JPH0572404B2 - - Google Patents

Info

Publication number
JPH0572404B2
JPH0572404B2 JP59267745A JP26774584A JPH0572404B2 JP H0572404 B2 JPH0572404 B2 JP H0572404B2 JP 59267745 A JP59267745 A JP 59267745A JP 26774584 A JP26774584 A JP 26774584A JP H0572404 B2 JPH0572404 B2 JP H0572404B2
Authority
JP
Japan
Prior art keywords
para
reaction
cresol
polymer
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59267745A
Other languages
Japanese (ja)
Other versions
JPS61145223A (en
Inventor
Noburu Kikuchi
Hiroyuki Kawakami
Takayuki Saito
Hiroshi Myajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP26774584A priority Critical patent/JPS61145223A/en
Publication of JPS61145223A publication Critical patent/JPS61145223A/en
Publication of JPH0572404B2 publication Critical patent/JPH0572404B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は新規なフエノール重合体の製造法に関
する。 (従来技術) 従来、特殊フエノール樹脂の製造法としては、
フエノール類とジアルケニルベンゼン例えばパラ
あるいはメタ−ジイソプロペニルベンゼンとをブ
レンステツド酸あるいはルイス酸などのアルキル
化反応触媒を用いて60〜120℃で反応させ、重合
体を得る方法が知られている(米国特許第
3004953号明細書)。 また、同様の樹脂製造法として、フエノール水
酸基の両オルト位が水素であるフエノール化合物
とジオレフイン化合物とを金属アルミニウムを用
いてオルトアルキル化反応させ、重合体を得る方
法も知られている(米国特許第3996198号)。 他方、クレゾール2分子と、ビス(1−ヒドロ
キシ−1−メチルエチル)ベンゼン1分子とが脱
水縮合した結晶性のクレゾール誘導体も知られて
いる(特開昭58−121231号公報)。 一方、エポキシ樹脂用硬化剤としてのフエノー
ル重合体は従来からフエノール類のノボラツク樹
脂が用いられているが、これは低分子量であるた
め、硬化物のガラス転移温度が低く、より耐熱性
の高い高分子量のフエノール重合体が望まれてい
る。 また、酸化防止剤としては、2,6−ジターシ
ヤリーブチルパラクレゾールが広く用いられてい
るが、沸点が265℃のため、ポリプロピレン等の
熱可塑性樹脂との混練条件下(270〜350℃)では
揮散してしまう。このため、熱可塑性樹脂の酸化
防止剤には、ペンタエリスリチル−テトラキス
〔3−(3,5−ジターシヤリーブチル−4−ヒド
ロキシフエニル)プロピオネート〕などが用いら
れているが、近年熱可塑性樹脂の加工温度は上昇
してきており、特にエンジニアリングプラスチツ
クスでは、350℃にも達し、この酸化防止剤でも
揮散してしまう。このため、耐熱性のフエノール
系酸化防止剤が強く望まれている。 (発明が解決しようとする問題点) 上記米国特許第3004953号明細書には、特殊フ
エノール樹脂の分子量、構造および繰返し単位な
どは記載されていないが、本発明者らが、パラク
レゾールとパラジイソプロペニルベンゼンとを用
いて、米国特許第3004953号明細書に記載の発明
の追試を行ない、反応の様子を高速液体クロマト
グラフイーで分析したところ、パラジイプロペニ
ルベンゼンのパラクレゾールへのアルキル化反応
生成物以外に、パラジイソプロペニルベンゼンの
単独重合体が多量に生成すると同時に、未反応の
パラクレゾールが多量に残存することが見出され
た。すなわち、上記米国特許第3004953号明細書
に記載の発明によつて得られる重合体は、上記ア
ルキル化反応生成物と上記単独重合体の組成物と
なつており、得られた樹脂の単位重量当りのフエ
ノール水酸基量は配合から計算される値に比べて
少ない値になつている。このため、この特殊フエ
ノール樹脂をエポキシ樹脂硬化剤として使用した
場合、フエノール樹脂中に硬化反応に関与しない
パラジイソプロペニルベンゼンの単独重合体が混
存するので、得られた硬化物は橋かけ密度が減少
し、ガラス転移点の低い、耐熱性に劣るという問
題がある。また、この特殊フエノール樹脂を酸化
防止剤として使用した時は、フエノール水酸基が
熱可塑性樹脂に発生したラジカルを補足するわけ
であるから、単位重量当りのフエノール性水酸基
量が少ない樹脂は、熱可塑性樹脂に多量に添加し
なければ酸化防止剤としての硬化が発揮しないと
いう欠点を有している。 また、米国特許第3996198号明細書に記載の方
法は、金属アルミニウムとフエノール化合物を最
初に反応させてアルミニウムフエノラートを形成
させ、このフエノラートにジアルケニルベンゼン
を該フエノラートのアルミニウムで触媒作用させ
てオルトアルキル化反応させるものである。ゆえ
に、生成重合体中には、アルミニウムが含まれ、
これを除去してフエノール重合体とするために
は、塩酸等の酸で加水分解する必要があり、反応
工程が増えるという欠点がある。 他方、上記した特開昭58−121231号公報に記載
されるクレゾール誘導体は、いずれも分子内に2
個のフエノール水酸基しか有しておらず、通常の
2官能エポキシ樹脂と反応させた場合には線状の
硬化物となり、ガラス転移点が低く、使用にたえ
ず、3官能以上の特殊なエポキシ樹脂を用いた場
合にしか3次元硬化物を与えないという問題があ
る。また、酸化防止剤として使用する場合、これ
らクレゾール誘導体はいずれも融点が185℃以下
の分子量374の結晶性化合物であり、熱可塑性樹
脂との混練条件下(270〜350℃)では大半が揮散
してしまうという本質的問題を伴う。 本発明はこのような問題を解決すべくなされた
もので、エポキシ樹脂の硬化剤、熱可塑性樹脂の
酸化防止剤などに有用なフエノール重合体の製造
法を提供することを目的とする。 (問題点を解決するための手段) 本発明は、一般式〔〕
(Industrial Application Field) The present invention relates to a novel method for producing a phenol polymer. (Prior art) Conventionally, the manufacturing method for special phenolic resin is as follows:
A known method is to react phenols and dialkenylbenzenes such as para- or meta-diisopropenylbenzene at 60 to 120°C using an alkylation catalyst such as Brønsted acid or Lewis acid to obtain a polymer ( US Patent No.
3004953 specification). In addition, as a similar resin production method, a method is known in which a phenol compound in which both ortho positions of the phenol hydroxyl group are hydrogen and a diolefin compound are ortho-alkylated using metal aluminum to obtain a polymer (U.S. Pat. No. 3996198). On the other hand, a crystalline cresol derivative in which two molecules of cresol and one molecule of bis(1-hydroxy-1-methylethyl)benzene are dehydrated and condensed is also known (Japanese Unexamined Patent Publication No. 121231/1982). On the other hand, phenolic novolak resins have traditionally been used as curing agents for epoxy resins, but because these have low molecular weights, the glass transition temperature of the cured product is low, and high heat resistance polymers are used. Molecular weight phenolic polymers are desired. In addition, 2,6-ditertiarybutyl para-cresol is widely used as an antioxidant, but since its boiling point is 265°C, it is mixed under conditions of kneading with thermoplastic resins such as polypropylene (270 to 350°C). Then it will evaporate. For this reason, pentaerythrityl-tetrakis [3-(3,5-ditertiarybutyl-4-hydroxyphenyl)propionate] and the like are used as antioxidants for thermoplastic resins; Processing temperatures for resins have been rising, especially for engineering plastics, reaching 350 degrees Celsius, causing even this antioxidant to volatilize. For this reason, heat-resistant phenolic antioxidants are strongly desired. (Problems to be Solved by the Invention) Although the above specification of US Pat. No. 3,004,953 does not describe the molecular weight, structure, repeating unit, etc. of the special phenol resin, the present inventors have discovered that para-cresol and para-diiso A follow-up test of the invention described in US Pat. No. 3,004,953 was conducted using propenylbenzene, and the reaction was analyzed by high performance liquid chromatography. It was found that, in addition to p-cresol, a large amount of a homopolymer of p-diisopropenylbenzene was produced, and at the same time, a large amount of unreacted p-cresol remained. That is, the polymer obtained by the invention described in US Pat. No. 3,004,953 is a composition of the alkylation reaction product and the homopolymer, and the amount per unit weight of the resulting resin is The amount of phenol hydroxyl groups in is smaller than the value calculated from the formulation. Therefore, when this special phenolic resin is used as an epoxy resin curing agent, a homopolymer of paradiisopropenylbenzene that does not participate in the curing reaction coexists in the phenolic resin, so the resulting cured product has a reduced crosslinking density. However, there are problems in that it has a low glass transition point and poor heat resistance. In addition, when this special phenolic resin is used as an antioxidant, the phenolic hydroxyl groups capture the radicals generated in the thermoplastic resin, so resins with a small amount of phenolic hydroxyl groups per unit weight are suitable for thermoplastic resins. It has the disadvantage that it does not exhibit its curing effect as an antioxidant unless it is added in large amounts. Additionally, the method described in U.S. Pat. No. 3,996,198 involves first reacting metal aluminum and a phenolic compound to form an aluminum phenolate, and then catalyzing dialkenylbenzene on the phenolate with the aluminum of the phenolate. This is an alkylation reaction. Therefore, the produced polymer contains aluminum,
In order to remove this and obtain a phenol polymer, it is necessary to hydrolyze it with an acid such as hydrochloric acid, which has the drawback of increasing the number of reaction steps. On the other hand, all of the cresol derivatives described in JP-A-58-121231 mentioned above have 2 in the molecule.
It has only one phenolic hydroxyl group, and when reacted with a normal bifunctional epoxy resin, it becomes a linear cured product, has a low glass transition point, and is suitable for constant use. There is a problem in that a three-dimensional cured product can only be obtained when using this method. In addition, when used as antioxidants, these cresol derivatives are all crystalline compounds with a melting point of 185°C or less and a molecular weight of 374, and most of them volatilize under the conditions of kneading with thermoplastic resin (270 to 350°C). This is accompanied by the essential problem of The present invention was made to solve these problems, and an object of the present invention is to provide a method for producing a phenol polymer useful as a curing agent for epoxy resins, an antioxidant for thermoplastic resins, and the like. (Means for solving the problem) The present invention is based on the general formula []

【化】 (ただし、式中R1は炭素数1〜5のアルキル基
またはアルコキシ基であり、R2およびR3は水素
又は炭素数1〜5のアルキル基若しくはアルコキ
シ基であり、R2とR3は同一でも相違していても
よい)で表わされるフエノール化合物1モルに対
して一般式〔〕
[Chemical formula] (However, in the formula, R 1 is an alkyl group or an alkoxy group having 1 to 5 carbon atoms, R 2 and R 3 are hydrogen or an alkyl group or an alkoxy group having 1 to 5 carbon atoms, and R 2 and R 3 may be the same or different) per mole of the phenol compound represented by the general formula []

【化】 (ただし、式中R4、R5、R6、R7、R8およびR9
水素または炭素数1〜5のアルキル基であり、こ
れらは同一でも相違していてもよい)で表わされ
るビス(ヒドロキシアルキル)ベンゼン化合物を
0.67〜1.33モルの範囲でアルキル化反応触媒下に
反応させることを特徴とする一般式〔〕
[Chemical formula] (However, in the formula, R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are hydrogen or an alkyl group having 1 to 5 carbon atoms, and these may be the same or different.) A bis(hydroxyalkyl)benzene compound represented by
General formula characterized by reacting under an alkylation reaction catalyst in the range of 0.67 to 1.33 mol []

【化】 (ただし、式中R1、R2、R3、R4、R5、R6、R7
R8及びR9は上記と同一である) で表わされる繰り返し単位を平均2.5〜75個有す
るフエノール重合体の製造法に関する。 本発明に用いられる一般式〔〕で表わされる
フエノール化合物としては、具体的には、オルト
−またはパラ−クレゾール、オルト−またはパラ
−メトキシフエノール、オルト−またはパラ−エ
チルフエノール、オルト−またはパラ−プロピル
フエノール、オルト−またはパラ−ブチルフエノ
ール、オルト−またはパラ−アミルフエノール、
オルト−またはパラ−シクロペンチルフエノー
ル、2,3−ジメチルフエノール、3,4−ジメ
チルフエノール、2,5−ジメチルフエノール、
3−メトキシ−2−メチルフエノール、3−メト
キシ−4−メチルフエノール、2,3,5−トリ
メチルフエノール、3,4,5−トリメチルフエ
ノール等が挙げられ、これらは単独でまたは混合
物として使用される。このように、フエノール性
水酸基に対してオルト位およびパラ位の3個所の
うち2個所が水素原子であるフエノール化合物が
用いられる。これは、ビス(ヒドロキシアルキ
ル)ベンゼンがアルキル化反応してゲル化せずに
高分子量の線状フエノール重合体を生成せしめる
に2個所のアルキル化反応部位を必要とするため
である。 また、分子量調節剤としての効果を有するフエ
ノール性水酸基に対してオルト位およびパラ位の
3個のうち1個所だけが水素原子であるフエノー
ル化合物、具体的には2,4−ジメチルフエノー
ル、2,6−ジメチルフエノール、2,4−ジブ
チルフエノール、2,6−ジブチルフエノールな
ども併用できるが、これらのフエノール化合物
は、その使用量が式〔〕のフエノール化合物に
対して0〜5モル%とされる。 さらに、フエノール性水酸基に対してオルト位
およびパラ位の3個が全て水素原子であるフエノ
ール化合物、具体的にはフエノール、メタクレゾ
ール、3,5−ジメチルフエノール、3−メトキ
シフエノールなどが挙げられるが、これらはその
使用量が一般式〔〕で表わされるフエノール化
合物に対して0〜5モル%であれば添加使用する
ことができる。 また、一般式〔〕で表わされるビス(1−ヒ
ドロキシ−1−アルキルエチル)ベンゼン化合物
としてはメタ−ビス(1−ヒドロキシ−1−メチ
ルエチル)ベンゼン、パラ−ビス(1−ヒドロキ
シ−1−メチルエチル)ベンゼン、メタ−ビス
(1−ヒドロキシエチル)ベンゼン、パラ−ビス
(1−ヒドロキシエチル)ベンゼン、メタ−ビス
(1−ヒドロキシ−1−エチルエチル)ベンゼン、
パラ−ビス(1−ヒドロキシ−1−エチルエチ
ル)ベンゼンなどが挙げられ、これらは単独で、
または混合物として用いることができる。 反応を進行せしめるに用いられる触媒は、アル
キル化反応触媒である。この触媒としては陽イオ
ン交換樹脂、あるいはゼオライト、シリカ−アル
ミナなどの固体酸を用いることができるが、反応
を不均一系反応で行なうより均一系反応とした方
が操作上容易なので、ブレンステツド酸である硫
酸、塩酸、リン酸などの鉱酸、パラトルエンスル
ホン酸などの有機酸、ルイス酸である三弗化ホウ
素、三弗化ホウ素の錯体触媒などが好ましい。こ
れらアルキル化反応触媒の使用量は、上記フエノ
ール化合物と上記ビス(ヒドロキシアルキル)ベ
ンゼンの合計量に対して0.2〜10重量%が好まし
い。0.2重量%未満の場合は反応時間が長くなる
傾向があり、10重量%を越える場合は、反応終了
後の触媒除去が煩雑になりやすくなる。 本発明においては、上記フエノール化合物と、
上記ビス(ヒドロキシアルキル)ベンゼン化合物
とのモル比をフエノール化合物1.0モルに対して
ビス(ヒドロキシアルキル)ベンゼンを0.67〜
1.33モルとして反応させることが好ましい。この
理由は、生成するフエノール重合体の分子量に関
係し、フエノール化合物1.0モルに対して、ビス
(ヒドロキシアルキル)ベンゼンが、0.67モル未
満あるいは1.33モルを越えるモル数であれば、フ
エノール重合体の分子量が低下し、高分子量のフ
エノール重合体を得るのが困難になる。 反応温度は好ましくは60〜130℃とされる。こ
の理由は、反応温度が60℃未満の場合、反応の進
行が遅く、また反応温度が130℃を越える場合、
生成するフエノール重合体が着色し易いからであ
る。本発明では、反応の進行とともに、水が生成
するので、好ましくは用いた溶媒と水との共沸点
温度で行なわれる。 ここで用いる溶媒としては、n−ヘキサン、シ
クロヘキサンなどのパラフイン系溶媒、アセト
ン、メチルエチルケトンなどのケトン系溶媒、メ
タノール、エタノールなどのアルコール系溶媒、
ベンゼン、トルエン、キシレン、クロロベンゼン
などの芳香族溶媒を挙げることができるが、水と
共沸組成を形成し、生成する重合体を溶解させ、
しかもそれ自身は反応に関与しない溶媒であるこ
とが好ましく、具体的にはベンゼン、トルエン、
キシレン、クロロベンゼなどの芳香族溶媒が好ま
しい。 反応終了後は、水および水酸化ナトリウム、水
酸化カリウム、炭酸ナトリウム、炭酸水素ナトリ
ウム等の1〜2%希アルカリ水溶液で反応液を水
洗あるいは中和水洗して触媒を除去する方法、炭
酸ナトリウム、炭酸水素ナトリウム、酸化マグネ
シウム等のアルカリ粉末を加え、撹拌ののち、中
和塩を過して触媒を除去する方法、あるいはト
リエチルアミン、トリエタノールアミン、モルホ
リン等のアミンを加え触媒を中和する方法等の処
理が行なわれる。触媒の中和水洗除去、中和後の
過による除去あるいは中和を終えた反応液は、
そのまま加熱減圧下に反応溶媒を除去し、フエノ
ール重合体を単離することができる。しかし、分
析の結果、微量の残存モノマーおよびオリゴマー
が存在する場合は、メタノール、エタノールなど
のアルコール性溶媒、あるいはヘキサン、シクロ
ヘキサンなどのパラフイン系溶媒と言つたフエノ
ール重合体の貧溶媒で再沈させるのが好ましい。 このようにして得られるフエノール重合体は、
無色あるいは淡黄色の非結晶状樹脂状物であり、
一般式〔〕で表わされる繰返し単位を、数平均
分子量に基づいて、平均2.5〜75個有するもので
ある。数平均分子量は、使用する原料によりその
範囲が異なるが、494〜68000の範囲にある。例え
ば、クレゾールとビス(1−ヒドロキシ−1−メ
チルエチル)ベンゼンを原料とするときは、数平
均分子量は550〜20000である。 このようにして得られるフエノール重合体は、
貯蔵中のブロツキングを防止するためには、軟化
点が70℃以上であるものが好ましく、他の樹脂又
はゴムとの相溶性の点からは、一般式〔〕で表
わされる繰返し単位が平均2.5〜30個のものが特
に好ましい。また、重合体の末端の構造は、ビス
(ヒドロキシアルキル)ベンゼン1モルに対する
フエノール化合物のモル数によつて異なり、フエ
ノール化合物のモル比が1.0を越えるときは、平
均して末端がフエノール基となつている。同様
に、モル比が1以下の場合は、平均してビス(ヒ
ドロキシアルキル)ベンゼンに2個存在するヒド
ロキシアルキル基のうちの1個が未反応の状態で
存在することになる。 本発明の製造法によつて得られるフエノール重
合体はアルキル化剤の単独重合体を含有せず、一
般式〔〕で表わされる繰返し単位を有する重合
体である。この理由は、ジイソプロペニルベンゼ
ンの二重結合は反応性が高く、60℃以上でアルキ
ル化反応以外に、二重結合同士による重合を引き
起こしてしまうが、これに対し、本発明で用いる
ビス(ヒドロキシアルキル)ベンゼンは二重結合
の無い2官能のアルコールであり、本発明の反応
条件下では単独重合も起こさないためと考えられ
る。 また、本発明の製造法によるフエノール重合体
と上記した特開昭58−121231号公報に記載のクレ
ゾール誘導体との相違は、クレゾール誘導体が2
官能のフエノールモノマーで結晶性化合物である
のに対して、本発明の製造法によるフエノール重
合体は一般式〔〕で表わされる繰返し単位を有
する重合体であつて、非結晶性の樹脂状物であ
る。また、これらを合成する反応条件も大きく異
なり、クレゾール誘導体の場合、ビス(1−ヒド
ロキシ−1−メチルエチル)ベンゼン1モルに対
して、クレゾールを2.0〜10モル、好ましくは2.0
〜6モルとクレゾールが大過剰の反応条件下で行
なうことが必要となつている。 (発明の効果) 本発明により、エポキシ樹脂の硬化剤、熱可塑
性樹脂の酸化防止剤などに有用な新規なフエノー
ル重合体を得ることができる。 (実施例) 次に本発明の実施例を示す。 実施例 1 油水分離器を取付けた1000mlガラス製三つ口フ
ラスコに、パラクレゾール108g(1.00モル)、メ
タ−ビス(1−ヒドロキシ−1−メチルエチル)
ベンゼン184g(0.95モル)、トルエン150gおよ
びパラトルエンスルホン酸7.5gを仕込み撹拌し
ながら昇温した。フラスコ内の温度が95℃になつ
た時点で水がトルエンと一緒に留出し始めた。フ
ラスコ内の温度を105℃のまま8時間反応を行な
つた。この時留出した水の量は34mlであり、メタ
−ビス(1−ヒドロキシ−1−メチルエチル)ベ
ンゼンはほぼ完全に反応したことがわかる。 反応終了後、フラスコ内の反応液を1の分液
ロートへ移し、これにトルエン150gを加えたの
ち、イオン交換水で5回洗浄を繰返してパラトル
エンスルホン酸を除去した。トルエン溶液をエバ
ポレーターにかけ、溶媒トルエンを200g除去し
たのち、500mlのメタノールに溶液を撹拌しなが
ら注ぎ、白色沈殿を得た。沈殿を減圧乾燥したと
ころ、240gの白色粉末を得た。この重合体をゲ
ルパーミエーシヨンクロマトグラフイーで分析し
たところ、標準ポリスチレン換算で数平均分子量
が1650、これに基づく繰返し単位数は平均6.2で
ある。また重量平均分子量が2750、これに基づく
繰返し単位数は平均10.3であつた。また、環球式
軟化点測定器で軟化点を測定したところ、軟化点
は135℃であつた。さらに、この重合体の耐熱性
を見るために熱天秤分析を行なつた。空気雰囲気
下で毎分10℃の昇温速度で加熱を続けたところ、
320℃から減量が始まつたが、350℃における減量
の割合は3重量%であり、エンジニアリングプラ
スチツクス用の酸化防止剤として十分使用できる
耐熱性を有していることがわかつた。 また、重クロロホルムを溶媒としてNMRスペ
クトルを分析したところ、2.3ppmにパラクレゾ
ールに基づくメチル基のシグナルが存在すること
から重合体中にパラクレゾールが組込まれている
ことがわかつた。また、メタ−ビス(1−ヒドロ
キシ−1−メチルエチル)エンゼンに基づく4個
のメチル基のシグナルは0.9〜1.7ppmに存在し、
このプロトン積分強度は上述のパラクレゾールに
基づくメチル基のプロトン積分強度の3.42倍存在
した。このことから、得られた重合体の平均的構
造は次のように示される。
[Chemical formula] (However, in the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 ,
R 8 and R 9 are the same as above) The present invention relates to a method for producing a phenol polymer having an average of 2.5 to 75 repeating units. Specifically, the phenol compound represented by the general formula [] used in the present invention includes ortho- or para-cresol, ortho- or para-methoxyphenol, ortho- or para-ethylphenol, ortho- or para- propylphenol, ortho- or para-butylphenol, ortho- or para-amylphenol,
ortho- or para-cyclopentylphenol, 2,3-dimethylphenol, 3,4-dimethylphenol, 2,5-dimethylphenol,
Examples include 3-methoxy-2-methylphenol, 3-methoxy-4-methylphenol, 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, etc., which may be used alone or as a mixture. . In this way, a phenol compound is used in which two of the three positions, the ortho position and the para position relative to the phenolic hydroxyl group, are hydrogen atoms. This is because two alkylation reaction sites are required for bis(hydroxyalkyl)benzene to undergo an alkylation reaction and produce a high molecular weight linear phenol polymer without gelation. In addition, phenolic compounds having a hydrogen atom at only one of the three ortho and para positions relative to the phenolic hydroxyl group, which have the effect of acting as a molecular weight regulator, are specifically 2,4-dimethylphenol, 2, 6-dimethylphenol, 2,4-dibutylphenol, 2,6-dibutylphenol, etc. can also be used in combination, but the amount of these phenol compounds to be used is 0 to 5 mol% relative to the phenol compound of formula []. Ru. Further, phenolic compounds in which all three ortho and para positions with respect to the phenolic hydroxyl group are hydrogen atoms, specific examples include phenol, metacresol, 3,5-dimethylphenol, and 3-methoxyphenol. , these can be added and used if the amount used is 0 to 5 mol% relative to the phenol compound represented by the general formula []. In addition, as the bis(1-hydroxy-1-alkylethyl)benzene compound represented by the general formula [], meta-bis(1-hydroxy-1-methylethyl)benzene, para-bis(1-hydroxy-1-methyl ethyl)benzene, meta-bis(1-hydroxyethyl)benzene, para-bis(1-hydroxyethyl)benzene, meta-bis(1-hydroxy-1-ethylethyl)benzene,
Examples include para-bis(1-hydroxy-1-ethylethyl)benzene, which alone,
Or it can be used as a mixture. The catalyst used to drive the reaction is an alkylation reaction catalyst. As this catalyst, a cation exchange resin or a solid acid such as zeolite or silica-alumina can be used, but since it is easier to perform a homogeneous reaction than a heterogeneous reaction, Bronsted acid is used as the catalyst. Preferred are mineral acids such as sulfuric acid, hydrochloric acid, and phosphoric acid, organic acids such as para-toluenesulfonic acid, boron trifluoride which is a Lewis acid, and complex catalysts of boron trifluoride. The amount of these alkylation reaction catalysts used is preferably 0.2 to 10% by weight based on the total amount of the phenol compound and the bis(hydroxyalkyl)benzene. If it is less than 0.2% by weight, the reaction time tends to be longer, and if it exceeds 10% by weight, removal of the catalyst after the reaction is likely to be complicated. In the present invention, the above phenol compound and
The molar ratio of bis(hydroxyalkyl)benzene to the above bis(hydroxyalkyl)benzene compound is 0.67 to 1.0 mol of the phenol compound.
It is preferable to react at 1.33 mol. The reason for this is related to the molecular weight of the phenol polymer to be produced. decreases, making it difficult to obtain a high molecular weight phenol polymer. The reaction temperature is preferably 60 to 130°C. The reason for this is that when the reaction temperature is less than 60℃, the reaction progresses slowly, and when the reaction temperature exceeds 130℃,
This is because the produced phenol polymer is easily colored. In the present invention, since water is produced as the reaction progresses, the reaction is preferably carried out at the azeotropic temperature of the solvent used and water. Solvents used here include paraffinic solvents such as n-hexane and cyclohexane, ketone solvents such as acetone and methyl ethyl ketone, alcoholic solvents such as methanol and ethanol,
Aromatic solvents such as benzene, toluene, xylene, and chlorobenzene can be mentioned, but they form an azeotropic composition with water and dissolve the resulting polymer,
Moreover, it is preferable that the solvent itself does not participate in the reaction, and specifically, benzene, toluene,
Aromatic solvents such as xylene and chlorobenze are preferred. After the reaction is completed, the catalyst is removed by washing or neutralizing the reaction solution with water and a 1-2% dilute alkali aqueous solution such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, etc., sodium carbonate, A method in which an alkali powder such as sodium hydrogen carbonate or magnesium oxide is added and, after stirring, the catalyst is removed by passing through a neutralized salt, or a method in which an amine such as triethylamine, triethanolamine, or morpholine is added to neutralize the catalyst. processing is performed. Neutralize the catalyst by washing it with water, removing it by filtration after neutralization, or removing the reaction solution after neutralization.
The reaction solvent can be removed under heating and reduced pressure to isolate the phenol polymer. However, if the analysis results show that trace amounts of residual monomers and oligomers are present, re-precipitating with a poor solvent for phenolic polymers such as an alcoholic solvent such as methanol or ethanol, or a paraffinic solvent such as hexane or cyclohexane is necessary. is preferred. The phenol polymer obtained in this way is
It is a colorless or pale yellow amorphous resinous substance,
It has an average of 2.5 to 75 repeating units represented by the general formula [] based on the number average molecular weight. The number average molecular weight varies depending on the raw materials used, but is in the range of 494 to 68,000. For example, when cresol and bis(1-hydroxy-1-methylethyl)benzene are used as raw materials, the number average molecular weight is 550 to 20,000. The phenol polymer obtained in this way is
In order to prevent blocking during storage, it is preferable that the softening point is 70°C or higher, and from the point of view of compatibility with other resins or rubbers, the repeating unit represented by the general formula [] is preferably 2.5 to 70°C on average. Particularly preferred is 30 pieces. Furthermore, the terminal structure of the polymer varies depending on the number of moles of the phenol compound per mole of bis(hydroxyalkyl)benzene, and when the molar ratio of the phenol compound exceeds 1.0, the terminal becomes a phenol group on average. ing. Similarly, when the molar ratio is 1 or less, one of the two hydroxyalkyl groups present in bis(hydroxyalkyl)benzene will exist in an unreacted state on average. The phenol polymer obtained by the production method of the present invention does not contain a homopolymer of an alkylating agent and has a repeating unit represented by the general formula [ ]. The reason for this is that the double bonds in diisopropenylbenzene are highly reactive and cause polymerization between double bonds in addition to alkylation reactions at temperatures above 60°C. This is thought to be because benzene (hydroxyalkyl) is a bifunctional alcohol without double bonds and does not undergo homopolymerization under the reaction conditions of the present invention. Furthermore, the difference between the phenol polymer produced by the production method of the present invention and the cresol derivative described in JP-A-58-121231 mentioned above is that the cresol derivative is
While the functional phenol monomer is a crystalline compound, the phenol polymer produced by the production method of the present invention is a polymer having a repeating unit represented by the general formula [], and is an amorphous resinous material. be. In addition, the reaction conditions for synthesizing these are also very different; in the case of cresol derivatives, 2.0 to 10 mol of cresol, preferably 2.0 mol, per 1 mol of bis(1-hydroxy-1-methylethyl)benzene.
It is necessary to carry out the reaction under conditions in which the amount of cresol is in large excess of ~6 mol. (Effects of the Invention) According to the present invention, a novel phenol polymer useful as a curing agent for epoxy resins, an antioxidant for thermoplastic resins, etc. can be obtained. (Example) Next, an example of the present invention will be shown. Example 1 108 g (1.00 mol) of para-cresol and meta-bis(1-hydroxy-1-methylethyl) were placed in a 1000 ml three-necked glass flask equipped with an oil-water separator.
184 g (0.95 mol) of benzene, 150 g of toluene and 7.5 g of para-toluenesulfonic acid were charged and the temperature was raised while stirring. When the temperature inside the flask reached 95°C, water began to distill out together with toluene. The reaction was carried out for 8 hours while keeping the temperature inside the flask at 105°C. The amount of water distilled out at this time was 34 ml, indicating that meta-bis(1-hydroxy-1-methylethyl)benzene had reacted almost completely. After the reaction was completed, the reaction solution in the flask was transferred to the separating funnel No. 1, to which 150 g of toluene was added, and then washing was repeated 5 times with ion-exchanged water to remove para-toluenesulfonic acid. After applying the toluene solution to an evaporator to remove 200 g of the toluene solvent, the solution was poured into 500 ml of methanol with stirring to obtain a white precipitate. When the precipitate was dried under reduced pressure, 240 g of white powder was obtained. When this polymer was analyzed by gel permeation chromatography, the number average molecular weight was 1650 in terms of standard polystyrene, and the average number of repeating units based on this was 6.2. Furthermore, the weight average molecular weight was 2750, and the average number of repeating units based on this was 10.3. Further, the softening point was measured using a ring and ball softening point measuring device, and the softening point was 135°C. Furthermore, thermobalance analysis was conducted to examine the heat resistance of this polymer. When heating was continued at a rate of 10°C per minute in an air atmosphere,
Although the weight loss started at 320°C, the weight loss rate at 350°C was 3% by weight, indicating that it had sufficient heat resistance to be used as an antioxidant for engineering plastics. Furthermore, when the NMR spectrum was analyzed using deuterated chloroform as a solvent, it was found that para-cresol was incorporated into the polymer because a signal of a methyl group based on para-cresol was present at 2.3 ppm. In addition, signals of four methyl groups based on meta-bis(1-hydroxy-1-methylethyl)enzene exist at 0.9 to 1.7 ppm,
This proton integrated intensity was 3.42 times the proton integrated intensity of the methyl group based on para-cresol mentioned above. From this, the average structure of the obtained polymer is shown as follows.

【化】 メタ−ビス(1−ヒトロキシ−1−メチルエチル)ベンゼンのメチル基プロトン量/パラクレゾールのメチル基プロ
トン量=4×3n/3n+3=3.42/1 ゆえに、nは5.9となり、この値はゲルパーミ
エーシヨンクロマトグラフイーから求めた値(数
平均分子量に基づく)ともよく一致する。 実施例 2 実施例1におけるパラクレゾールのかわりにオ
ルトクレゾールを用いた他は、仕込配合および反
応条件を実施例1とまつたく同一の方法で行な
い、白色沈殿を230g得た。この重合体をゲルパ
ーミエーシヨンクロマトグラフイーで分析したと
ころ、標準ポリスチレン換算で数平均分子量は
1850(これに基づく繰返し単位数は平均6.9)、重
量平均分子量は3100(これに基づく繰返し単位数
は平均11.6)であつた。また、環球式軟化点測定
器で軟化点を測定したところ、軟化点は130℃で
あつた。 実施例 3 実施例1とまつたく同一のフラスコに、パラエ
チルフエノール122g(1.00モル)、パラ−ビス
(1−ヒドロキシ−1−メチルエチル)ベンゼン
184g(0.95モル)、トルエン150g、パラトルエ
ンスルホン酸7.7gを仕込み、以下の反応条件を
実施例1とまつたく同一の方法で行ない、白色粉
末を235g得た。この重合体をゲルパーミエーシ
ヨンクロマトグラフイーで分析したところ、標準
ポリスチレン換算で数平均分子量が1700(これに
基づく繰返し単位数は平均6.1)、重量平均分子量
が2750(これに基づく繰返し単位数は平均9.8)で
あつた。また環球式軟化点測定器で軟化点を測定
したところ、軟化点は156℃であつた。 比較例 1 500ml三つ口フラスコにパラクレゾール54g
(0.50モル)、パラ−ジイソプロペニルベンゼン79
(0.50モル)、トルエン130gおよびパラトルエン
スルホン酸3.3gを加え撹拌しながら昇温し、105
℃で8時間反応を行なつた。 反応終了後は実施例1と同様の処理を行ない、
72gの白色粉末を得た。この重合体をゲルパーミ
エーシヨンクロマトグラフイーで分析したとこ
ろ、標準ポリスチレン換算で数平均分子量が2350
重量平均分子量が3850であつた。また軟化点は
185℃であつた。さらに重クロロホルムを溶媒と
してNMRスペクトルを分析したところ、
7.19ppmにパラクレゾールのメタ位のベンゼン環
プロトンの鋭いピークが存在するが、パラ−ジイ
ソプロペニルベンゼンに由来するベンゼン環プロ
トン量に比べ、3分の1であつた。また、
2.3ppmにパラクレゾールに基づくメチル基プロ
トンが認められるが、2.1〜2.5ppmにやや幅広い
4本のピークが存在している。これらのことか
ら、得られた重合体はパラクレゾールとパラ−ジ
イソプロペニルベンゼンとの1:1の共重合体だ
けではなく、パラ−ジイソプロペニルベンゼンが
単独に重合したもの、またはパラ−ジイソプロペ
ニルベンゼンのオリゴマーにパラクレゾールが反
応した重合体が混在していると考えられる。 このことは、次の実験例に示すとおり、パラ−
ジイソプロペニルベンゼンが単独重合しやすいこ
とからも明らかである。 実施例 4 200ml三つ口フラスコにパラ−ジイソプロペニ
ルベンゼン40g、トルエン67gおよびパラトルエ
ンスルホン酸1.0gとを仕込み、撹拌しながら昇
温したところ、反応開始後20分、フラスコの温度
が85℃になつた時点で内容物が固化してしまつ
た。テトラヒドロフラン溶媒に溶解する部分だけ
をゲルパーミエーシヨンクロマトグラフイーで分
析したところ、排除限界50000以上の高分子量体
を含んだ数平均分子量8000にピークを有する重合
体であつた。
[Chemical formula] Amount of methyl group protons in meta-bis(1-hydroxy-1-methylethyl)benzene/Methyl group proton amount in para-cresol = 4×3n/3n+3=3.42/1 Therefore, n is 5.9, and this value is It also agrees well with the value determined from gel permeation chromatography (based on number average molecular weight). Example 2 Except for using orthocresol in place of para-cresol in Example 1, the charge formulation and reaction conditions were carried out in exactly the same manner as in Example 1, and 230 g of a white precipitate was obtained. When this polymer was analyzed by gel permeation chromatography, the number average molecular weight was found to be
The weight average molecular weight was 1850 (the average number of repeating units based on this was 6.9), and the weight average molecular weight was 3100 (the average number of repeating units based on this was 11.6). Further, when the softening point was measured using a ring and ball softening point measuring device, the softening point was 130°C. Example 3 Into the same flask as in Example 1, 122 g (1.00 mol) of paraethylphenol and para-bis(1-hydroxy-1-methylethyl)benzene were added.
184 g (0.95 mol), 150 g of toluene, and 7.7 g of para-toluenesulfonic acid were charged, and the following reaction conditions were carried out in exactly the same manner as in Example 1 to obtain 235 g of white powder. When this polymer was analyzed by gel permeation chromatography, the number average molecular weight was 1700 in terms of standard polystyrene (based on this, the average number of repeating units was 6.1), and the weight average molecular weight was 2750 (based on this, the number of repeating units was The average was 9.8). Further, the softening point was measured using a ring and ball softening point measuring device, and the softening point was 156°C. Comparative example 1 54g of para-cresol in a 500ml three-necked flask
(0.50 mol), para-diisopropenylbenzene 79
(0.50 mol), 130 g of toluene and 3.3 g of para-toluenesulfonic acid were added, and the temperature was raised while stirring.
The reaction was carried out at ℃ for 8 hours. After the reaction was completed, the same treatment as in Example 1 was carried out,
72g of white powder was obtained. When this polymer was analyzed by gel permeation chromatography, the number average molecular weight was 2350 in terms of standard polystyrene.
The weight average molecular weight was 3850. Also, the softening point is
It was 185℃. Furthermore, when we analyzed the NMR spectrum using deuterated chloroform as a solvent, we found that
There was a sharp peak of the benzene ring proton at the meta position of para-cresol at 7.19 ppm, but the amount was one-third of the amount of benzene ring protons derived from para-diisopropenylbenzene. Also,
A methyl group proton based on para-cresol is observed at 2.3 ppm, but four slightly broad peaks are present at 2.1 to 2.5 ppm. From these facts, the obtained polymer is not only a 1:1 copolymer of para-cresol and para-diisopropenylbenzene, but also a monopolymer of para-diisopropenylbenzene or a copolymer of para-diisopropenylbenzene. It is thought that a polymer obtained by reacting para-cresol with an isopropenylbenzene oligomer is mixed therein. As shown in the following experimental example, this shows that the parameter
This is clear from the fact that diisopropenylbenzene is easily homopolymerized. Example 4 40 g of para-diisopropenylbenzene, 67 g of toluene, and 1.0 g of para-toluenesulfonic acid were placed in a 200 ml three-necked flask, and the temperature was raised while stirring. 20 minutes after the start of the reaction, the temperature of the flask reached 85°C. By this time, the contents had solidified. When only the portion soluble in tetrahydrofuran solvent was analyzed by gel permeation chromatography, it was found to be a polymer having a peak at a number average molecular weight of 8,000 and containing a high molecular weight substance with an exclusion limit of 50,000 or more.

Claims (1)

【特許請求の範囲】 1 一般式〔〕 【化】 (ただし、式中R1は炭素数1〜5のアルキル基
またはアルコキシ基であり、R2およびR3は水素
又は炭素数1〜5のアルキル基若しくはアルコキ
シ基であり、R2とR3は同一でも相違していても
よい)で表わされるフエノール化合物1モルに対
して一般式〔〕 【化】 (ただし、式中R4、R5、R6、R7、R8およびR9
水素または炭素数1〜5のアルキル基であり、こ
れらは同一でも相違していてもよい)で表わされ
るビス(ヒドロキシアルキル)ベンゼン化合物を
0.67〜1.33モルの範囲でアルキル化反応触媒下に
反応させることを特徴とする一般式〔〕 【化】 (ただし、式中R1、R2、R3、R4、R5、R6、R7
R8及びR9は上記と同一である) で表わされる繰り返し単位を平均2.5〜75個有す
るフエノール重合体の製造法。
[Claims] 1 General formula [] [Chemical formula] (In the formula, R 1 is an alkyl group or an alkoxy group having 1 to 5 carbon atoms, and R 2 and R 3 are hydrogen or a group having 1 to 5 carbon atoms. is an alkyl group or an alkoxy group, and R 2 and R 3 may be the same or different ). , R 6 , R 7 , R 8 and R 9 are hydrogen or an alkyl group having 1 to 5 carbon atoms, and these may be the same or different.
General formula [] [Chemical formula] characterized in that the reaction is carried out in the presence of an alkylation reaction catalyst in the range of 0.67 to 1.33 mol (However, in the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R7 ,
R 8 and R 9 are the same as above) A method for producing a phenol polymer having an average of 2.5 to 75 repeating units.
JP26774584A 1984-12-19 1984-12-19 Production of phenolic polymer Granted JPS61145223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26774584A JPS61145223A (en) 1984-12-19 1984-12-19 Production of phenolic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26774584A JPS61145223A (en) 1984-12-19 1984-12-19 Production of phenolic polymer

Publications (2)

Publication Number Publication Date
JPS61145223A JPS61145223A (en) 1986-07-02
JPH0572404B2 true JPH0572404B2 (en) 1993-10-12

Family

ID=17448981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26774584A Granted JPS61145223A (en) 1984-12-19 1984-12-19 Production of phenolic polymer

Country Status (1)

Country Link
JP (1) JPS61145223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992166B2 (en) 2002-06-14 2006-01-31 Sumitomo Chemical Company, Limited Phenolic resin and method of producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567161B2 (en) * 1990-08-20 1996-12-25 三井東圧化学株式会社 Phenolic resin and method for producing the same
JP5977598B2 (en) * 2012-06-22 2016-08-24 旭化成株式会社 Method for improving flowability of polyamide resin composition
JPWO2023176766A1 (en) * 2022-03-14 2023-09-21
JPWO2023176765A1 (en) * 2022-03-14 2023-09-21

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121231A (en) * 1982-01-14 1983-07-19 Sumitomo Chem Co Ltd Novel cresol derivative and its preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121231A (en) * 1982-01-14 1983-07-19 Sumitomo Chem Co Ltd Novel cresol derivative and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992166B2 (en) 2002-06-14 2006-01-31 Sumitomo Chemical Company, Limited Phenolic resin and method of producing the same

Also Published As

Publication number Publication date
JPS61145223A (en) 1986-07-02

Similar Documents

Publication Publication Date Title
US4968759A (en) Phenolic polymer and production thereof
US5102962A (en) Phenolic polymer and production thereof
Crivello et al. Aromatic bisvinyl ethers: A new class of highly reactive thermosetting monomers
JP4629097B2 (en) Derivatized polyhydroxystyrene having a novolac type structure and method for producing the same
JP5012003B2 (en) Low melt viscosity phenol novolac resin, its production method and its use
JPH05393B2 (en)
GB1592421A (en) Process for preparing novolac resins
JPH0572404B2 (en)
US4297473A (en) Quick-curing phenolic resin and process for preparing same
JP2897850B2 (en) Method for producing high-purity tetrakisphenolethane
JPS61145222A (en) Phenolic polymer
JP3808542B2 (en) NOVEL POLYPHENOL COMPOUND AND PROCESS FOR PRODUCING THE SAME
JPS61145224A (en) Production of phenolic polymer
JPH075697B2 (en) Propenyl group-containing phenol resin
JP3422808B2 (en) Epoxy resin curing agent and method for producing the same
JP2752498B2 (en) Method for producing hydroxycarboxylic acid derivative
JP6555975B2 (en) New imine group-containing resin
JPS62119220A (en) Production of polyhydroxyl compound
JPH0340734B2 (en)
JP3155073B2 (en) Phenol aralkyl resin and its manufacturing method
Relles et al. Dichloromaleimide chemistry. IV. Preparation of poly (maleimide–ethers) from the reaction of bisdichloromaleimides with bisphenols
JPS6132331B2 (en)
JP2899100B2 (en) Method for producing phenolic polymer
JP2868854B2 (en) Novel polyvalent hydroxy compound and method for producing the same
JPS60135427A (en) Production of cyclopentenylphenol polymer