JPH0565479A - Red light-emitting florescent substance for slow electron - Google Patents

Red light-emitting florescent substance for slow electron

Info

Publication number
JPH0565479A
JPH0565479A JP25484191A JP25484191A JPH0565479A JP H0565479 A JPH0565479 A JP H0565479A JP 25484191 A JP25484191 A JP 25484191A JP 25484191 A JP25484191 A JP 25484191A JP H0565479 A JPH0565479 A JP H0565479A
Authority
JP
Japan
Prior art keywords
matrix
phosphor
red light
mol
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25484191A
Other languages
Japanese (ja)
Inventor
Hitoshi Toki
均 土岐
Yoshitaka Sato
義孝 佐藤
Sadahisa Yonezawa
禎久 米沢
Fumiaki Kataoka
文昭 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP25484191A priority Critical patent/JPH0565479A/en
Publication of JPH0565479A publication Critical patent/JPH0565479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain the subject new fluorescent substance, excellent it temperature characteristics and the crystalline state of the surface, capable of emitting red light by excitation with slow electrons and having high luminous brightness by adding Cu and Al to a matrix composed of zinc cadmium sulfide. CONSTITUTION:A red light-emitting fluorescent substance for slow electrons is obtained by adding 1X10<-1> to 1X10<-3> atom/mol Cu and 5X10<-4> to 1X10<-2> atom/mol Al to zinc cadmium sulfide expressed by the formula (Zn1-xCdx)S ((x) is 0.25-0.35) as a matrix. The above-mentioned fluorescent substance is obtained by, e.g. heating and burning powdery ZnS and CdS together with NaCl which is a flux in a quartz boat, naturally cooling the burned substance, pulverizing the resultant mixed crystal in an agate mortar, washing the prepared powder with water, removing the NaCl, providing the matrix, then immersing the resultant matrix in an aqueous solution of CuSO4 and Al(NO3)3, coating the matrix surface with the Cu and Al, subsequently burning the coated matrix in a reducing atmosphere in the quartz boat and carrying out doping.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蛍光表示管用の蛍光体
に係わり、特に数V〜数十Vの低い加速電圧による低速
電子線の射突により赤色に発光する低速電子線用赤色発
光蛍光体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor for a fluorescent display tube, and more particularly to red-light-emitting fluorescent light for low-speed electron beams which emits red light when a low-speed electron beam is bombarded by a low acceleration voltage of several V to several tens of V. It is about the body.

【0002】[0002]

【従来の技術】近年、蛍光表示管の応用分野が拡大する
につれてさまざまな環境で使用されるようになってい
る。その一例として、自動車のインパネに速度表示や回
転数表示等に蛍光表示管が使用されている。この場合、
インパネの裏側は、エンジンルームであるので、蛍光表
示管の周囲温度が高くなる。そのために、蛍光表示管に
用いられる低速電子線用蛍光体は周囲温度が高くなって
も輝度が低下しない温度特性が要求されるようになって
きた。
2. Description of the Related Art In recent years, as the application fields of fluorescent display tubes have expanded, they have been used in various environments. As an example thereof, a fluorescent display tube is used for a speed display and a rotation speed display in an instrument panel of an automobile. in this case,
Since the engine room is on the back side of the instrument panel, the ambient temperature of the fluorescent display tube becomes high. Therefore, a low-speed electron beam phosphor used for a fluorescent display tube is required to have a temperature characteristic in which the brightness does not decrease even when the ambient temperature rises.

【0003】従来の低速電子線用蛍光体は、一般に周囲
温度が高くなったり、又高電流密度で駆動した場合に自
己発熱により輝度低下をおこすのが善通であった。従来
の低速電子線励起赤色発光蛍光体としては、一般式(Z
n,Cd)S:Ag,Clで表される硫化物系の蛍光体
が多く用いられている。しかしこのような蛍光体は抵抗
が高く、蛍光体独自では使用されず、導電物質であるI
23やSnO2等を添加して、蛍光体層の抵抗を下げ
て低速電子線用蛍光体として使用されていた。
[0003] Conventional phosphors for low-speed electron beams generally have a problem that the ambient temperature becomes high and the brightness is lowered due to self-heating when driven at a high current density. As a conventional slow-electron-beam-excited red-emitting phosphor, a general formula (Z
A sulfide-based phosphor represented by n, Cd) S: Ag, Cl is often used. However, such a phosphor has a high resistance, is not used by itself, and is a conductive material.
It has been used as a phosphor for low-speed electron beam by adding n 2 O 3 or SnO 2 to lower the resistance of the phosphor layer.

【0004】[0004]

【発明が解決しようとする課題】しかして従来の赤色発
光蛍光体は次のような問題点を有していた。
However, the conventional red light emitting phosphor has the following problems.

【0005】(1)従来の赤色発光蛍光体である(Z
n,Cd)S:Ag,Cl蛍光体はIn23やSnO2
等の導電物質を添加していたが、この導電物質は、非発
光物質であることから発光が遮蔽され、発光輝度が充分
得られなかったり、導電物質の混合が均一でないと発光
にむらができやすいという問題点を有していた。
(1) A conventional red light emitting phosphor (Z
n, Cd) S: Ag, Cl phosphor is In 2 O 3 or SnO 2
However, since this conductive substance is a non-luminous substance, the emission of light is blocked, and it is not possible to obtain sufficient luminescence brightness. It had a problem that it was easy.

【0006】(2)また、(Zn,Cd)S:Ag,C
l蛍光体の温度特性は、あまり良好ではなかった。例え
ば、周囲温度が25℃のときの輝度を100%とする
と、周囲温度が80℃になると60%程度に低下してし
まうという温度特性上も問題を有していた。
(2) Also, (Zn, Cd) S: Ag, C
The temperature characteristics of the l phosphor were not very good. For example, if the luminance when the ambient temperature is 25 ° C. is 100%, there is a problem in terms of temperature characteristics that the luminance drops to about 60% when the ambient temperature reaches 80 ° C.

【0007】(3)従来の赤色発光蛍光体の母体にドー
プするAgのイオン半径は、母体に含まれているZnに
比べ大きいため、Agのドープに高温度が必要であっ
た。したがってドーピングさせるための焼成温度を90
0〜1000℃と比較的高温で行われなければならなか
った。
(3) Since the ionic radius of Ag doped in the matrix of the conventional red light-emitting phosphor is larger than that of Zn contained in the matrix, a high temperature is required for Ag doping. Therefore, the firing temperature for doping is 90
It had to be carried out at relatively high temperatures of 0 to 1000 ° C.

【0008】このように高温で焼成を行うことにより、
蛍光体表面では材料の再蒸発が起こり、低速電子線励起
蛍光体として重要な蛍光体表面の結晶性が悪化してしま
うという問題点を有していた。
By firing at a high temperature in this way,
There is a problem that re-evaporation of the material occurs on the surface of the phosphor, and the crystallinity of the phosphor surface, which is important as a slow electron beam excited phosphor, deteriorates.

【0009】そこで本発明は前述の問題点を解決し、温
度特性がよく、表面の結晶状態の良い低速電子線で励起
され赤色発光で充分発光輝度の高い新規な蛍光体を提供
することを目的とするものである。
Therefore, the present invention solves the above-mentioned problems and an object of the present invention is to provide a novel phosphor which has good temperature characteristics and is excited by a slow electron beam having a good crystal state on the surface to emit red light and has a sufficiently high emission brightness. It is what

【0010】[0010]

【課題を解決するための手段】本発明は、前述の目的を
達成するために、一般式(Zn1-xCdx)S(但しxは
0.25≦x≦0.35の範囲から選定される数)で表
される硫化亜鉛カドミウムを母体とし、この母体にCu
を1×10-4〜1×10-3原子/モル、Alを5×10
-4〜1×10-2原子/モル添加してなる低速電子線用赤
色発光蛍光体である。
In order to achieve the above-mentioned object, the present invention has the general formula (Zn 1-x Cd x ) S (where x is selected from the range of 0.25 ≦ x ≦ 0.35). Zinc cadmium sulfide represented by
1 × 10 −4 to 1 × 10 −3 atom / mol, and Al 5 × 10
-4 to 1 × 10 -2 atom / mol is added to the red light emitting phosphor for low speed electron beam.

【0011】[0011]

【作用】この蛍光体は、従来の(Zn,Cd)S:A
g,ClのAgのかわりにCuをドープさせたのであ
る。AgとCuと母体中のZnのイオン半径の関係は次
のようになる。Zn<Cu<Ag、したがって従来のA
gよりCuの方がよりZnのイオン半径に近いことにな
り、AgよりCuをドーピングさせる方が容易に行われ
る。すなわち、ドーピングさせるための焼成温度が従来
より低い温度で行われるので、蛍光体の表面の結晶状態
も良いことが実験の結果明らかになった。
This phosphor is a conventional (Zn, Cd) S: A
Instead of Ag of g and Cl, Cu was doped. The relationship between the ionic radii of Ag, Cu, and Zn in the matrix is as follows. Zn <Cu <Ag, therefore conventional A
Since Cu is closer to the ionic radius of Zn than g is, it is easier to dope Cu than Ag. That is, it was clarified as a result of the experiment that the crystallizing state of the surface of the phosphor is good because the firing temperature for doping is lower than the conventional temperature.

【0012】[0012]

【実施例】以下、図面を参照して、本発明の一実施例を
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0013】本発明の蛍光体の母体は、(Zn1-x
x)Sであり、ZnSと、CdSの混晶比xを変える
ことにより青色から赤色までの発光が可能である。本願
は、赤色発光を得るために混晶比xを0.25≦x≦
0.35の範囲とした。xが0.25以下だと母体自体
の導電性が損なわれ、xが0.35以上だと、発光色が
赤からはずれるので前記の範囲とした。しかして、この
(Zn1-xCdx)S(但しxは0.25≦x≦0.35
の範囲から選定される数)の母体を次のようにして得
た。
The matrix of the phosphor of the present invention is (Zn 1-x C
d x ) S, and it is possible to emit light from blue to red by changing the mixed crystal ratio x of ZnS and CdS. In the present application, the mixed crystal ratio x is 0.25 ≦ x ≦ in order to obtain red light emission.
The range was 0.35. When x is 0.25 or less, the conductivity of the matrix itself is impaired, and when x is 0.35 or more, the emission color deviates from red, so the above range was set. Therefore, this (Zn 1-x Cd x ) S (where x is 0.25 ≦ x ≦ 0.35
A matrix of a number selected from the range is obtained as follows.

【0014】ZnSとCdS粉末を混晶比xに応じて秤
量し、混晶作成のための融剤となるNaClとともに
石英ボートに入れて加熱焼成する。この焼成はN2ガス
雰囲気中で800〜900℃程度の温度で1時間程度加
熱焼成を行う。これを自然冷却させた後、融剤のNaC
lを除去するために、混晶をメノウ乳鉢で粉砕して水洗
する。このようにして目的とする硫化亜鉛カドミウム母
体を得た。
ZnS and CdS powders were weighed according to the mixed crystal ratio x, and together with NaCl as a flux for preparing the mixed crystal.
Put in a quartz boat and heat and bake. This firing is performed by heating and firing at a temperature of about 800 to 900 ° C. for about 1 hour in an N 2 gas atmosphere. After allowing it to cool naturally, the flux NaC
To remove l, the mixed crystals are crushed in an agate mortar and washed with water. Thus, the intended zinc cadmium sulfide matrix was obtained.

【0015】次に上述のようにして得た母体(Zn1-x
Cdx)Sに不純物としての銅Cuおよびアルミニウム
Alをドーピングさせる。ここで銅Cuおよびアルミニ
ウムAlは、種々の形で得られるが、本実施例では、硫
酸銅CuSO4および硝酸アルミニウムAl(NO33
として前記母体にドーピングした。
Next, the matrix (Zn 1-x
Cd x ) S is doped with copper Cu and aluminum Al as impurities. Here, copper Cu and aluminum Al can be obtained in various forms, but in this embodiment, copper sulfate CuSO 4 and aluminum nitrate Al (NO 3 ) 3 are used.
As a result, the matrix was doped.

【0016】ドーピング方法は、銅(Cu)が1×10
-5〜1×10-3原子/モル、アルミニウム(Al)が1
×10-4〜1×10-1原子/モル含まれるように硫酸銅
CuSo4及び硝酸アルミニウムAl(No33を秤量
する。次に水に溶解して水溶液とし、この硫酸銅及び硝
酸アルミニウムの水溶液中に、前記硫化亜鉛カドミウム
母体を浸漬後乾燥して、母体の表面に銅Cu及びアルミ
ニウムAlを被覆する。
The doping method is as follows.
-5 to 1 × 10 -3 atoms / mol, aluminum (Al) is 1
Copper sulfate CuSo 4 and aluminum nitrate Al (No 3 ) 3 are weighed so as to be contained in an amount of × 10 -4 to 1 × 10 -1 atoms / mol. Next, it is dissolved in water to form an aqueous solution, and the zinc cadmium sulfide matrix is dipped in this aqueous solution of copper sulfate and aluminum nitrate and then dried to coat the surface of the matrix with copper Cu and aluminum Al.

【0017】この母体を石英ボートにいれ、還元雰囲気
中で約650〜950℃の温度で約1〜6時間焼成する
ことによりドーピングを行った。還元雰囲気としては、
硫化水素H2Sを炉中に流しながら昇温焼成させた。し
かして、本発明の蛍光体(Zn1 -xCdx)S:Cu,A
lが得られた。得られた試料は、蛍光表示管のアノード
基板上に被着、300〜500℃で焼成しバインダーを
除去後、蛍光表示管に封入し評価を行った。
Doping was carried out by putting this base material in a quartz boat and firing it in a reducing atmosphere at a temperature of about 650 to 950 ° C. for about 1 to 6 hours. As a reducing atmosphere,
Hydrogen sulfide H 2 S was flowed in the furnace to be heated and fired. Therefore, the phosphor of the present invention (Zn 1- x Cd x ) S: Cu, A
1 was obtained. The obtained sample was deposited on the anode substrate of the fluorescent display tube, baked at 300 to 500 ° C. to remove the binder, and then sealed in the fluorescent display tube for evaluation.

【0018】図1は、横軸にドーピングさせた銅Cu濃
度(原子/モル)をとり、縦軸に加速電圧30Vにおけ
る本発明の蛍光体の発光輝度をとり、蛍光体のCu濃度
に対する輝度の関係を示したものである。Cuのドーピ
ング量は、1×10-5〜1×10-3原子/モルである
が、1×10-4〜1×10-3原子/モルの範囲が良好な
輝度であり、特に3×10-4〜4×10-4原子/モルの
範囲が最も良好な輝度が得られた。ここで用いた蛍光体
は、混晶比xを0.3に選定し、Alの添加量を3×1
-3原子/モルと一定に設定した。
In FIG. 1, the abscissa represents the concentration of doped copper Cu (atoms / mole), and the ordinate represents the emission brightness of the phosphor of the present invention at an acceleration voltage of 30 V. It shows the relationship. Doping amount of Cu is the 1 × 10 -5 ~1 × 10 -3 atomic / mol, the range of 1 × 10 -4 ~1 × 10 -3 atomic / mole is satisfactory luminance, especially 3 × The best brightness was obtained in the range of 10 −4 to 4 × 10 −4 atoms / mole. For the phosphor used here, the mixed crystal ratio x was selected to be 0.3, and the addition amount of Al was 3 × 1.
The constant was set to 0 -3 atoms / mole.

【0019】次に、図2は、Alのドーピング量と発光
輝度の関係を示すグラフであり、縦軸に発光輝度をと
り、横軸にAlのドーピング量をとったものである。A
lは、1×10-4〜1×10-1原子/モルの範囲でドー
ピングしたが、実際に使用できる良好な輝度は、Al濃
度が5×10-4〜1×10-2原子/モルの範囲であり、
そのなかでも最も良好な輝度は、Al濃度が1×10-3
〜3×10-3の範囲であった。ここで用いた蛍光体は、
混晶比xを0.3に選定し、Cuのドーピング量は、最
も輝度が高い3×10-4原子/モルとした。
Next, FIG. 2 is a graph showing the relationship between the Al doping amount and the light emission brightness, in which the vertical axis represents the light emission brightness and the horizontal axis represents the Al doping amount. A
l was doped in the range of 1 × 10 −4 to 1 × 10 −1 atom / mol, and the good brightness that can be actually used is that the Al concentration is 5 × 10 −4 to 1 × 10 −2 atom / mol. Range of
Among them, the best luminance is that the Al concentration is 1 × 10 −3.
It was in the range of up to 3 × 10 −3 . The phosphor used here is
The mixed crystal ratio x was selected to be 0.3, and the doping amount of Cu was set to 3 × 10 −4 atom / mol, which has the highest brightness.

【0020】以上説明したように本蛍光体は、Alのド
ーピング量がCuのドーピング量に対し、ほぼ1桁高濃
度となり、母体中で比較的浅い(約100eV)ドナー
レベルを形成して導電性がさらに改善される。したがっ
て数V〜数十Vの電圧により加速された低速電子線の励
起でも、表示を得るに十分な輝度で赤色発光することが
できるものである。
As described above, in the present phosphor, the doping amount of Al becomes higher than the doping amount of Cu by about one digit, and a relatively shallow (about 100 eV) donor level is formed in the base material, resulting in conductivity. Is further improved. Therefore, even when a low-speed electron beam accelerated by a voltage of several V to several tens of V is excited, red light can be emitted with sufficient brightness to obtain a display.

【0021】次に本発明の蛍光体の温度特性を図3に示
すグラフで説明する。
Next, the temperature characteristics of the phosphor of the present invention will be described with reference to the graph shown in FIG.

【0022】図3は、蛍光体の発光する周囲温度と輝度
の関係を示すグラフである。横軸に周囲温度をとり、縦
軸に加速電圧30Vにおける発光輝度をとったものであ
る。蛍光体は、本発明の(Zn,Cd)S:Cu,Al
蛍光体を実線で表し、従来例である(ZnCd)S:A
g,Cl蛍光体を点線で表した。周囲温度が50℃以上
においては、従来の(Zn,Cd)S:Ag,Cl蛍光
体より、本発明の(Zn,Cd)S:Cu,Alの方が
発光輝度が高いことを示している。
FIG. 3 is a graph showing the relationship between the ambient temperature at which the phosphor emits light and the brightness. The horizontal axis is the ambient temperature, and the vertical axis is the emission brightness at an acceleration voltage of 30V. The phosphor is (Zn, Cd) S: Cu, Al of the present invention.
The phosphor is represented by a solid line, which is a conventional example (ZnCd) S: A.
The g, Cl phosphor is represented by the dotted line. It is shown that the emission brightness of the (Zn, Cd) S: Cu, Al of the present invention is higher than that of the conventional (Zn, Cd) S: Ag, Cl phosphor at an ambient temperature of 50 ° C. or higher. ..

【0023】又、図4のグラフは、ドーピング温度と発
光輝度の関係を示すグラフである。横軸にドーピング温
度、縦軸に発光輝度をとったものである。ドーピング温
度は、650℃〜950℃まで実験したが、ドーピング
温度が700℃〜850℃の範囲が良好な発光輝度が得
られた。
The graph of FIG. 4 is a graph showing the relationship between the doping temperature and the emission brightness. The horizontal axis is the doping temperature and the vertical axis is the emission brightness. Experiments were conducted at a doping temperature of 650 ° C to 950 ° C, and good emission luminance was obtained when the doping temperature was in the range of 700 ° C to 850 ° C.

【0024】又、ドーピング時間は、蛍光体原料混合物
の充填量およびドーピング温度によって異なるが、少な
くても1時間、長くても6時間位が良好な範囲であるこ
とが実験上わかった。
It has been experimentally found that the doping time varies depending on the filling amount of the phosphor raw material mixture and the doping temperature, but at least 1 hour and at the longest 6 hours are in a good range.

【0025】[0025]

【発明の効果】以上説明したように、本発明は(Zn,
Cd)Sを母体とし、この母体にCuと高濃度のAl
を、比較的低温でドーピングしたことにより、次のよう
な効果を有する低速電子線用赤色蛍光体が得られた。
As described above, the present invention provides (Zn,
Cd) S as a base material, and Cu and a high concentration of Al are added to the base material.
Was doped at a relatively low temperature to obtain a low-speed electron beam red phosphor having the following effects.

【0026】(1)従来の蛍光体のようにIn23やS
nO2等の非発光の導電物質を添加しなくても、Alを
高濃度にドーピングしたので低抵抗化され、発光輝度の
高い低速電子線用赤色蛍光体が得られる効果を有する。
(1) Like conventional phosphors, In 2 O 3 and S
Even if a non-emissive conductive material such as nO 2 is not added, Al is doped at a high concentration, so that the resistance is lowered and the red phosphor for low-speed electron beam with high emission brightness can be obtained.

【0027】(2)周囲温度が50℃以上高くなって
も、発光輝度の低下が従来より少ない低速電子線用蛍光
体を得ることができる。
(2) Even when the ambient temperature rises by 50 ° C. or more, it is possible to obtain a phosphor for a low-speed electron beam in which the decrease in emission brightness is less than in the conventional case.

【0028】(3)従来の蛍光体のドーピングさせるA
gに比し、本発明のCuの方がよりZnのイオン半径に
近いので、ドーピングがより容易に行える。従ってドー
ピングさせるための焼成温度をより低い温度でできるの
で、蛍光体表面の結晶性を良好にすることが可能になっ
た。しかして、発光輝度の高い低速電子線用蛍光体が得
られた。
(3) A for doping conventional phosphors
Since Cu of the present invention is closer to the ionic radius of Zn as compared with g, doping can be performed more easily. Therefore, since the firing temperature for doping can be set at a lower temperature, the crystallinity of the phosphor surface can be improved. Thus, a phosphor for low-speed electron beam having high emission brightness was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】ドーピングするCu濃度と発光輝度の関係を示
す図。
FIG. 1 is a diagram showing a relationship between a concentration of Cu to be doped and light emission luminance.

【図2】ドーピングするAl濃度と発光輝度の関係を示
す図。
FIG. 2 is a diagram showing the relationship between the concentration of Al doped and the emission luminance.

【図3】発光周囲温度と発光輝度の関係を示す図。FIG. 3 is a diagram showing a relationship between a light emission ambient temperature and light emission luminance.

【図4】ドーピングのための焼成温度と発光輝度の関係
を示す図。
FIG. 4 is a diagram showing a relationship between a firing temperature for doping and emission luminance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片岡 文昭 千葉県茂原市大芝629双葉電子工業株式会 社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumiaki Kataoka 629 Oshiba, Mobara-shi, Chiba Futaba Electronics Co., Ltd. In-house

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式(Zn1-xCdx)S(但しxは
0.25≦x≦0.35の範囲から選定される数)で表
される硫化亜鉛カドミウムを母体とし、この母体にCu
を1×10-4〜1×10-3原子/モル、Alを5×10
-4〜1×10-2原子/モル添加してなる低速電子線用赤
色発光蛍光体。
1. A matrix of zinc cadmium sulfide represented by the general formula (Zn 1-x Cd x ) S (where x is a number selected from the range of 0.25 ≦ x ≦ 0.35), and this matrix Cu
1 × 10 −4 to 1 × 10 −3 atom / mol, and Al 5 × 10
-4 to 1 × 10 -2 atom / mole of a red-emitting phosphor for low-energy electron beams.
JP25484191A 1991-09-05 1991-09-05 Red light-emitting florescent substance for slow electron Pending JPH0565479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25484191A JPH0565479A (en) 1991-09-05 1991-09-05 Red light-emitting florescent substance for slow electron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25484191A JPH0565479A (en) 1991-09-05 1991-09-05 Red light-emitting florescent substance for slow electron

Publications (1)

Publication Number Publication Date
JPH0565479A true JPH0565479A (en) 1993-03-19

Family

ID=17270601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25484191A Pending JPH0565479A (en) 1991-09-05 1991-09-05 Red light-emitting florescent substance for slow electron

Country Status (1)

Country Link
JP (1) JPH0565479A (en)

Similar Documents

Publication Publication Date Title
US4208299A (en) Method of preparing zinc sulfide phosphor coactivated with copper and gold
KR100489575B1 (en) Phosphor for display and field-emission display
JP2795194B2 (en) Electroluminescence device and method of manufacturing the same
US3767459A (en) Method for making electron energy sensitive phosphors for multi-color cathode ray tubes
KR900009045B1 (en) Low speed electron beam excitation phosphor light-emitting composition and fluorescent display tube
JPH0565479A (en) Red light-emitting florescent substance for slow electron
JP2811083B2 (en) Light emitting composition for slow electron beam
JP2535218B2 (en) Self-activated zinc oxide phosphor
JP3032921B2 (en) Luminescent material
JPH0687613A (en) Zinc sulfide for indicating green luminescence, preparation thereof and cathod ray tube containing luminous screen with said zinc sulfide
JP3982667B2 (en) Slow electron beam excited phosphor and fluorescent display tube
US4931651A (en) Phosphors and fluorescent compositions for emission of light under low-velocity electron excitation and fluorescent display devices utilizing the same
JPH0662946B2 (en) Slow electron beam excited phosphor
JPH08293275A (en) Complex phosphor and its manufacture
JP2605570B2 (en) Inorganic thin film EL device
JP2739803B2 (en) Inorganic thin film EL device
JP3726134B2 (en) Electroluminescent light emitting layer thin film, inorganic thin film electroluminescent element, and method for producing light emitting layer thin film
JPS606414Y2 (en) Slow electron beam excitation fluorescent display tube
JPH0785971A (en) Electroluminescent element
JPH0747733B2 (en) Blue light emitting phosphor
JP2622390B2 (en) Thin film EL element
JP2868657B2 (en) Phosphor
JPH10140150A (en) Phosphor and production of phosphor
JPS6015669B2 (en) fluorescent display tube
JPS60149687A (en) Phosphor