JPH056672Y2 - - Google Patents

Info

Publication number
JPH056672Y2
JPH056672Y2 JP1986113290U JP11329086U JPH056672Y2 JP H056672 Y2 JPH056672 Y2 JP H056672Y2 JP 1986113290 U JP1986113290 U JP 1986113290U JP 11329086 U JP11329086 U JP 11329086U JP H056672 Y2 JPH056672 Y2 JP H056672Y2
Authority
JP
Japan
Prior art keywords
surge
surge absorbing
terminal
protected
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986113290U
Other languages
Japanese (ja)
Other versions
JPS6320457U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986113290U priority Critical patent/JPH056672Y2/ja
Publication of JPS6320457U publication Critical patent/JPS6320457U/ja
Application granted granted Critical
Publication of JPH056672Y2 publication Critical patent/JPH056672Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、ICカード或いは他の装置に実装さ
れる集積回路(IC)を保護するのに好適なサー
ジ吸収用半導体装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a surge absorbing semiconductor device suitable for protecting an integrated circuit (IC) mounted on an IC card or other device.

〔従来の技術〕[Conventional technology]

従来、サージ吸収用防護素子としては種々な文
献から知られているように、避***(例えば、黒
沢、上條、根岸:通信用ガス入避***、日本電信
電話公社電気通信研究所研究実用化報告、
vol.30,No.5,p.1229〜1242,1981)、酸化亜鉛
バリスタ、ツエナーダイオード、アバランシエダ
イオード、ダイオードバリスタ(平岡、佐野、金
森:サージ防護用半導体素子、日本電信電話公
社、電気通信研究所研究実用化報告、vol.30,No.
5,p.1257〜1267,1981)などがある。
Conventionally, as a surge absorbing protective element, as known from various documents, there are detonators (for example, Kurosawa, Kamijo, Negishi: Gas entry detonator for communication, Nippon Telegraph and Telephone Public Corporation Telecommunication Research Institute Research and Practical Application Report). ,
vol.30, No.5, p.1229-1242, 1981), zinc oxide varistor, Zener diode, avalanche diode, diode varistor (Hiraoka, Sano, Kanamori: Semiconductor device for surge protection, Nippon Telegraph and Telephone Public Corporation, Telecommunications Laboratory research practical application report, vol.30, No.
5, p.1257-1267, 1981).

避***は電極間のギヤツプの距離、封入ガス圧
力などを調整することにより、そのサージ抑圧電
圧の大きさが決められる。
The magnitude of the surge suppression voltage of a detonator is determined by adjusting the gap distance between the electrodes, the pressure of the sealed gas, etc.

酸化亜鉛バリスタがその厚さなどを調整するこ
とにより、そのサージ抑圧電圧の大きさが決めら
れる。
By adjusting the thickness of the zinc oxide varistor, the magnitude of its surge suppression voltage is determined.

ダイオードバリスタはシリコンのバルク内に形
成される1個のPN接合の順方向特性を利用する
ものであり、1個のPN接合の1次ブレークダウ
ン電圧が約0.8V程度であるので、サージ抑圧電
圧の調整はPN接合の多層化により実現できる。
A diode varistor utilizes the forward characteristics of a single PN junction formed in the bulk of silicon, and the primary breakdown voltage of a single PN junction is approximately 0.8V, so the surge suppression voltage This adjustment can be achieved by multilayering PN junctions.

ツエナーダイオード、アバランシエダイオード
等では、PN接合近傍の不純物濃度勾配の調整に
よつて所要の1次ブレークダウン電圧を実現でき
る。
In Zener diodes, avalanche diodes, etc., the required primary breakdown voltage can be achieved by adjusting the impurity concentration gradient near the PN junction.

ところで、例えばICカードに搭載するための
防護素子に要求される主な電気的特性は1次ブレ
ークダウン電圧が6〜7V、しかも正極性、負極
性のいずれのサージに対しても確実に動作する双
方向特性を有していること、また静電容量は制御
信号に対し十分に小さい値であることなどであ
る。斯かる従来のサージ吸収用半導体装置として
第3図に示すようなものがある。これは設定サー
ジ抑圧電圧を有する4組の一対のサージ吸収素子
D1とD5、D2とD6、D3とD7、D4とD8を夫々背中
合せにして直列接続したものを、保護すべきIC
の接地端子のような基準端子に接続される第1の
端子Aと前記ICの被保護端子に夫々接続される
複数の第2の端子B,C,D,E間に接続した形
になつている。
By the way, the main electrical characteristics required for a protective element to be mounted on an IC card, for example, are a primary breakdown voltage of 6 to 7V, and the ability to operate reliably against both positive and negative polarity surges. It must have bidirectional characteristics, and its capacitance must be sufficiently small with respect to the control signal. Such a conventional surge absorbing semiconductor device is shown in FIG. 3. This consists of four pairs of surge absorbing elements each having a set surge suppression voltage.
The IC to be protected is the series connection of D 1 and D 5 , D 2 and D 6 , D 3 and D 7 , and D 4 and D 8 back to back.
A first terminal A is connected to a reference terminal such as a ground terminal of the IC, and a plurality of second terminals B, C, D, and E are connected to protected terminals of the IC. There is.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

第3図に示すサージ吸収用半導体装置の場合、
第1の端子Aと第2の端子B〜E間の夫々の双方
向のサージ抑圧電圧をすべく等しくするために
は、8個のサージ吸収素子D1〜D8の特性をすべ
く等しく揃えねばならず、また個別のサージ吸収
素子が必要な場合には8個のサージ吸収素子を必
要とし、同一の半導体基板に形成する場合にもサ
ージ吸収素子8個分の半導体領域が必要になるの
で小型化できない。
In the case of the surge absorbing semiconductor device shown in FIG.
In order to equalize the bidirectional surge suppression voltages between the first terminal A and the second terminals B to E, the characteristics of the eight surge absorbing elements D 1 to D 8 should be made equal to each other. In addition, if individual surge absorbing elements are required, eight surge absorbing elements are required, and even if they are formed on the same semiconductor substrate, a semiconductor area equivalent to eight surge absorbing elements is required. Cannot be downsized.

〔問題点を解決するための手段〕[Means for solving problems]

従つてこの考案に係るサージ吸収用半導体装置
は、サージ吸収素子を背中合わせに接続すること
により双方向のサージ抑圧電圧をもつ半導体装置
であつて、保護すべき集積回路の基準端子に接続
される第1の端子に電気的に結合されたサージ吸
収素子を共通として備えると共に、前記集積回路
の複数の被保護端子に夫々接続される複数の第2
の端子に夫々電気的に結合されるサージ吸収素子
を備えている。
Therefore, the surge absorbing semiconductor device according to the present invention is a semiconductor device that has a bidirectional surge suppression voltage by connecting surge absorbing elements back to back, and has a surge absorbing element connected to a reference terminal of an integrated circuit to be protected. a plurality of second surge absorbing elements electrically coupled to one terminal, and a plurality of second surge absorption elements each connected to a plurality of protected terminals of the integrated circuit
A surge absorbing element is electrically coupled to each terminal of the terminal.

〔作 用〕[Effect]

この考案によれば、保護すべき集積回路の基準
端子に接続される第1の端子に電気的に結合され
るサージ吸収素子を共通としているので、従来に
比べ必要とするサージ吸収素子の数が少なくて済
み、従つて第1の端子と複数の第2の端子間の
夫々のブレークダウン電圧を等しくし易く、また
半導体装置を小型化でき、経済性も向上できる。
According to this invention, since the surge absorbing elements electrically coupled to the first terminal connected to the reference terminal of the integrated circuit to be protected are common, the number of required surge absorbing elements is reduced compared to the conventional method. Therefore, it is easy to equalize the breakdown voltages between the first terminal and the plurality of second terminals, and the semiconductor device can be downsized and economic efficiency can be improved.

〔実施例〕〔Example〕

第1図により本考案の一実施例を説明すると、
従来と異なる点は、保護される集積回路の被保護
端子(図示せず)にボンデングなどにより接続さ
れる第2の端子B,C,D,Eの夫々に一方の端
子が電気的に結合されるサージ吸収素子D1,D2
D3,D4の他端が共通点Nに接続され、その共通
点Nと保護される集積回路の接地端子のような基
準端子(図示せず)に接続される第1の端子Aと
の間に共通のサージ吸収素子D5が備えられてい
るところにある。
An embodiment of the present invention will be explained with reference to FIG.
The difference from the conventional method is that one terminal is electrically coupled to each of the second terminals B, C, D, and E, which are connected to the protected terminal (not shown) of the integrated circuit to be protected by bonding or the like. surge absorption elements D 1 , D 2 ,
The other ends of D 3 , D 4 are connected to a common point N, and the common point N is connected to a first terminal A, which is connected to a reference terminal (not shown), such as a ground terminal of the integrated circuit to be protected. A common surge absorbing element D5 is provided between them.

斯かるサージ吸収半導体装置では、第1の端子
Aに対し第2の端子B〜Eのいずれかが正となる
ようなサージ電圧の生じた場合、そのサージ電圧
はサージ吸収素子D5のアバランシエブレークダ
ウン電圧のようなサージ抑圧電圧とサージ吸収素
子D1〜D4の相当するものの順方向ドロツプとの
和に等しい電圧に制限される。ここでサージ吸収
素子D1〜D4の順方向ドロツプは等しいので、第
1の端子Aに対し第2の端子B〜Eを正とするサ
ージ電圧はサージ吸収素子D5のサージ抑圧電圧
で一義的に決定される。従つて、第1の端子Aに
関して第2の端子B〜Eが正となる帯電々圧など
についてはすべて等しいサージ抑圧電圧に制限で
きる。
In such a surge absorbing semiconductor device, when a surge voltage occurs such that one of the second terminals B to E is positive with respect to the first terminal A, the surge voltage is caused by the avalanche of the surge absorbing element D5 . It is limited to a voltage equal to the sum of the surge suppression voltage, such as the breakdown voltage, and the forward drop of the corresponding surge absorbing elements D1 - D4 . Here, since the forward drops of the surge absorbing elements D1 to D4 are equal, the surge voltage that makes the second terminals B to E positive with respect to the first terminal A is uniquely determined by the surge suppression voltage of the surge absorbing element D5 . determined. Therefore, the charging voltages and the like that are positive at the second terminals B to E with respect to the first terminal A can all be limited to the same surge suppression voltage.

そしてこのようなサージ吸収素子を1チツプで
製作した場合の一実施例としては第2図A,Bに
示すようなものがある。同図において、1は厚さ
が400μm程度以下のN導電型のシリコン半導体基
板、2a,2b,2c,2d,2eは比較的不純
物濃度の高いP導電型の半導体領域、3a,3
b,3c,3d,3eはそれぞれ対応するP導電
型の半導体領域2a〜2eとオーミツクコンタク
トを形成し、絶縁膜4上まで延在する電極であ
る。ここで電極3aは第1の端子Aに接続され、
また電極3a〜3eは夫々対応する第2の端子B
〜Eに接続される。
An example of such a surge absorbing element manufactured in one chip is shown in FIGS. 2A and 2B. In the figure, 1 is an N conductivity type silicon semiconductor substrate with a thickness of about 400 μm or less, 2a, 2b, 2c, 2d, and 2e are P conductivity type semiconductor regions with relatively high impurity concentration, and 3a, 3
Reference numerals b, 3c, 3d, and 3e are electrodes that form ohmic contact with the corresponding P conductivity type semiconductor regions 2a to 2e, and extend to the top of the insulating film 4. Here, the electrode 3a is connected to the first terminal A,
Further, the electrodes 3a to 3e are connected to the corresponding second terminal B.
~ Connected to E.

そしてこの実施例の1つの特徴は、保護される
ICの基準端子に電気的に結合される電極3aと
オーミツクコンタクトで結合される半導体領域2
aを中心にして、ICの被保護端子に接続される
端子B〜Cに夫々結合される半導体領域2a〜2
eを半導体領域2aからほぼ等しい距離に配置し
たところにある。このような構成にすることによ
り、ICの被保護端子に接続されるサージ吸収素
子がすべてほぼ等しい特性をもつよう形成するこ
とが出来る。
And one feature of this embodiment is that it is protected
Semiconductor region 2 coupled by ohmic contact with electrode 3a electrically coupled to the reference terminal of the IC
Semiconductor regions 2a to 2 are connected to terminals B to C connected to protected terminals of the IC, respectively, with center a.
e are arranged at approximately equal distances from the semiconductor region 2a. With this configuration, all the surge absorbing elements connected to the protected terminals of the IC can be formed to have substantially the same characteristics.

なお、これら実施例において、P導電型とN導
電型とを入れ換えてもよく、またICの被保護端
子の数に合わせてサージ吸収素子の数を調整して
も勿論よい。
In these embodiments, the P conductivity type and the N conductivity type may be interchanged, and the number of surge absorbing elements may of course be adjusted according to the number of protected terminals of the IC.

〔考案の効果〕[Effect of idea]

以上述べたように本考案によれば、保護すべき
ICの基準端子に接続される第1の端子側に位置
するサージ吸収素子を共通としているので、IC
の被保護端子の電圧をすべく等しいサージ抑圧電
圧以下に制限することが出来、しかもサージ吸収
用半導体装置を小型化できると同時に経済性を向
上出来るなど実用上の効果は大きい。
As mentioned above, according to the present invention, the
Since the surge absorption element located on the first terminal side connected to the reference terminal of the IC is common, the IC
This has great practical effects, such as being able to limit the voltage at the protected terminal to a voltage equal to or less than the same surge suppression voltage, and also being able to downsize the surge absorbing semiconductor device and improve economic efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は夫々本考案の一実施例を示
す図であり、第2図Aは平面を示す図、BはAに
おける−′での断面を示す図、第3図は従来
例を示す図である。 D1〜D8……サージ吸収素子、A……第1の端
子、B〜E……第2の端子、1……半導体基板、
2a〜2e……半導体領域、3a〜3e……電
極、4……絶縁膜。
1 and 2 are views showing one embodiment of the present invention, respectively. FIG. 2 A is a plan view, B is a cross-sectional view taken at -' in A, and FIG. 3 is a conventional example. FIG. D1 to D8 ...Surge absorption element, A...First terminal, B to E...Second terminal, 1...Semiconductor substrate,
2a to 2e... semiconductor region, 3a to 3e... electrode, 4... insulating film.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] サージ吸収素子を背中合わせに結合することに
より双方向のサージ吸収機能を有する半導体装置
において、保護すべき対象の基準端子に接続され
るべき第1の電極に電気的に結合された第1のサ
ージ吸収素子を共通として備えると共に、前記保
護すべき対象の複数の被保護端子に夫々接続され
るべき複数の第2の電極の対応するものに電気的
に結合される複数の第2のサージ吸収素子を前記
第1のサージ吸収素子の周りでこれに対しほぼ等
しく離れた位置に備え、共通の前記第1のサージ
吸収素子と複数の前記第2のサージ吸収素子とが
背中合わせになるように形成したことを特徴とす
るサージ吸収用半導体装置。
In a semiconductor device having a bidirectional surge absorption function by coupling surge absorption elements back to back, a first surge absorption element electrically coupled to a first electrode to be connected to a reference terminal of an object to be protected; A plurality of second surge absorbing elements are provided in common and are electrically coupled to corresponding ones of the plurality of second electrodes to be respectively connected to the plurality of protected terminals of the object to be protected. A common surge absorbing element and a plurality of second surge absorbing elements are provided at positions approximately equally spaced around the first surge absorbing element and are formed back to back. A surge absorption semiconductor device characterized by:
JP1986113290U 1986-07-23 1986-07-23 Expired - Lifetime JPH056672Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986113290U JPH056672Y2 (en) 1986-07-23 1986-07-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986113290U JPH056672Y2 (en) 1986-07-23 1986-07-23

Publications (2)

Publication Number Publication Date
JPS6320457U JPS6320457U (en) 1988-02-10
JPH056672Y2 true JPH056672Y2 (en) 1993-02-19

Family

ID=30994954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986113290U Expired - Lifetime JPH056672Y2 (en) 1986-07-23 1986-07-23

Country Status (1)

Country Link
JP (1) JPH056672Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783941B2 (en) * 1991-12-24 1995-09-13 正 小栗 Square pipe for steel construction or U-shaped cutting jig for column materials
JP6393587B2 (en) * 2014-03-05 2018-09-19 ローム株式会社 Bidirectional Zener diode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57154878A (en) * 1981-03-20 1982-09-24 Hitachi Ltd Semiconductor sensor
JPS57154879A (en) * 1981-02-04 1982-09-24 Rca Corp Semiconductor device
JPS614985B2 (en) * 1978-02-20 1986-02-14 Honda Motor Co Ltd
JPS61173167A (en) * 1985-01-28 1986-08-04 Matsushita Electric Ind Co Ltd Method for measuring resistance value of chip resistor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614985U (en) * 1984-06-15 1986-01-13 株式会社 電制 Composite display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614985B2 (en) * 1978-02-20 1986-02-14 Honda Motor Co Ltd
JPS57154879A (en) * 1981-02-04 1982-09-24 Rca Corp Semiconductor device
JPS57154878A (en) * 1981-03-20 1982-09-24 Hitachi Ltd Semiconductor sensor
JPS61173167A (en) * 1985-01-28 1986-08-04 Matsushita Electric Ind Co Ltd Method for measuring resistance value of chip resistor

Also Published As

Publication number Publication date
JPS6320457U (en) 1988-02-10

Similar Documents

Publication Publication Date Title
JP4369230B2 (en) Surge protection semiconductor device
JP3313431B2 (en) Monolithic unidirectional protection diode
US5338964A (en) Integrated circuit comprising a protection diode array
JP2009515323A (en) Integrated circuit for protecting low voltage lines from overvoltage
US6252256B1 (en) Overvoltage protection circuit
US5401984A (en) Semiconductor component for transient voltage limiting
JPH056672Y2 (en)
JPS61296770A (en) Insulated gate field effect type semiconductor device
US20070077738A1 (en) Fabrication of small scale matched bi-polar TVS devices having reduced parasitic losses
JPS6354762A (en) Semiconductor integrated circuit device
JP2579989B2 (en) Electrostatic discharge protection device
JPS61225875A (en) Surge absorbing semiconductor device
WO2020243875A1 (en) Integrated mult-device chip and package
JPS6329983A (en) Semiconductor device for surge absorption
JPS61502087A (en) Monolithically integrated planar semiconductor device and its manufacturing method
JP2509300B2 (en) Input circuit of semiconductor device
JP2522350B2 (en) Semiconductor integrated circuit protection device
JP2751670B2 (en) Surge protection device
JP4369231B2 (en) Surge protection semiconductor device
JPS60103658A (en) Semiconductor ic
JPH0336207Y2 (en)
JP2781298B2 (en) Surge protection element
WO1992022926A1 (en) A monolithic semiconductor component for transient voltage suppression
JPH0682834B2 (en) Surge protection device
JPS6132561A (en) Electrostatic breakdown preventive element