合ガスにおいて
も低濃度のボンベしか作り得ず、しかもボンベの
寿命は腐食により約6ケ月程度しか保障されない
など、多くの問題がある。 それ故、本発明になるハロゲンガス含有薄膜
は、以上の様なハロゲンガスを安全に含有された
膜としてこれまでになかつたものである。 したがつて、本発明では反応性ガスとしてのハ
ロゲンガス、及びその化合物ガスをハロゲン化合
物を分解することにより発生させる。一般に反応
性成膜法においては、反応性ガスを外部から導入
する方法、同一チヤンバー内で反応性ガスを発生
させる方法、又はターゲツト上に化合物をモザイ
ク状に置いて成膜する複合ターゲツトが考えられ
る。 まず複合ターゲツトではターゲツトの上に配置
するフツ化物の蒸発速度が大きく、安定に成膜す
ることが困難である。一般にフッ化物は酸化物や
窒化物に比較して、溶融温度の低いものが多く、
容易にプラズマにより分解すると考えられ、現に
FeF3粉末をターゲツトとしてプレス成型しスパ
ツタリングすると低パワーでも容易に変色し、白
色の表面が黒褐色になつてしまい、明らかに性質
の変化が観察される。それ故、複合ターゲツトを
使用して長時間のスパツタによる均質な成膜は困
難である。 次にチヤンバー外から配管系を通してハロゲン
ガスを導入する方法は、ボンベ、配管系ガスコン
トロール系へのダメージが大きく、長期的観点か
ら非常に危険である。 以上から本発明になる同一チヤンバー内で純度
の高いフツ化物からハロゲンガスを分解し発生さ
せ使用に供しており、これは安全でかつ効果的な
方法であり、必要量のコントロールも容易で、さ
らにチヤンバー内で発生したハロゲンガスは、後
処理で容易に無害化できる。 第1図には1例として本発明の製作に使用した
2.0kw対向DCスパツタ装置(ターゲツト径80φ)
とハロゲンガス発生用1.0kwRf電極(ターゲツト
径80φ)の模式図を示した。同一チヤンバー1の
中にDC対向ターゲツト2と基板3さらにハロゲ
ン化合物をターゲツト4とするRf電極5が配置
される。ガス入口6よりArガスが導入され、適
当な真空度でRf電極5上のハロゲン化合物ター
ゲツト4よりハロゲンガスが分解されて発生す
る。DC対向ターゲツト2では電極にセツトされ
たターゲツトよりAr+ハロゲン元素の衝撃によ
り元素が飛び出し、基板への飛翔中にハロゲン元
素と反応を起こし、活性な元素同志は容易に結び
つく。基板への付着時には未反応性スパツタに比
較すると大きな変化が生ずる。 [実施例] 実施例 1 第1図に示した様な対向ターゲツトDCスパツ
タ装置を使用して対向ターゲツト2にFe90B10(at
%)を取り付ける。Rfターゲツト4にはFeF3
ロゲン化合物をプレス成型して使用する。真空槽
1内を5×10-7Torrまで真空引きした後Arガス
を導入し、槽内が2×10-3Torrになる様に調節
する。ハロゲンガス発生用Rf出力を例えば300W
にしてDC出力を変更させると第2図に示す様に
容易にBとFの含有量を変動させることが可能で
ある。Fの含有量はこの場合20原子%ではアモル
フアス構造を示すが25原子%を越えるとフツ化物
の生成が始まる。作製された各種組成の反応性ス
パツタ膜とFe90B10の未反応性スパツタ膜の磁気
特性を振動型磁力計及び直流磁化測定装置を用い
て測定した結果を表1に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to an amorphous magnetic thin film containing halogen gas, which can be applied to various thin film magnetic heads for magnetic recording. Conventional technology Demand for amorphous magnetic thin films has increased significantly in recent years, and thin films of not only metals and alloys but also compounds such as oxides, borides, carbides, and nitrides can be easily produced in various gas atmospheres. ing. Film formation of metals and alloys is widely practiced because the raw materials used and the shape of the target are easy to process, but the film formation technology for compounds differs depending on the gas element and light element contained. . In addition, there are many compounds containing halogen, especially F, including magnetic materials (halide magnetic materials), photoelectric materials (electroluminescence, photochromic), and optical materials (fluoride glasses).As organic fluorine compounds, , fluorine surfactants (fluorine-based plastics), and biologically active substances (pesticides, pharmaceuticals, pigments, and poisonous drugs), and they range from highly active to stable fields. In the field of magnetic materials, they are called halide magnetic materials, and since F, Cl, and Br are monovalent anions, when combined with iron-continuous magnetic ions with a valence of 2 or more, the component concentration increases. 1:2 or less, and the magnetic critical temperature becomes below room temperature. Therefore, there are few magnetic materials that are important for applications. Halide magnetic material is
MF 2 , MF 3 , AMF 3 (perovskite type),
There are A 2 MF 4 bonding forms, and the types of magnetic materials are:
There are antiferromagnetic materials, metamagnetic materials, colorless transparent ferromagnetic materials, and insulating magnetic materials. These are compounds in which a halogen element and a metal element are combined as crystals, and are fields with a high halogen content. However, all of these have crystalline structures, and none of them are amorphous. Problems to be Solved by the Invention The present invention eliminates the thermal instability and imperfections of amorphous materials by providing an amorphous magnetic thin film containing halogen gas, and also makes the surface condition less susceptible to rust. That is. The present invention provides an amorphous magnetic thin film having a novel composition containing such a halogen gas. Means for Solving the Problems The present invention is an amorphous magnetic thin film as described below. QxMyR (100-xy) (However, Q is a halogen element, F, Cl, Br,
Any one or more of I, M is B, C,
Al, Si, P, Ti, V, Cr, Mn, Ni, Zr, Nb,
Any one type or a combination of two or more types of Mo, R
is composed of one or a combination of Fe and Co, and x=0.1 to 25 atom%, 50 atoms≧x+y≧10 atom%. ) Such thin films can be obtained by reactive deposition methods. In the present invention, by containing halogen gas, F, Cl, Br, and I, a magnetic thin film having an amorphous structure based on Fe and Co is produced. If the content of halogen gas in Q is less than 0.1 at%, there will be no effect of halogen gas inclusion or amorphous amorphous formation, and if it exceeds 25 at%, the formation of halogen compounds will begin, so the content of halogen gas is 0.1
Limited to ~25 at.%. The Q element is a halogen element consisting of one or two of F, Cl, Br, and I.
In order to obtain an amorphous thin film, 10 at% or more of the amorphous ass-forming element is required. Therefore, in the present invention, the total amount of the following M elements and Q elements, which also have amorphous forming ability, is limited to 10 atomic % or more. Halogen elements F, Cl, Br,
The atomic radius of I increases in this order. It is well known that the ability to form amorphous atom is closely related to the atomic radius. It also has high electronegativity and electron affinity. Therefore, in the present invention, Cl, Br,
I also shows the same characteristics as F. Therefore, in the examples, F is shown as a representative example, but other Cl,
Br and I can also be easily replaced with F.
Note that for Cl, Br, and I elements, their ability to form amorphous amorphous was confirmed using the same film forming method as in the case of F. Further, M is necessary for improving the amorphous amorphous forming element Q and the magnetic properties of the magnetic thin film. Its content, together with Q, is from 10 atomic % to 50 atomic %. B, C, Al, Si, P, Ti, V, Cr,
Mn, Ni, Zr, Nb, and Mo are well known as amorphous amorphous elements, and in the present invention, the above-mentioned Q
It is combined with elements. The amount of this M element is specified as 10 atomic % to 50 atomic % in total with the amount of Q, but the lower limit of 10 atomic % is the amount necessary for the ability to form amorphous amorphous, and the upper limit of 50 atomic % is this. This is because if it exceeds this value, the magnetic properties of the resulting film, especially the saturation magnetization, will be extremely reduced, making it impossible to put it to practical use. Any one or a combination of Fe and Co in R is a basic element of the magnetic material. Here, the definition of reactive film deposition method is "a film deposition technique in which at least one composition of the compound thin film produced thereby is in the gas phase."
becomes. Film-forming methods include, for example, Rf, DC, opposed target, ion beam, vapor deposition, cluster ion beam, Trimag high-speed sputtering, etc., and reactive sputtering will be described as an example. In reactive sputtering, the combination of metal atoms and reactive gases is generally believed to occur on the target and substrate. Of course, collisional combinations occur in the discharge space, but these are collisions in three-dimensional space, such as collisions in two-dimensional space such as collisions of moving atoms on a substrate surface, and collisions of ions, etc. on a target. The frequency is small compared to that of clusters, and the temperature of the plasma is high, so even if clusters or atoms collide, there is no place for the thermal energy generated by the combination to escape, and they end up breaking down quickly. Of course, it is safe to assume that the energy of flying atoms decreases during this process of collision, combination, and decomposition. Therefore, the energy of atoms colliding with the substrate is also weaker than in the case of no reaction. Next, the halogen gas used as the reactive gas will be explained. Dry etching technology is a technology using halogen gas plasma. Plasma etching has been widely put into practical use as a basic technology for various semiconductor devices and integrated circuits using silicon as substrates, especially LSI and VLSI. In an etching reaction using plasma, the main reaction is a chemical reaction in a so-called non-equilibrium state, and the etching characteristics are greatly influenced not only by the material to be etched and the reaction gas, but also by the microscopic surface condition of the material. In these etchings, inert gas (Ar,
CF 4 , CF 4 + O 2 , CF 4 + H 2 , C 3 F 3 ,
Some use CCl 4 and BCl 3 . The basic reaction of plasma etching is that when a reactive gas is introduced in a reduced pressure atmosphere and high frequency power is applied, a glow discharge is generated and a low-temperature non-equilibrium gas plasma is generated. This plasma contains electrons and ions, which are the basic constituent particles, and most of them are electrically neutral atoms and molecules. In many cases,
It is in an excited state, has high chemical activity, and easily causes chemical reactions. As an example of a basic gas used in plasma etching, CF 4 gas is thermally stable due to its covalent nature, and exhibits high resistance to ultraviolet rays and radiation. In a glow discharge plasma using CF 4 , CF 4 dissociates as follows to generate F atoms in a chemically highly active excited state. CF 4 +e - →CF 3 +F* +e - →C+CF 4 (F*: F atom in a highly active excited state) The active halogen atoms generated in the plasma in this way are chemically related to the material to be etched. Etching occurs by reacting with other substances to produce volatile or high vapor pressure reaction products. As described above, halogen gas is widely used in the plasma etching field, but no attempt has been made to include halogen gas as a reactive gas in sputtering, that is, during film formation. As a reactive film formation method, it is possible to introduce active pure halogen gas into the chamber, but
The problem is that the gas itself is very active, and if accidents such as corrosion, fire, and inhalation into the human body can be prevented, then the reactive film-forming method will of course be viable. However, it is difficult to manufacture cylinders for pure halogen gas, and even cylinders for mixed gases such as Ar can only be manufactured at low concentrations, and the cylinders have many problems, such as the guaranteed lifespan of only about 6 months due to corrosion. There is. Therefore, the halogen gas-containing thin film according to the present invention is a film never before available that safely contains a halogen gas as described above. Therefore, in the present invention, halogen gas as a reactive gas and its compound gas are generated by decomposing the halogen compound. In general, reactive film formation methods include a method in which a reactive gas is introduced from the outside, a method in which reactive gas is generated within the same chamber, or a composite target in which a compound is placed in a mosaic pattern on a target to form a film. . First, in the case of a composite target, the evaporation rate of the fluoride disposed on the target is high, making it difficult to form a film stably. In general, fluorides often have a lower melting temperature than oxides and nitrides.
It is thought that it is easily decomposed by plasma, and in fact
When press molding and sputtering FeF 3 powder as a target, the color changes easily even at low power, and the white surface turns blackish brown, clearly changing the properties. Therefore, it is difficult to form a homogeneous film by sputtering for a long time using a composite target. Next, the method of introducing halogen gas from outside the chamber through the piping system causes great damage to the cylinder and the gas control system of the piping system, and is extremely dangerous from a long-term perspective. From the above, the present invention decomposes and generates halogen gas from high-purity fluoride in the same chamber and provides it for use.This is a safe and effective method, the required amount can be easily controlled, and Halogen gas generated within the chamber can be easily rendered harmless through post-treatment. Figure 1 shows a sample used in the production of the present invention as an example.
2.0kw opposing DC sputtering device (target diameter 80φ)
A schematic diagram of a 1.0kwRf electrode (target diameter 80φ) for halogen gas generation is shown. In the same chamber 1, a DC opposing target 2, a substrate 3, and an Rf electrode 5 having a halogen compound as a target 4 are arranged. Ar gas is introduced from the gas inlet 6, and halogen gas is decomposed and generated from the halogen compound target 4 on the Rf electrode 5 at an appropriate degree of vacuum. In the DC facing target 2, the elements are ejected from the target set on the electrode by the impact of Ar + halogen elements, react with the halogen elements while flying to the substrate, and the active elements easily bond together. When attached to a substrate, a large change occurs compared to unreactive spatter. [Example] Example 1 Fe 90 B 10 (at
%). For the Rf target 4, a FeF 3 halogen compound is press-molded and used. After evacuating the inside of the vacuum chamber 1 to 5×10 -7 Torr, Ar gas is introduced and the pressure inside the chamber is adjusted to 2×10 -3 Torr. For example, set the Rf output for halogen gas generation to 300W.
By changing the DC output as shown in FIG. 2, it is possible to easily change the contents of B and F as shown in FIG. In this case, when the F content is 20 at %, an amorphous structure is exhibited, but when it exceeds 25 at %, fluoride begins to be formed. Table 1 shows the results of measuring the magnetic properties of the prepared reactive sputtered films of various compositions and unreacted sputtered films of Fe 90 B 10 using a vibrating magnetometer and a DC magnetization measuring device.

【表】 この磁気特性を有する膜は飽和磁化Bsが高く、
角型比Br/Bs(×100)が良く、保護力Hcが低い
のでトランス材料などに使用することができる。 実施例 2 実施例1と同様対向ターゲツトにCo、Zr、Nb
を取り付ける。Rfターゲツトも同様FeF3を使用
する。実施例1と同様に未反応性スパツタ膜と反
応性スパツタ膜の磁気特性を振動型磁力計及び直
流磁化測定装置を用いて測定すると表2の様にな
つた。
[Table] Films with this magnetic property have high saturation magnetization Bs,
It has a good squareness ratio Br/Bs (×100) and low protective power Hc, so it can be used for transformer materials, etc. Example 2 As in Example 1, Co, Zr, and Nb were used as opposing targets.
Attach. The Rf target also uses FeF 3 . As in Example 1, the magnetic properties of the unreacted sputtered film and the reactive sputtered film were measured using a vibrating magnetometer and a DC magnetization measuring device, and the results were as shown in Table 2.

【表】 この磁気特性を有する膜は保磁力、角型比が良
く、かつFを含有する薄膜なので高周波特性に優
れており、磁気記録用の各種薄膜磁気ヘツドに応
用が可能である。 実施例 3 Fe90B10ターゲツトに各元素のチツプを貼つた
複合ターゲツトを用い、実施例1と同様にして膜
を形成した。得られた膜の組成と保磁力の値を表
3に示す。
[Table] A film with this magnetic property has good coercive force and squareness ratio, and since it is a thin film containing F, it has excellent high frequency properties, and can be applied to various thin film magnetic heads for magnetic recording. Example 3 A film was formed in the same manner as in Example 1 using a composite target in which chips of each element were attached to a Fe 90 B 10 target. Table 3 shows the composition and coercive force value of the obtained film.

【表】 表3に示すとおり、保磁力の良好(低い)なア
モルフアス構造を示す薄膜が得られた。 実施例 4 Fe90B10並びにFe85B15(※印)をターゲツトと
して用い、F、Cl、Br、IガスはFeF3、FeCl2
FeBr2、FeI2粉末ターゲツトを用い、実施例1と
同様にして膜を形成した。得られた膜の組成と保
磁力の値を表4に示す。
[Table] As shown in Table 3, a thin film exhibiting an amorphous structure with good (low) coercive force was obtained. Example 4 Fe 90 B 10 and Fe 85 B 15 (marked with *) were used as targets, and F, Cl, Br, and I gases were FeF 3 , FeCl 2 ,
A film was formed in the same manner as in Example 1 using FeBr 2 and FeI 2 powder targets. Table 4 shows the composition and coercive force values of the obtained film.

【表】【table】

【表】 発明の効果 本発明は、ハロゲンガスを含有することによつ
てアモルフアス構造を容易に形成し、熱的に安定
で、表面状態の優れた磁性薄膜が得られる。すな
わち、ハロゲンガスの含有量が増加するにつれ
て、薄膜の表面が化学的に強化され、塩酸などの
耐酸性、湿気などの耐酸化性が向上する。 得られた磁性薄膜は第3図に示した様に未反応
性膜に比較すると角型比Br/Bs(※100)が97%
まで向上し磁気特性の改善には目覚ましい効果が
ある。
[Table] Effects of the Invention According to the present invention, by containing a halogen gas, an amorphous structure can be easily formed, and a magnetic thin film that is thermally stable and has an excellent surface condition can be obtained. That is, as the content of halogen gas increases, the surface of the thin film is chemically strengthened, and its resistance to acids such as hydrochloric acid and oxidation resistance to moisture is improved. As shown in Figure 3, the obtained magnetic thin film has a squareness ratio Br/Bs (*100) of 97% compared to the unreacted film.
The improvement in magnetic properties is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜を製作するのに適した装
置の説明図、第2図は実施例1におけるBとFの
含有量の変動を示すグラフである。第3図はハロ
ゲンガス反応性、未反応性膜の磁性を比較したグ
ラフである。 1……チヤンバー、2……DC対向ターゲツト、
3……基板、4……ターゲツト、5……Rf電極、
6……ガス入口。
FIG. 1 is an explanatory diagram of an apparatus suitable for producing the thin film of the present invention, and FIG. 2 is a graph showing variations in the contents of B and F in Example 1. FIG. 3 is a graph comparing the halogen gas reactivity and the magnetism of an unreactive film. 1...Chamber, 2...DC facing target,
3...Substrate, 4...Target, 5...Rf electrode,
6...Gas inlet.

Claims (1)

【特許請求の範囲】 1 基本的に下記の式で示される成分組成よりな
ることを特徴とするアモルフアス磁性薄膜。 QxMyR(100-x-y) (ただし、Qはハロゲン元素でありF、Cl、Br、
Iのいずれか1種又は2種以上、MはB、C、
Al、Si、P、Ti、V、Cr、Mn、Ni、Zr、Nb、
Moのいずれか1種又は2種以上の組み合せ、R
はFe、Coのいずれか1種又は2種の組み合せか
らなり、 x=0.1〜25原子% 50原子≧x+y≧10原子% である。)
[Scope of Claims] 1. An amorphous magnetic thin film characterized by having a composition basically represented by the following formula. QxMyR (100-xy) (However, Q is a halogen element, F, Cl, Br,
Any one or more of I, M is B, C,
Al, Si, P, Ti, V, Cr, Mn, Ni, Zr, Nb,
Any one type or a combination of two or more types of Mo, R
is composed of one or a combination of Fe and Co, and x=0.1 to 25 atom%, 50 atoms≧x+y≧10 atom%. )
JP16293085A 1985-07-25 1985-07-25 Amorphous magnetic thin film Granted JPS6224605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16293085A JPS6224605A (en) 1985-07-25 1985-07-25 Amorphous magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16293085A JPS6224605A (en) 1985-07-25 1985-07-25 Amorphous magnetic thin film

Publications (2)

Publication Number Publication Date
JPS6224605A JPS6224605A (en) 1987-02-02
JPH0573042B2 true JPH0573042B2 (en) 1993-10-13

Family

ID=15763935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16293085A Granted JPS6224605A (en) 1985-07-25 1985-07-25 Amorphous magnetic thin film

Country Status (1)

Country Link
JP (1) JPS6224605A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692099B2 (en) 1996-07-10 2014-04-08 Bassilic Technologies Llc System and methodology of coordinated collaboration among users and groups
US8875011B2 (en) 2011-05-06 2014-10-28 David H. Sitrick Systems and methodologies providing for collaboration among a plurality of users at a plurality of computing appliances
US8914735B2 (en) 2011-05-06 2014-12-16 David H. Sitrick Systems and methodologies providing collaboration and display among a plurality of users
US8918721B2 (en) 2011-05-06 2014-12-23 David H. Sitrick Systems and methodologies providing for collaboration by respective users of a plurality of computing appliances working concurrently on a common project having an associated display
US8918724B2 (en) 2011-05-06 2014-12-23 David H. Sitrick Systems and methodologies providing controlled voice and data communication among a plurality of computing appliances associated as team members of at least one respective team or of a plurality of teams and sub-teams within the teams
US8918723B2 (en) 2011-05-06 2014-12-23 David H. Sitrick Systems and methodologies comprising a plurality of computing appliances having input apparatus and display apparatus and logically structured as a main team
US8918722B2 (en) 2011-05-06 2014-12-23 David H. Sitrick System and methodology for collaboration in groups with split screen displays
US8924859B2 (en) 2011-05-06 2014-12-30 David H. Sitrick Systems and methodologies supporting collaboration of users as members of a team, among a plurality of computing appliances
US9224129B2 (en) 2011-05-06 2015-12-29 David H. Sitrick System and methodology for multiple users concurrently working and viewing on a common project
US9330366B2 (en) 2011-05-06 2016-05-03 David H. Sitrick System and method for collaboration via team and role designation and control and management of annotations

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223708A (en) * 1988-03-03 1989-09-06 Tokin Corp Noise stop element
JPH07118416B2 (en) * 1991-03-22 1995-12-18 株式会社アモルファス・電子デバイス研究所 Soft magnetic thin film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692099B2 (en) 1996-07-10 2014-04-08 Bassilic Technologies Llc System and methodology of coordinated collaboration among users and groups
US8875011B2 (en) 2011-05-06 2014-10-28 David H. Sitrick Systems and methodologies providing for collaboration among a plurality of users at a plurality of computing appliances
US8914735B2 (en) 2011-05-06 2014-12-16 David H. Sitrick Systems and methodologies providing collaboration and display among a plurality of users
US8918721B2 (en) 2011-05-06 2014-12-23 David H. Sitrick Systems and methodologies providing for collaboration by respective users of a plurality of computing appliances working concurrently on a common project having an associated display
US8918724B2 (en) 2011-05-06 2014-12-23 David H. Sitrick Systems and methodologies providing controlled voice and data communication among a plurality of computing appliances associated as team members of at least one respective team or of a plurality of teams and sub-teams within the teams
US8918723B2 (en) 2011-05-06 2014-12-23 David H. Sitrick Systems and methodologies comprising a plurality of computing appliances having input apparatus and display apparatus and logically structured as a main team
US8918722B2 (en) 2011-05-06 2014-12-23 David H. Sitrick System and methodology for collaboration in groups with split screen displays
US8924859B2 (en) 2011-05-06 2014-12-30 David H. Sitrick Systems and methodologies supporting collaboration of users as members of a team, among a plurality of computing appliances
US9224129B2 (en) 2011-05-06 2015-12-29 David H. Sitrick System and methodology for multiple users concurrently working and viewing on a common project
US9330366B2 (en) 2011-05-06 2016-05-03 David H. Sitrick System and method for collaboration via team and role designation and control and management of annotations

Also Published As

Publication number Publication date
JPS6224605A (en) 1987-02-02

Similar Documents

Publication Publication Date Title
JPH0573042B2 (en)
KR950703487A (en) COMPOSITE METAL OXIDE POWDER AND PROCESS FOR PRODUCING THE SAME
JP2900759B2 (en) Silicon oxide deposition material and deposition film
Mason et al. Mobilities of polyatomic ions in gases: core model
Jadhav et al. Effect of magnesium substitution on the structural, morphological, optical and wettability properties of cobalt ferrite thin films
Chen et al. Tracing the origin of oxygen for La0. 6Sr0. 4MnO3 thin film growth by pulsed laser deposition
Biederman et al. Nanocomposite and nanostructured films with plasma polymer matrix
Zhong et al. Fabrication of chromium oxide nanoparticles by laser-induced deposition from solution
Stranak et al. Influence of reactive oxygen species during deposition of iron oxide films by high power impulse magnetron sputtering
JPH0350148A (en) Zinc oxide sintered compact, production and its application
Jiang et al. The thermostability of the Fe16N2 phase deposited on a GaAs substrate by ion-beam-assisted deposition
Myshkin et al. Heterogeneous arc discharge plasma in a magnetic field
JP3751767B2 (en) Method for producing layered cluster
Chouteau et al. Kinetics driving nanocomposite thin-film deposition in low-pressure misty plasma processes
JPS6230871A (en) Production of thin film containing halogen
Nakao et al. Thermodynamic stability of γ-aluminum oxynitride
Wang et al. Enhancement of the thermal stability of by Ti addition
DE2344581A1 (en) Thin film vapour deposition on substrate - in HF magnetic field perpendicular to stationary field producing resonance ionization
Mukoyama et al. KβKα x-ray intensity ratios in 3d elements by photoionization and electron-capture decay
Vlachos et al. Cesium growth on the SrTiO3 (100) surface
Khasin et al. Kinetics of oxygen adsorption on silver films
JPH01294560A (en) Production of compound oxide superconducting material
US3523822A (en) Method for producing a superconducting coating resistant to thermal growth
Huang et al. The oxidation of potassium on MgO (100)
JPH01104763A (en) Production of thin metal compound film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term