JPH0563240A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH0563240A
JPH0563240A JP3133418A JP13341891A JPH0563240A JP H0563240 A JPH0563240 A JP H0563240A JP 3133418 A JP3133418 A JP 3133418A JP 13341891 A JP13341891 A JP 13341891A JP H0563240 A JPH0563240 A JP H0563240A
Authority
JP
Japan
Prior art keywords
epoxy resin
parts
silica fine
fine particles
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3133418A
Other languages
Japanese (ja)
Inventor
Yutaka Aoki
豊 青木
Satoshi Tanigawa
聡 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP3133418A priority Critical patent/JPH0563240A/en
Publication of JPH0563240A publication Critical patent/JPH0563240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PURPOSE:To obtain an optical semiconductor device which is provided with a sealing resin layer having low internal stress and excellent transparency by applying resin-sealing to the optical semiconductor elements by using an epoxy resin component containing silica fine particles of smaller diameter than the wavelength of visible beam. CONSTITUTION:Bisphenol A-type epoxy resin (liquid resin) 100 parts of epoxy equiv. 185 is dissolved in ethanol 300 parts. Then this solution is added by tetraethoxy silane 100 parts, water 90 parts, and 1,8-diazabicyclo-(5,4,0)-7-undecen 0.42 parts as a catalyzer and reacted at 60 deg.C for 1hr, and after that the ethanol and water are evacuated/removed. Next, the obtained transparent epoxy resin 200 parts containing silica fine particles are mixed with 4-methylhexabitol phthalic anhydride 100 parts, 2-ethyl-4-methylimidazole 0.4 parts and antioxidant inhibitor to obtain an epoxy resin component containing liquid silica fine particles. Finally it is applied by thermosetting at 120 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光透過率および低応
力性の双方に優れた封止樹脂により樹脂封止しされた光
半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device resin-encapsulated with an encapsulating resin which is excellent in both light transmittance and low stress.

【0002】[0002]

【従来の技術】LED(発光ダイオード)等の光半導体
素子を封止する際に用いられる封止樹脂は、透明である
ことが要求され、一般に、ビスフエノール型エポキシ樹
脂,脂環式エポキシ樹脂などのエポキシ樹脂が用いら
れ、これの硬化剤としては、通常用いられるフエノール
樹脂系硬化剤に代えて、酸無水物系硬化剤が組み合わさ
れて用いられている。
2. Description of the Related Art An encapsulating resin used for encapsulating an optical semiconductor element such as an LED (light emitting diode) is required to be transparent. Generally, a bisphenol type epoxy resin, an alicyclic epoxy resin or the like is used. The epoxy resin is used, and as the curing agent for the epoxy resin, an acid anhydride curing agent is used in combination in place of the usually used phenol resin curing agent.

【0003】しかし、上記エポキシ樹脂と酸無水物系硬
化剤とを主成分とするエポキシ樹脂組成物を封止樹脂と
して用いると、エポキシ樹脂組成物の硬化時の硬化収縮
ないしはエポキシ樹脂と光半導体素子との線膨張係数の
差に起因する歪みにより内部応力が発生し、それが原因
で光半導体素子が劣化し、例えば、光半導体素子がLE
Dの場合、その輝度が低下するという問題が生じる。こ
のような問題を解決するためには、エポキシ樹脂の内部
応力を低減させる必要があり、その一つの方法として、
シリカ粒子を配合することによりエポキシ樹脂組成物硬
化体の線膨張係数を小さくするという方法が提案されて
いる。
However, when an epoxy resin composition containing the above-mentioned epoxy resin and an acid anhydride type curing agent as main components is used as a sealing resin, curing shrinkage of the epoxy resin composition at the time of curing or epoxy resin and optical semiconductor element The internal stress is generated due to the strain caused by the difference in the coefficient of linear expansion between the optical semiconductor element and the optical semiconductor element.
In the case of D, there arises a problem that the brightness decreases. In order to solve such a problem, it is necessary to reduce the internal stress of the epoxy resin, and as one of the methods,
A method has been proposed in which the linear expansion coefficient of the cured epoxy resin composition is reduced by incorporating silica particles.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ようにシリカ粒子を添加する方法は、内部応力を低下さ
せることはできても、エポキシ樹脂組成物硬化体からな
る封止樹脂の光透過率が著しく低下するという致命的な
難点がある。
However, in the method of adding silica particles as described above, although the internal stress can be reduced, the light transmittance of the encapsulating resin made of the cured epoxy resin composition is improved. There is a fatal difficulty that it will drop significantly.

【0005】この発明は、このような事情に鑑みなされ
たもので、内部応力が小さく、しかも透明性に優れた封
止樹脂層を備えた光半導体装置の提供をその目的とす
る。
The present invention has been made in view of such circumstances, and an object thereof is to provide an optical semiconductor device provided with an encapsulating resin layer having a small internal stress and excellent transparency.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の光半導体装置は、半導体素子と、これを
封止する封止樹脂層とを備え、上記封止樹脂層が透明性
エポキシ樹脂を主成分とする透明性エポキシ樹脂組成物
硬化体と、この硬化体中に硬化体全体の10〜70重量
%の割合で分散された粒子径0.1μm以下のシリカ微
粒子とから構成されているという構成をとる。
In order to achieve the above object, an optical semiconductor device of the present invention comprises a semiconductor element and a sealing resin layer for sealing the semiconductor element, and the sealing resin layer is transparent. It is composed of a transparent epoxy resin composition cured product containing an epoxy resin as a main component, and silica fine particles having a particle diameter of 0.1 μm or less dispersed in the cured product at a ratio of 10 to 70% by weight of the entire cured product. It takes the structure of.

【0007】[0007]

【作用】本発明者らは、内部応力が小さく、しかも光透
過性に優れた封止樹脂を得るために一連の研究を重ね
た。その研究の過程で、シリカ粒子をエポキシ樹脂とと
もに用いた場合に、光透過率が低下するのはシリカ粒子
の粒子径が大きいためではないかと想起した。すなわ
ち、シリカ粒子の粒子径は、通常、数μm〜数十μmオ
ーダーであり、先に述べた提案法は、このような粒子径
のシリカ粒子を、エポキシ樹脂およびその硬化剤等とと
もに配合してエポキシ樹脂組成物をつくり、これを用い
て半導体素子を封止するというものである。そこで、本
発明者らは、このようなシリカ粒子の粒子径を数μmオ
ーダーよりもかなり微細な0.1μm以下にし、これを
用いて半導体素子の樹脂封止を試みたところ、良好な成
績を得た。そこで、本発明者らは、これについてさらに
研究を重ねた結果、このような微細粒子径のシリカ粒子
を用いる場合において、内部応力と光透過率の双方を満
足させるためには、上記微細粒子径のシリカ粒子をエポ
キシ樹脂組成物硬化体の全体中に10〜70重量%の割
合で分散させることが必要であることを見いだしこの発
明に到達した。
The present inventors have conducted a series of studies in order to obtain a sealing resin having a small internal stress and excellent light transmittance. In the course of that research, I recalled that the reason why the light transmittance decreases when silica particles are used with an epoxy resin is because the particle size of the silica particles is large. That is, the particle size of the silica particles is usually on the order of several μm to several tens of μm, and the proposed method described above involves mixing silica particles having such a particle size with an epoxy resin and a curing agent therefor. An epoxy resin composition is prepared and a semiconductor element is encapsulated using the composition. Therefore, the present inventors have made the particle diameter of such silica particles 0.1 μm or less, which is considerably finer than the order of several μm, and attempted resin encapsulation of semiconductor elements using this, and obtained good results. Obtained. Therefore, as a result of further research on this, the present inventors have found that in the case of using silica particles having such a fine particle diameter, in order to satisfy both the internal stress and the light transmittance, It was found that it is necessary to disperse the above silica particles in an amount of 10 to 70% by weight in the entire cured product of the epoxy resin composition, and the present invention has been reached.

【0008】なお、上記微細なシリカ微粒子は、不安定
なため、そのままエポキシ樹脂,硬化剤等と混合する
と、凝集し大きな粒子(二次粒子)となりやすく、それ
によつて封止樹脂の白濁化を招く場合がある。そこで、
本発明者らは、シリカ粒子をエポキシ樹脂等に単に混合
するのではなく、エポキシ樹脂中でシリカ粒子を合成す
るという発想をなし、これにもとづき液状のエポキシ樹
脂中でアルコキシシランを水存在下で反応させたとこ
ろ、粒子径0.1μm以下のシリカ微粒子が、エポキシ
樹脂中でほぼ均一分散状態で合成されることを突き止め
た。したがつて、この方法で得られた微細シリカ粒子含
有のエポキシ樹脂をそのまま用いることにより、この発
明の光半導体装置を容易に製造することが可能となる。
Since the fine silica fine particles are unstable, if they are directly mixed with an epoxy resin, a curing agent, etc., they tend to agglomerate into large particles (secondary particles), which causes the sealing resin to become cloudy. May be invited. Therefore,
The present inventors have an idea of synthesizing silica particles in an epoxy resin rather than simply mixing the silica particles with an epoxy resin, and based on this, alkoxysilane in a liquid epoxy resin in the presence of water. Upon reaction, it was found that silica fine particles having a particle diameter of 0.1 μm or less were synthesized in an epoxy resin in a substantially uniform dispersion state. Therefore, by using the epoxy resin containing fine silica particles obtained by this method as it is, the optical semiconductor device of the present invention can be easily manufactured.

【0009】つぎに、この発明について詳しく説明す
る。
Next, the present invention will be described in detail.

【0010】この発明に用いるエポキシ樹脂組成物は、
粒子径0.1mm以下のシリカ微粒子が分散含有されてい
る透明性エポキシ樹脂(A成分)と、酸無水物系硬化剤
(B成分)と、硬化触媒(C成分)とを用いて得られる
ものであつて、通常、液状,粉末状もしくはこの粉末を
打錠したタブレツト状になつている。
The epoxy resin composition used in the present invention is
A product obtained by using a transparent epoxy resin (component A) in which silica fine particles having a particle diameter of 0.1 mm or less are dispersed, an acid anhydride curing agent (component B), and a curing catalyst (component C). Usually, it is in the form of liquid, powder or tablet made by compressing this powder.

【0011】上記A成分のシリカ微粒子分散含有透明性
エポキシ樹脂は、透明性エポキシ樹脂中に上記シリカ微
粒子を分散させたものであり、上記透明性エポキシ樹脂
としては、ビスフエノール型エポキシ樹脂,脂環式エポ
キシ樹脂等が透明性を有するために好適に用いられる。
しかし、場合により他のエポキシ樹脂を併用しても差し
支えはない。このように他のエポキシ樹脂を用いる場
合、その使用割合は、通常、全エポキシ樹脂全体の50
重量%以下に設定される。このような透明性エポキシ樹
脂およびこれと併用されるその他のエポキシ樹脂として
は、一般に、エポキシ当量100〜1000,軟化点1
20℃以下のものが用いられる。これらのエポキシ樹脂
は、常温で液状のもの、ないし常温で固形のものが適宜
に選択使用される。
The transparent epoxy resin containing a dispersion of silica fine particles as the component A is a dispersion of the above silica fine particles in a transparent epoxy resin. Examples of the transparent epoxy resin include bisphenol type epoxy resins and alicyclic resins. Formula epoxy resins and the like are preferably used because they have transparency.
However, there is no problem even if other epoxy resins are used together in some cases. When other epoxy resins are used in this way, the ratio of their use is usually 50% of the total epoxy resin.
It is set to be less than weight%. As such a transparent epoxy resin and other epoxy resins used together therewith, generally, an epoxy equivalent is 100 to 1000 and a softening point is 1.
The thing below 20 degreeC is used. As these epoxy resins, those which are liquid at room temperature or those which are solid at room temperature are appropriately selected and used.

【0012】透明性エポキシ樹脂に分散されるシリカ微
粒子は、粒子径が0.1μm以下のものである。このよ
うな微細なシリカ微粒子は、本発明者らが開発した特殊
な製法、すなわち、液状(固形状のエポキシ樹脂を有機
溶剤等で溶解したもの、固形状のエポキシ樹脂を熱溶融
したもの、または常温で液状のものの双方を含む)透明
性エポキシ樹脂(場合によつて他のエポキシ樹脂が併用
されている)中において、アルコキシシランを水の存在
下で反応させることによつて合成されるものであり、合
成されたシリカ微粒子は、透明性エポキシ樹脂をマトリ
ツクスとし、そのマトリツクス中に均一分散された状態
で存在し二次凝集を起こさない。より詳しく述べると、
上記シリカ微粒子は、例えば透明性エポキシ樹脂の有機
溶媒溶液に、水とアルコキシシランを加え所定時間反応
させることによつて合成することができる。このように
して合成されたシリカ微粒子の粒子径は100〜500
Å程度であり、可視光の波長よりも充分に小さい。そし
て、上記合成反応が終了した後、有機溶媒および水を減
圧除去することにより、シリカ微粒子がほぼ均一に分散
含有されている透明性エポキシ樹脂が得られる。この場
合、透明性エポキシ樹脂が常温で固形であれば、固形の
エポキシ樹脂中にシリカ微粒子が均一分散したものが得
られ、透明性エポキシ樹脂が常温で液状であればその液
状樹脂中にシリカ微粒子が均一分散したものが得られ
る。そして、固形のものはそれを粉砕した粉末状ないし
はこの粉末を打錠したタブレツト状にして供給される。
液状のものは、通常、そのまま用いられる。上記アルコ
キシシランとしては、テトラエトキシシラン,メチルト
リエトキシシラン,テトラメトキシシラン,テトラプロ
ポキシシラン,メチルトリプロポキシシランなどがあげ
られ、単独でもしくは併せて用いられる。特に好適なの
は、テトラエトキシシラン,メチルトリエトキシシラン
である。
The silica fine particles dispersed in the transparent epoxy resin have a particle diameter of 0.1 μm or less. Such fine silica fine particles are a special production method developed by the present inventors, that is, liquid (solid epoxy resin dissolved with an organic solvent or the like, solid epoxy resin heat-melted, or Synthesized by reacting an alkoxysilane in the presence of water in a transparent epoxy resin (including both liquid at room temperature), which is optionally combined with other epoxy resins. Therefore, the synthesized silica fine particles have a transparent epoxy resin as a matrix, exist in a state of being uniformly dispersed in the matrix, and do not cause secondary aggregation. More specifically,
The fine silica particles can be synthesized, for example, by adding water and an alkoxysilane to a solution of a transparent epoxy resin in an organic solvent and allowing the mixture to react for a predetermined time. The silica fine particles thus synthesized have a particle size of 100 to 500.
It is about Å, which is sufficiently smaller than the wavelength of visible light. After the synthesis reaction is completed, the organic solvent and water are removed under reduced pressure to obtain a transparent epoxy resin in which silica fine particles are substantially uniformly dispersed and contained. In this case, if the transparent epoxy resin is solid at room temperature, silica fine particles are uniformly dispersed in the solid epoxy resin, and if the transparent epoxy resin is liquid at room temperature, silica fine particles are contained in the liquid resin. Can be uniformly dispersed. Then, the solid product is supplied in the form of a powder obtained by crushing it or in the form of a tablet made by compressing this powder.
The liquid one is usually used as it is. Examples of the alkoxysilane include tetraethoxysilane, methyltriethoxysilane, tetramethoxysilane, tetrapropoxysilane, and methyltripropoxysilane, which may be used alone or in combination. Especially preferred are tetraethoxysilane and methyltriethoxysilane.

【0013】上記透明性エポキシ樹脂(A成分)ととも
に用いられる酸無水物系硬化剤(B成分)としては、分
子量140〜200程度のものが好適に用いられ、例え
ば、ヘキサヒドロ無水フタル酸,テトラヒドロ無水フタ
ル酸,メチルヘキサヒドロ無水フタル酸,メチルテトラ
ヒドロ無水フタル酸等の無色ないし淡黄色の酸無水物が
単独でもしくは併せて用いられる。このような酸無水物
系硬化剤の配合量は、上記透明性エポキシ樹脂(その他
のエポキシ樹脂を併用するときにもそれも含む)100
重量部(以下「部」と略す)に対して50〜200部の
範囲に設定することが好ましい。
As the acid anhydride type curing agent (component B) used together with the transparent epoxy resin (component A), those having a molecular weight of about 140 to 200 are preferably used, and examples thereof include hexahydrophthalic anhydride and tetrahydroanhydride. Colorless or pale yellow acid anhydrides such as phthalic acid, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride may be used alone or in combination. The compounding amount of such an acid anhydride-based curing agent is 100 for the above-mentioned transparent epoxy resin (including that when other epoxy resins are used in combination).
It is preferable to set it in the range of 50 to 200 parts by weight (hereinafter abbreviated as “part”).

【0014】上記エポキシ樹脂(A成分),酸無水物系
硬化剤(B成分)とともに用いられる硬化触媒(C成
分)としては、三級アミン,イミダゾール化合物および
有機金属錯塩等があげられ、単独でもしくは併用され
る。
Examples of the curing catalyst (C component) used together with the epoxy resin (A component) and the acid anhydride type curing agent (B component) include tertiary amines, imidazole compounds and organometallic complex salts. Or used together.

【0015】この発明に用いるエポキシ樹脂組成物に
は、上記A〜C成分以外に、必要に応じて染料,変性
剤,変色防止剤,老化防止剤,離型剤,反応性ないし非
反応性の希釈剤などの従来公知の添加剤を適宜選択配合
することができる。
In the epoxy resin composition used in the present invention, in addition to the components A to C, if necessary, a dye, a modifier, a discoloration preventing agent, an antiaging agent, a releasing agent, a reactive or non-reactive agent may be added. Conventionally known additives such as a diluent can be appropriately selected and blended.

【0016】上記のようなエポキシ樹脂組成物は、例え
ばつぎのようにして製造することができる。すなわち、
上記(A)〜(C)成分ならびにそれ以外の成分原料を
適宜配合し予備混合した後、混練機に掛けて混練して溶
融混合する。つぎに、これを室温に冷却した後、公知の
手段によつて粉砕し必要に応じて打錠するという一連の
工程により製造することができる。
The epoxy resin composition as described above can be manufactured, for example, as follows. That is,
The components (A) to (C) and the raw materials other than the components are appropriately mixed and premixed, and then the mixture is kneaded in a kneader to be melt mixed. Next, it can be manufactured by a series of steps in which it is cooled to room temperature, pulverized by a known means, and tableted if necessary.

【0017】また、上記(A)成分に用いる透明性エポ
キシ樹脂が、常温で液状のものである場合には、(A)
成分自体が液状となるため、上記(B)および(C)成
分ならびにそれ以外の成分を(A)成分とともに混合す
るのみで目的とするエポキシ樹脂組成物を得ることがで
きる。
Further, when the transparent epoxy resin used as the component (A) is liquid at room temperature, (A)
Since the components themselves become liquid, the desired epoxy resin composition can be obtained only by mixing the components (B) and (C) and the other components with the component (A).

【0018】このようなエポキシ樹脂組成物を用いての
半導体素子の封止は、特に限定するものではなく、通常
のトランスフアー成形,注型などの公知のモールド方法
によつて行うことができ、その結果、光半導体素子を上
記エポキシ樹脂組成物硬化体からなる封止樹脂層によつ
て封止した光半導体装置が得られる。この場合、透明性
エポキシ樹脂組成物硬化体からなる封止樹脂層中に、粒
子径0.1μm以下のシリカ微粒子が、樹脂硬化体全体
の10〜70重量%を占めるように分散含有されている
ことが必要である。すなわち、本発明者らの研究によれ
ば、線膨張係数α1 および弾性率については、上記微細
シリカ粒子の含有量が10重量%の時には、α1 は6×
10-5/℃,曲げ弾性率は360kg/mm2 となり、上記
シリカ微粒子の含有量が70重量%の時はα1 は2×1
-6/℃,曲げ弾性率は1400kg/mm2 程度となる。
すなわち、α1 を6×10-5/℃〜2×10-6/℃の範
囲内、曲げ弾性率を360kg/mm2 〜1400kg/mm2
の範囲内に設定することにより、内部応力の発生を回避
することができる。同時に、シリカ微粒子の含有率を上
記の範囲内に設定することにより、充分な光透過性も確
保することができるのである。なお、上記シリカ微粒子
の含有量は、透明性エポキシ樹脂組成物硬化体を燃焼さ
せ、灰分として残るシリカ粒子の重量から算出すること
ができる。
The encapsulation of a semiconductor element using such an epoxy resin composition is not particularly limited and can be carried out by a known molding method such as ordinary transfer molding or casting. As a result, an optical semiconductor device is obtained in which an optical semiconductor element is sealed with a sealing resin layer made of the cured epoxy resin composition. In this case, silica fine particles having a particle diameter of 0.1 μm or less are dispersedly contained in the encapsulating resin layer made of the cured transparent epoxy resin composition so as to account for 10 to 70% by weight of the entire cured resin. It is necessary. That is, according to the studies by the present inventors, regarding the linear expansion coefficient α 1 and the elastic modulus, when the content of the fine silica particles is 10% by weight, α 1 is 6 ×.
When the bending elastic modulus is 10 −5 / ° C. and the flexural modulus is 360 kg / mm 2 , α 1 is 2 × 1 when the content of the silica fine particles is 70% by weight.
0 -6 / ° C., the flexural modulus becomes 1400 kg / mm 2 approximately.
That is, α 1 is in the range of 6 × 10 −5 / ° C. to 2 × 10 −6 / ° C., and the bending elastic modulus is 360 kg / mm 2 to 1400 kg / mm 2.
By setting within the range, it is possible to avoid the generation of internal stress. At the same time, by setting the content of the silica fine particles within the above range, sufficient light transmittance can be ensured. The content of the silica fine particles can be calculated from the weight of the silica particles left as ash by burning the cured product of the transparent epoxy resin composition.

【0019】上記のようにして得られる光半導体装置は
透明性に優れ、しかも内部応力が極めて小さく高い信頼
性を備えている。なお、この発明において透明性とは、
着色透明の場合も含み、厚み1mm相当で600nmの波長
の光透過率が80〜100%のものをいう(分光光度計
により測定)。
The optical semiconductor device obtained as described above is excellent in transparency, has extremely small internal stress, and has high reliability. In the present invention, transparency means
Including the case of colored and transparent, it means a light transmittance of 80 to 100% at a wavelength of 600 nm corresponding to a thickness of 1 mm (measured by a spectrophotometer).

【0020】[0020]

【発明の効果】以上のように、この発明の光半導体装置
は、粒子径が可視光の波長よりも充分に小さいシリカ微
粒子を含むエポキシ樹脂組成物を用いて光半導体素子を
樹脂封止して得られたものである。このため、この封止
樹脂は光透過性に優れ、しかも内部応力が小さくなつて
おり、例えばLEDではその輝度劣化の抑制などが効果
的になされ、信頼性が極めて高くなる。
As described above, in the optical semiconductor device of the present invention, the optical semiconductor element is resin-sealed with the epoxy resin composition containing the silica fine particles having a particle size sufficiently smaller than the wavelength of visible light. It was obtained. For this reason, this sealing resin has excellent light transmissivity, and the internal stress is reduced. For example, in the case of an LED, the luminance deterioration is effectively suppressed, and the reliability is extremely high.

【0021】つぎに、実施例について比較例と併せて説
明する。
Next, examples will be described together with comparative examples.

【0022】[0022]

【実施例1】エポキシ当量185のビスフエノールA型
エポキシ樹脂(液状樹脂)100部をエタノール300
部に溶解させ、その溶液に、テトラエトキシシラン10
0部、水90部、触媒としての1,8−ジアザビシクロ
(5,4,0)−7−ウンデセン0.42部を添加し、
60℃で一時間反応させた。その後、エタノールおよび
水を減圧除去して、シリカ微粒子を含む液状の透明性エ
ポキシ樹脂を得た。この場合のシリカ微粒子の粒子径は
約200Åであつた。
Example 1 100 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185 was added to 300 parts of ethanol.
10 parts, and the solution, tetraethoxysilane 10
0 parts, 90 parts of water, 0.42 parts of 1,8-diazabicyclo (5,4,0) -7-undecene as a catalyst were added,
The reaction was carried out at 60 ° C for 1 hour. Then, ethanol and water were removed under reduced pressure to obtain a liquid transparent epoxy resin containing fine silica particles. The particle size of the silica fine particles in this case was about 200Å.

【0023】つぎに、そのシリカ微粒子含有透明性エポ
キシ樹脂200部に、4−メチルヘキサヒドロ無水フタ
ル酸100部、2−エチル−4−メチルイミダゾール
0.4部、酸化防止剤2.5部を混合し、液状のシリカ
微粒子含有エポキシ樹脂組成物を得た。これを、120
℃で熱硬化させることにより得られた硬化物の光透過率
は厚み4mmで82%という高い値であつた。
Next, to 200 parts of the silica fine particle-containing transparent epoxy resin, 100 parts of 4-methylhexahydrophthalic anhydride, 0.4 part of 2-ethyl-4-methylimidazole and 2.5 parts of an antioxidant are added. By mixing, a liquid silica fine particle-containing epoxy resin composition was obtained. This is 120
The light transmittance of the cured product obtained by heat curing at ℃ was 82% at a thickness of 4 mm, which was a high value.

【0024】[0024]

【実施例2】テトラエトキシシランをメチルトリエトキ
シシランに代えた以外は、実施例1と同様にして、シリ
カ微粒子含有エポキシ樹脂組成物硬化物を得た。この場
合のシリカ微粒子の粒子径は、約200Åであり、硬化
物の光透過率は厚み4mmで81%という高い値であつ
た。
Example 2 A silica fine particle-containing cured epoxy resin composition was obtained in the same manner as in Example 1 except that tetraethoxysilane was replaced with methyltriethoxysilane. The particle size of the silica fine particles in this case was about 200Å, and the light transmittance of the cured product was as high as 81% at a thickness of 4 mm.

【0025】[0025]

【実施例3】エポキシ当量650のビスフエノールA型
エポキシ樹脂80部(固形樹脂)をアセトン/メチルエ
チルケトン〔50/50(重量比)〕混合溶媒300部
に溶解させ、その溶液に、テトラエトキシシラン100
部、水90部、触媒としての1,8−ジアザビシクロ
(5,4,0)−7−ウンデセン0.42部を添加し、
60℃で一時間反応させた。その後、アセトン、メチル
エチルケトンおよび水を減圧除去し、シリカ微粒子を含
む固形の透明性エポキシ樹脂を得た。この場合のシリカ
微粒子の粒子径は約200Åであつた。
Example 3 80 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 650 (solid resin) was dissolved in 300 parts of an acetone / methyl ethyl ketone [50/50 (weight ratio)] mixed solvent, and tetraethoxysilane 100 was added to the solution.
Parts, 90 parts of water, 0.42 parts of 1,8-diazabicyclo (5,4,0) -7-undecene as a catalyst,
The reaction was carried out at 60 ° C for 1 hour. Then, acetone, methyl ethyl ketone, and water were removed under reduced pressure to obtain a solid transparent epoxy resin containing fine silica particles. The particle size of the silica fine particles in this case was about 200Å.

【0026】つぎに、そのシリカ微粒子含有透明性エポ
キシ樹脂180部に、トリグリシジルイソシアヌレート
(固形エポキシ樹脂)20部、テトラヒドロ無水フタル
酸44部、2−エチル−4−メチルイミダゾール0.4
部、酸化防止剤2.5部を混合して、シリカ微粒子含有
エポキシ樹脂組成物を得た。これを、150℃で熱硬化
させた硬化物の光透過率は厚み4mmで83%という高い
値であつた。
Next, to 180 parts of the silica fine particle-containing transparent epoxy resin, 20 parts of triglycidyl isocyanurate (solid epoxy resin), 44 parts of tetrahydrophthalic anhydride, 0.4 parts of 2-ethyl-4-methylimidazole.
Parts and 2.5 parts of an antioxidant were mixed to obtain a silica fine particle-containing epoxy resin composition. The cured product thermally cured at 150 ° C. had a high light transmittance of 83% at a thickness of 4 mm.

【0027】[0027]

【実施例4】テトラエトキシシランをメチルトリエトキ
シシランに代えた以外は実施例3と同様にして、シリカ
微粒子含有エポキシ樹脂組成物硬化物を得た。この場合
のシリカ微粒子の粒子径は約200Åであり、硬化物の
光透過率は厚み4mmで81%という高い値であつた。
Example 4 A cured product of an epoxy resin composition containing fine silica particles was obtained in the same manner as in Example 3 except that methyltriethoxysilane was used instead of tetraethoxysilane. The particle size of the silica fine particles in this case was about 200Å, and the light transmittance of the cured product was as high as 81% at a thickness of 4 mm.

【0028】[0028]

【比較例1】エポキシ当量185のビスフエノールA型
エポキシ樹脂(液状樹脂)100部、4−メチルヘキサ
ヒドロ無水フタル酸100部、2−エチル−4−メチル
イミダゾール0.4部、酸化防止剤2.5部を混合し
て、エポキシ樹脂組成物を得た。
Comparative Example 1 100 parts of bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, 100 parts of 4-methylhexahydrophthalic anhydride, 0.4 part of 2-ethyl-4-methylimidazole, and antioxidant 2 0.5 part was mixed to obtain an epoxy resin composition.

【0029】[0029]

【比較例2】エポキシ当量650のビスフエノールA型
エポキシ樹脂(固形樹脂)80部、トリグリシジルイソ
シアヌレート(固形エポキシ樹脂)20部、テトラヒド
ロ無水フタル酸44部、2−エチル−4−メチルイミダ
ゾール0.4部、酸化防止剤2.5部を混合して、エポ
キシ樹脂組成物を得た。
Comparative Example 2 80 parts of bisphenol A type epoxy resin (solid resin) having an epoxy equivalent of 650, 20 parts of triglycidyl isocyanurate (solid epoxy resin), 44 parts of tetrahydrophthalic anhydride, 2-ethyl-4-methylimidazole 0 An epoxy resin composition was obtained by mixing 4 parts and 2.5 parts of an antioxidant.

【0030】つぎに、実施例1〜4および比較例1,2
で得られたエポキシ樹脂組成物を用い、実際に発光ダイ
オードを樹脂封止して光半導体装置を作製した。そし
て、この光半導体装置の通電輝度劣化を測定した。その
結果を下記の表1に示す。なお、上記通電輝度劣化の測
定は、つぎのようにして行つた。すなわち、上記光半導
体装置(LEDデバイス)に定電流を流し、輝度として
電流印加5秒後の受光素子の出力電流値を求め劣化率を
測定した。 パツケージ:直径5mmのパイロツトランプ。 評価素子:GaAs,0.5mm×0.5mm 評価条件:−30℃放置で20mA通電の1000時間
後の輝度劣化率を測定した。
Next, Examples 1 to 4 and Comparative Examples 1 and 2
An optical semiconductor device was manufactured by actually sealing the light emitting diode with a resin using the epoxy resin composition obtained in Step 1. Then, the deterioration of energization luminance of this optical semiconductor device was measured. The results are shown in Table 1 below. The above-mentioned deterioration of the energization luminance was measured as follows. That is, a constant current was applied to the above-mentioned optical semiconductor device (LED device), and the output current value of the light receiving element 5 seconds after the current application was calculated as the luminance to measure the deterioration rate. Package: A 5mm diameter pilot lamp. Evaluation element: GaAs, 0.5 mm × 0.5 mm Evaluation condition: The luminance deterioration rate was measured after leaving for 20 hours at -30 ° C. and 1000 hours of energization.

【0031】[0031]

【表1】 [Table 1]

【0032】上記表1の結果から、実施例品は比較例品
に比べて輝度劣化が抑制され、光透過性とともに低応力
性も向上していることがわかる。
From the results shown in Table 1 above, it can be seen that the product of the example is suppressed in the deterioration of luminance and the light stress and the low stress property are improved as compared with the product of the comparative example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子と、これを封止する封止樹脂
層とを備え、上記封止樹脂層が、透明性エポキシ樹脂を
主成分とする透明性エポキシ樹脂組成物硬化体と、この
硬化体中に硬化体全体の10〜70重量%の割合で分散
された粒子径0.1μm以下のシリカ微粒子とから構成
されていることを特徴とする光半導体装置。
1. A semiconductor element and a sealing resin layer for sealing the semiconductor element, wherein the sealing resin layer is a cured transparent epoxy resin composition containing a transparent epoxy resin as a main component, and the cured body. An optical semiconductor device, comprising: silica fine particles having a particle diameter of 0.1 μm or less dispersed in the body at a ratio of 10 to 70% by weight of the entire cured body.
【請求項2】 粒子径0.1μm以下のシリカ微粒子
が、液状の透明性エポキシ樹脂中においてアルコキシシ
ランを反応させることにより合成されて上記透明性エポ
キシ樹脂中に分散しているものである請求項1記載の光
半導体装置。
2. Silica fine particles having a particle diameter of 0.1 μm or less are synthesized by reacting an alkoxysilane in a liquid transparent epoxy resin and are dispersed in the transparent epoxy resin. 1. The optical semiconductor device described in 1.
【請求項3】 アルコキシシランが、テトラエトキシシ
ランおよびメチルトリエトキシシランの少なくとも一方
である請求項2記載の光半導体装置。
3. The optical semiconductor device according to claim 2, wherein the alkoxysilane is at least one of tetraethoxysilane and methyltriethoxysilane.
【請求項4】 下記の(A)〜(C)成分を含有するエ
ポキシ樹脂組成物。 (A)粒子径0.1μm以下のシリカ微粒子が分散され
ている透明性エポキシ樹脂。 (B)酸無水物系硬化剤。 (C)硬化触媒。
4. An epoxy resin composition containing the following components (A) to (C). (A) A transparent epoxy resin in which fine silica particles having a particle diameter of 0.1 μm or less are dispersed. (B) Acid anhydride curing agent. (C) Curing catalyst.
JP3133418A 1991-05-08 1991-05-08 Optical semiconductor device Pending JPH0563240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3133418A JPH0563240A (en) 1991-05-08 1991-05-08 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3133418A JPH0563240A (en) 1991-05-08 1991-05-08 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH0563240A true JPH0563240A (en) 1993-03-12

Family

ID=15104310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3133418A Pending JPH0563240A (en) 1991-05-08 1991-05-08 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH0563240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206664A (en) * 2004-01-21 2005-08-04 Nitto Denko Corp Semiconductor sealing resin composition
JP2006241230A (en) * 2005-03-01 2006-09-14 Nitto Denko Corp Hardened article of epoxy resin composition, its manufacturing process and optical semiconductor device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206664A (en) * 2004-01-21 2005-08-04 Nitto Denko Corp Semiconductor sealing resin composition
JP2006241230A (en) * 2005-03-01 2006-09-14 Nitto Denko Corp Hardened article of epoxy resin composition, its manufacturing process and optical semiconductor device using the same

Similar Documents

Publication Publication Date Title
US7307286B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
CN104395371B (en) Composition epoxy resin and its solidfied material and hardening resin composition
JPH0725987A (en) Epoxy resin composition for sealing optical semiconductor
CN101942073B (en) Curable resin composition for encapsulating optical semiconductor and cured product thereof
TW201224050A (en) Epoxy resin composition for optical semiconductor device, lead frame obtained using the same for optical semiconductor device, and optical semiconductor device
JPH10158473A (en) Epoxy resin composition for sealing optical semiconductor element, and optical semiconductor device sealed by using this epoxy resin composition
JP6147362B2 (en) Thermosetting resin composition, method for producing reflecting member for optical semiconductor device using the same, and optical semiconductor device
JP3153171B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor
CN102333768B (en) Diolefin compound, epoxy resin and composition thereof
JPS60124617A (en) Resin-sealed emitter
JPH0563240A (en) Optical semiconductor device
JP4515009B2 (en) Resin composition for sealing light emitting diode
JP2796187B2 (en) Optical semiconductor device
JPH056946A (en) Optical semiconductor device
JP5995238B2 (en) Epoxy resin and epoxy resin composition
JP3017888B2 (en) Semiconductor device
JPH05287082A (en) Production of resin composition containing ultrafine particles dispersed therein
JP2837478B2 (en) Optical semiconductor device
JP3098663B2 (en) Thermosetting resin composition and production method thereof
JPH11269351A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor device using the same
JPH06232296A (en) Semiconductor device
TW201529666A (en) Thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained using said composition, and optical semiconductor device
JPH06302726A (en) Thermosetting resin composition
JPH04363054A (en) Epoxy resin composition for optical-semiconductor sealing use
JP3394736B2 (en) Epoxy resin composition and semiconductor device