JP2837478B2 - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JP2837478B2
JP2837478B2 JP1340099A JP34009989A JP2837478B2 JP 2837478 B2 JP2837478 B2 JP 2837478B2 JP 1340099 A JP1340099 A JP 1340099A JP 34009989 A JP34009989 A JP 34009989A JP 2837478 B2 JP2837478 B2 JP 2837478B2
Authority
JP
Japan
Prior art keywords
epoxy resin
silica powder
resin composition
component
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1340099A
Other languages
Japanese (ja)
Other versions
JPH03201470A (en
Inventor
豊 青木
修次 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP1340099A priority Critical patent/JP2837478B2/en
Publication of JPH03201470A publication Critical patent/JPH03201470A/en
Application granted granted Critical
Publication of JP2837478B2 publication Critical patent/JP2837478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光透過率および低応力性の双方に優れた
半導体封止用エポキシ樹脂組成物の製造方法に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an epoxy resin composition for semiconductor encapsulation which is excellent in both light transmittance and low stress.

〔従来の技術〕[Conventional technology]

LED(発光ダイオード)等の光半導体素子を封止する
際に用いられる封止用樹脂組成物としては、その硬化物
が透明性を有することが要求され、一般に、ビスフエノ
ールA型エポキシ樹脂,脂環式エポキシ樹脂等のエポキ
シ樹脂と、硬化剤に酸無水物とを用いて得られるエポキ
シ樹脂組成物が汎用されている。
As a sealing resin composition used for sealing an optical semiconductor element such as an LED (light emitting diode), it is required that the cured product has transparency, and in general, bisphenol A type epoxy resin, An epoxy resin composition obtained by using an epoxy resin such as a cyclic epoxy resin and an acid anhydride as a curing agent is widely used.

しかし、上記エポキシ樹脂組成物を封止樹脂として用
いると、エポキシ樹脂組成物の硬化時の硬化収縮、また
はエポキシ樹脂と光半導体素子との線膨張係数の差に起
因する歪みにより内部応力が発生する。その結果、光半
導体素子が劣化し、例えば、光半導体素子が発光素子の
場合、その輝度が低下するという問題が生じる。このた
め、従来から、上記内部応力を低減させる方法として、
シリカ粉末等の線膨張係数の小さい無機粉末を添加して
エポキシ樹脂組成物の膨張係数を小さくし光半導体素子
のそれに近似させる方法が提案され一部で実行されてい
る。
However, when the epoxy resin composition is used as a sealing resin, internal stress is generated due to curing shrinkage during curing of the epoxy resin composition or distortion caused by a difference in linear expansion coefficient between the epoxy resin and the optical semiconductor element. . As a result, the optical semiconductor element is deteriorated. For example, when the optical semiconductor element is a light emitting element, there is a problem that the luminance is reduced. For this reason, conventionally, as a method of reducing the internal stress,
A method of adding an inorganic powder having a small linear expansion coefficient, such as silica powder, to reduce the expansion coefficient of the epoxy resin composition to approximate that of an optical semiconductor element has been proposed and partially implemented.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記方法は、エポキシ樹脂組成物の光
透過率が著しく低下するという光半導体封止用樹脂組成
物としては致命的な欠点を有している。これに対し、上
記欠点を解決するために、樹脂成分とシリカ粉末の屈折
率の差を小さくする方法が提案され実行されている(特
開昭49−23847号)が、単に樹脂成分とシリカ粉末の屈
折率の差を小さくするだけでは、例えば、厚み2mmのエ
ポキシ樹脂組成物硬化体の光透過率は70%程度であり、
高輝度LED等の高性能光半導体素子の封止用樹脂組成物
としては不充分であり、より光透過率の高い、しかも低
応力性に優れた光半導体封止用樹脂組成物が切望されて
いる。
However, the above method has a fatal defect as a resin composition for encapsulating an optical semiconductor in that the light transmittance of the epoxy resin composition is significantly reduced. On the other hand, in order to solve the above-mentioned drawbacks, a method for reducing the difference in the refractive index between the resin component and the silica powder has been proposed and implemented (Japanese Patent Application Laid-Open No. 49-23847). By simply reducing the difference in the refractive index of, for example, the light transmittance of a cured epoxy resin composition having a thickness of 2 mm is about 70%,
As a resin composition for encapsulating high-performance optical semiconductor elements such as high-brightness LEDs, it is insufficient, and a resin composition for optical semiconductor encapsulation having higher light transmittance and excellent low-stress properties has been eagerly desired. I have.

この発明は、このような事情に鑑みなされたもので、
内部応力が小さく、しかも光透過性に優れた光半導体封
止用エポキシ樹脂組成物の製造方法に関するものであ
る。
The present invention has been made in view of such circumstances,
The present invention relates to a method for producing an epoxy resin composition for encapsulating an optical semiconductor having a small internal stress and excellent light transmittance.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明の光半導体封止
用エポキシ樹脂組成物の製造方法は、下記の(A)〜
(E)成分を混合して、(D)成分のシリカ粉末の屈折
率と、(A)〜(C)成分からなるエポキシ樹脂硬化体
の屈折率との差が±0.01の範囲に設定されている光半導
体封止用エポキシ樹脂組成物を製造する方法において、
予めシランカップリング剤を用いてシリカ粉末表面を表
面処理した後で、混合するという構成をとる。
In order to achieve the above object, a method for producing an epoxy resin composition for optical semiconductor encapsulation of the present invention includes the following (A) to (A).
The component (E) is mixed, and the difference between the refractive index of the silica powder (D) and the refractive index of the epoxy resin cured product composed of the components (A) to (C) is set within a range of ± 0.01. In the method for producing an epoxy resin composition for optical semiconductor encapsulation,
After the surface of the silica powder is surface-treated using a silane coupling agent in advance, mixing is performed.

(A)透明性エポキシ樹脂。(A) Transparent epoxy resin.

(B)酸無水物系硬化剤。(B) an acid anhydride-based curing agent.

(C)硬化触媒。(C) a curing catalyst.

(D)シリカ粉末。(D) silica powder.

(E)シランカツプリング剤。(E) a silane coupling agent.

〔作用〕[Action]

すなわち、本発明者らは、内部応力が小さく、しかも
光透過性に優れた封止樹脂を得るために一連の研究を重
ねた。その研究の過程で、上記光透過性が低いのは、樹
脂成分とシリカ粉末とこの界面の密着性が低いのではな
いかと想起し、この密着性を高めるために、さらに研究
を重ねた。その結果、予めシランカップリング剤を用い
てシリカ粉末を表面処理することにより樹脂成分とシリ
カ粉末の界面の密着性を向上させ、シリカ粉末の屈折率
をエポキシ樹脂硬化体のそれに近似させると、透明で内
部応力の低減された封止樹脂が得られることを見出しこ
の発明に到達した。
That is, the present inventors have repeated a series of studies in order to obtain a sealing resin having small internal stress and excellent light transmittance. In the course of the study, I imagined that the low light transmittance may be the low adhesiveness of the interface between the resin component and the silica powder, and further studied to improve the adhesiveness. As a result, by previously treating the silica powder with a silane coupling agent to improve the adhesiveness of the interface between the resin component and the silica powder, and making the refractive index of the silica powder close to that of the epoxy resin cured product, it becomes transparent. And found that a sealing resin with reduced internal stress can be obtained.

この発明により製造されるエポキシ樹脂組成物は、透
明性エポキシ樹脂(A成分)と、酸無水物系硬化剤(B
成分)と、硬化触媒(C成分)と、シリカ粉末(D成
分)と、シランカツプリング剤(E成分)とを用いて得
られるものであって、通常、液状,粉末状もしくはこの
粉末を打錠したタブレット錠になつている。
The epoxy resin composition produced according to the present invention comprises a transparent epoxy resin (A component) and an acid anhydride curing agent (B
Component), a curing catalyst (component C), a silica powder (component D), and a silane coupling agent (component E). It is a locked tablet.

上記A成分(透明性エポキシ樹脂)としては、ビスフ
エノール型エポキシ樹脂,脂環式エポキシ樹脂が透明性
を有するために好ましいが、場合により他のエポキシ樹
脂を併用してもよい。そして、上記他のエポキシ樹脂を
用いる場合、その使用割合は、通常、エポキシ樹脂全体
の50重量%(以下「%」と略す)以下に設定するのが好
適である。このようなエポキシ樹脂としては、一般に、
エポキシ当量100〜1000,軟化点120℃以下のものが用い
られる。なお、上記透明性エポキシ樹脂の透明性とは、
着色透明の場合をも含み、厚み1mm相当で、600nmの波長
の光い透過率が80〜100%をいう(分光光度計により測
定)。
As the component A (transparent epoxy resin), a bisphenol-type epoxy resin and an alicyclic epoxy resin are preferable because they have transparency, but other epoxy resins may be used in some cases. When the other epoxy resin is used, it is generally preferable to set the usage ratio to 50% by weight or less (hereinafter abbreviated as “%”) of the entire epoxy resin. As such an epoxy resin, generally,
Those having an epoxy equivalent of 100 to 1000 and a softening point of 120 ° C. or less are used. Incidentally, the transparency of the transparent epoxy resin,
Including the case of colored and transparent, it has a thickness of 1 mm and has a light transmittance of 80 to 100% at a wavelength of 600 nm (measured by a spectrophotometer).

上記A成分(透明性エポキシ樹脂)とともに用いられ
るB成分(酸無水物系硬化剤)としては、分子量140〜2
00程度のものが好ましく用いられ、例えば、ヘキサヒド
ロ無水フタル酸,テトラヒドロ無水フタル酸,メチルヘ
キサヒドロ無水フタル酸,メチルテトラヒドロ無水フタ
ル酸等の無色ないし淡黄色の酸無水物があげられる。上
記B成分(酸無水物系硬化剤)の配合量は、上記A成分
(透明性エポキシ樹脂)100重量部(以下「部」と略
す)に対して50〜200部の範囲に設定することが好まし
い。
The component B (acid anhydride-based curing agent) used together with the component A (transparent epoxy resin) includes a molecular weight of 140 to 2
About 00 are preferably used, and examples thereof include colorless to pale yellow acid anhydrides such as hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride. The compounding amount of the component B (acid anhydride-based curing agent) may be set in the range of 50 to 200 parts with respect to 100 parts by weight of the component A (transparent epoxy resin) (hereinafter abbreviated as “parts”). preferable.

上記A成分(透明性エポキシ樹脂),B成分(酸無水物
硬化剤)とともに用いられるC成分(硬化触媒)として
は、第三級アミン,イミダゾール化合物及び誘起金属錯
塩等があげられる。
Examples of the component C (curing catalyst) used together with the component A (transparent epoxy resin) and component B (acid anhydride curing agent) include tertiary amines, imidazole compounds, and induced metal complex salts.

なお、上記D成分(シリカ粉末)と、上記A〜C成分
からなるエポキシ樹脂組成物硬化体の屈折率との差を±
0.01の範囲に設定する方法としては、下記の〜の方
法があげられる。
The difference between the refractive index of the component D (silica powder) and the refractive index of the cured epoxy resin composition comprising the components A to C was ±
As a method for setting the range to 0.01, there are the following methods (1) to (4).

上記A〜C成分からなるエポキシ樹脂組成物硬化体
のみの屈折率を調節する方法(例えば、A成分の種類の
選択,A成分の2種類以上の併用あるいはB成分の種類の
選択,B成分の2種類以上の併用等) D成分(シリカ粉末)の屈折率を調節する方法。
A method of adjusting the refractive index of only the cured epoxy resin composition comprising the components A to C (for example, selection of the type of the component A, use of two or more types of the component A or selection of the type of the component B, A method of adjusting the refractive index of the D component (silica powder).

上記およびを併用する方法。 A method using the above and in combination.

そして、上記A成分(透明性エポキシ樹脂),B成分
(酸無水物硬化剤),C成分(硬化樹脂)とともに用いら
れるD成分(シリカ粉末)としては、溶融性のものが用
いられ、好ましくはシリカ粉末自体の屈折率を上記の
方法にしたがい調節されたものがあげられる。具体的に
は、シリカ粉末に、微量の酸化鉛,酸化チタン等の金属
酸化物を混入することによりシリカ粉末自体の屈折率
(通常約1.40)を調節してエポキシ樹脂の屈折率(通常
約1.50)に近似させるのが一般的である。
As the D component (silica powder) used together with the A component (transparent epoxy resin), the B component (acid anhydride curing agent), and the C component (cured resin), a meltable one is preferably used. A silica powder whose refractive index has been adjusted according to the above-mentioned method may be used. Specifically, the refractive index (usually about 1.40) of the silica powder itself is adjusted by mixing a small amount of a metal oxide such as lead oxide and titanium oxide into the silica powder to adjust the refractive index of the epoxy resin (usually about 1.50). ) Is generally approximated.

このようなシリカ粉末としては、平均粒径3〜60μm
のものを用いるのが好ましい。すなわち、平均粒径が3
μm未満であると粘度が高くなりエポキシ樹脂組成物の
成形性が劣化し、60μmを超えると光半導体素子に損傷
を与える可能性が高くなるからである。さらに、シリカ
粉末の含有量は、エポキシ樹脂組成物全体の10〜70%の
範囲に設定するのが好適である。
Such a silica powder has an average particle size of 3 to 60 μm.
It is preferred to use That is, when the average particle size is 3
If it is less than μm, the viscosity increases and the moldability of the epoxy resin composition deteriorates, and if it exceeds 60 μm, the possibility of damaging the optical semiconductor element increases. Further, the content of the silica powder is preferably set in the range of 10 to 70% of the entire epoxy resin composition.

上記A成分(透明性エポキシ樹脂),B成分(酸無水物
硬化剤),C成分(硬化触媒)およびD成分(シリカ粉
末)とともに用いられるE成分(シランカツプリング)
としては、エポキシ基またはアミノ基を有するものが好
ましく、具体的には、エポキシ基を有するものとして、
β−(3,4−エポキシシクロヘキシル)エチルトリメト
キシシラン、γ−グリシドキシプロピルトリメトキシシ
ラン、γ−グリシドキシプロピルメチルジエトキシシラ
ン等があげられ、アミノ基を有するものとしては、N−
β−アミノエチル−γ−アミノプロピルトリメトキシシ
ラン、N−β−アミノエチル−γ−アミノプロピルメチ
ルジエトキシシラン、γ−アミノプロピルトリエトキシ
シラン、N−フエニル−γ−アミノプロピルトリメトキ
シシラン等があげられる。上記E成分(シランカツプリ
ング剤)の使用量は、D成分(シリカ粉末)に対して0.
5〜3%の範囲内に設定するのが好適である。
E component (silane coupling) used together with A component (transparent epoxy resin), B component (acid anhydride curing agent), C component (curing catalyst) and D component (silica powder)
As is preferably those having an epoxy group or an amino group, specifically, those having an epoxy group,
β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, etc., and those having an amino group include N-
β-aminoethyl-γ-aminopropyltrimethoxysilane, N-β-aminoethyl-γ-aminopropylmethyldiethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, etc. can give. The amount of the component E (silane coupling agent) used is 0.
It is preferable to set within the range of 5 to 3%.

なお、この発明により製造されるエポキシ樹脂組成物
には、上記A〜E成分以外に、必要に応じて染料,変性
剤,変色防止剤、老化防止剤、離型剤,反応性ないし非
反応性の希釈剤等の従来公知の添加剤を適宜配合するこ
とができる。
In addition to the above-mentioned components A to E, the epoxy resin composition produced according to the present invention may further comprise a dye, a modifier, a discoloration inhibitor, an antioxidant, a release agent, a reactive or non-reactive A conventionally known additive such as a diluent can be appropriately compounded.

そして、この発明により製造されるエポキシ樹脂組成
物は、上記A成分,B成分およびC成分からなるエポキシ
樹脂硬化体の屈折率と、上記D成分(シリカ粉末の屈折
率との差が、±0.01以内である必要がある。なお、上記
屈折率はアツベ屈折計を用いて測定される。
The epoxy resin composition produced according to the present invention has a refractive index difference between the refractive index of the epoxy resin cured product composed of the component A, the component B and the component C, and the component D (the refractive index of the silica powder of ± 0.01). The refractive index is measured using an Atsube refractometer.

この発明により製造される上記エポキシ樹脂組成物
は、例えばつぎのようにして製造することができる。す
なわち、上記A〜E成分および従来公知の添加剤を配合
して溶融混合したのち、これを室温に冷却して公知の手
段により粉砕し必要に応じて打錠することにより製造す
ることができる。また、上記エポキシ樹脂組成物が液状
物の場合は、上記各成分を混合するのみでよい。なお、
この発明のエポキシ樹脂組成物の製造方法においては、
光透過性および低応力性の観点から、各成分を混合する
前に、予めシランカップリング剤を用いてシリカ粉末表
面を表面処理する必要がある。この場合の表面処理方法
としては、例えばメタノール中で、シランカツプリング
剤とシリカ粉末を均一に混合し脱溶媒した後、約100℃
で約2時間熱処理する方法があげられる。
The epoxy resin composition produced according to the present invention can be produced, for example, as follows. That is, it can be produced by blending the above-mentioned components A to E and a conventionally known additive, melt-mixing, cooling the mixture to room temperature, pulverizing by a known means, and tableting as necessary. When the epoxy resin composition is a liquid, it is only necessary to mix the above components. In addition,
In the method for producing an epoxy resin composition of the present invention,
From the viewpoint of light transmittance and low stress, it is necessary to previously treat the surface of the silica powder with a silane coupling agent before mixing the components. As a surface treatment method in this case, for example, in methanol, after uniformly mixing the silane coupling agent and silica powder and removing the solvent, about 100 ℃
For about 2 hours.

このようなエポキシ樹脂組成物を用いての光半導体素
子の封止は、特に限定するものではなく、通常のトラン
スフアー成形,注型等の公知のモールド方法により行う
ことができる。
The sealing of the optical semiconductor element using such an epoxy resin composition is not particularly limited, and can be performed by a known molding method such as ordinary transfer molding and casting.

このようにして得られる光半導体装置は、透明性に優
れ、内部応力が極めて小さく高い信頼性を備えている。
これは、シランカツプリング剤を配合することによりシ
リカ粉末の表面処理がなされ、樹脂成分とシリカ粉末の
界面の密着性が向上し、しかも、樹脂成分の硬化体とシ
リカ粉末の屈折率の差が非常に小さいからであると考え
られる。
The optical semiconductor device obtained in this manner has excellent transparency, extremely low internal stress, and high reliability.
This is because the surface treatment of the silica powder is performed by adding a silane coupling agent, the adhesion at the interface between the resin component and the silica powder is improved, and the difference in the refractive index between the cured product of the resin component and the silica powder is increased. Probably because it is very small.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明により製造されたエポキシ樹
脂組成物を用いて光半導体素子を封止してなる光半導体
装置は、シリカ粉末,シランカツプリング剤を含み、し
かもシリカ粉末と樹脂成分の硬化体との屈折率の差が特
定の範囲内であるエポキシ樹脂組成物を用いて光半導体
素子を樹脂封止して構成されているため、その封止樹脂
が光透過性に優れ、しかも内部応力が小さく、例えば発
光素子の輝度劣化の抑制等のなされた信頼性の極めて高
いものである。
As described above, an optical semiconductor device in which an optical semiconductor element is encapsulated by using the epoxy resin composition manufactured according to the present invention contains silica powder and a silane coupling agent, and cures the silica powder and the resin component. Since the optical semiconductor element is resin-sealed using an epoxy resin composition with a difference in refractive index from the body within a specific range, the sealing resin is excellent in light transmission and has an internal stress. And extremely high reliability, for example, suppression of luminance degradation of the light emitting element.

つぎに、実施例について比較例と併せて説明する。 Next, examples will be described together with comparative examples.

〔実施例1〕 屈折率が1.536で、平均粒径25μmのシリカ粉末(金
属酸化物が混入されている)100部に、シランカツプリ
ング剤としてγ−グリシドキシプロピルトリメトキシシ
ランを上記シリカ粉末に対して1部添加したものを、メ
タノール中で均一に混合し脱溶媒した後、約100℃で約
2時間熱処理することにより表面処理シリカ粉末を得
た。
[Example 1] 100 parts of silica powder (containing a metal oxide) having a refractive index of 1.536 and an average particle diameter of 25 µm, and γ-glycidoxypropyltrimethoxysilane as a silane coupling agent were mixed with the above silica powder. Was uniformly mixed in methanol and the solvent was removed, followed by heat treatment at about 100 ° C. for about 2 hours to obtain a surface-treated silica powder.

つぎに、エポキシ当量185のビスフエノールA型エポ
キシ樹脂(液状樹脂)82部、下記の構造式で表されるエ
ポキシ当量252の脂環式エポキシ樹脂(液状樹脂)12
部、 4−メチルヘキサヒドロ無水フタル酸100部、2−エチ
ル−4−メチルイミダゾール0.4部(上記配合樹脂組成
物の硬化体の屈折率は1.536である)に、上記表面処理
シリカ粉末を90部添加混合したものを120℃で熱硬化さ
せシリカ粉末含有エポキシ樹脂組成物硬化体を得た。こ
の硬化体の光透過率は厚み4mmで80%という高い値であ
つた。
Next, 82 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, an alicyclic epoxy resin (liquid resin) 12 having an epoxy equivalent of 252 represented by the following structural formula:
Department, To 100 parts of 4-methylhexahydrophthalic anhydride and 0.4 parts of 2-ethyl-4-methylimidazole (the refractive index of the cured product of the above-mentioned resin composition is 1.536), 90 parts of the above surface-treated silica powder is added and mixed. The cured product was thermally cured at 120 ° C. to obtain a cured product of an epoxy resin composition containing silica powder. The light transmittance of this cured product was as high as 80% at a thickness of 4 mm.

〔実施例2〕 屈折率が1.510で、平均粒径25μmのシリカ粉末(金
属酸化物が混入されている)100部に、シランカツプリ
ング剤としてβ−(3,4−エポキシシクロヘキシル)エ
チルトリメトキシシランを上記シリカ粉末に対して1部
添加したものを、メタノール中で均一に混合し脱溶媒し
た後、約100℃で約2時間加熱処理することにより表面
処理シリカ粉末を得た。
Example 2 100 parts of silica powder (containing a metal oxide) having a refractive index of 1.510 and an average particle diameter of 25 μm was mixed with β- (3,4-epoxycyclohexyl) ethyltrimethoxy as a silane coupling agent. One part of silane added to the above silica powder was uniformly mixed in methanol and desolvated, and then heat-treated at about 100 ° C. for about 2 hours to obtain a surface-treated silica powder.

つぎに、エポキシ当量185のビスフエノールA型エポ
キシ樹脂(液状樹脂)を17部、下記の構造式で表される
エポキシ当量252の脂環式エポキシ樹脂83部、 4−メチルヘキサヒドロ無水フタル酸100部、2−エチ
ル−4−メチルイミダゾール0.4部(上記配合樹脂組成
物の硬化体の屈折率は1.510である)に、上記表面処理
シリカ粉末を90部添加混合したものを120℃で熱硬化さ
せシリカ粉末含有エポキシ樹脂組成物硬化体を得た。こ
の硬化体の光透過率は厚み4mmで85%という高い値であ
つた。
Next, 17 parts of bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, 83 parts of an alicyclic epoxy resin having an epoxy equivalent of 252 represented by the following structural formula, To 100 parts of 4-methylhexahydrophthalic anhydride and 0.4 parts of 2-ethyl-4-methylimidazole (the refractive index of the cured product of the above resin composition is 1.510), 90 parts of the above surface-treated silica powder is added and mixed. The cured product was thermally cured at 120 ° C. to obtain a cured product of an epoxy resin composition containing silica powder. The light transmittance of this cured product was as high as 85% at a thickness of 4 mm.

〔実施例3〕 屈折率が1.531で、平均粒径20μmのシリカ粉末(金
属酸化物が混入されている)100部に、シランカツプリ
ング剤としてγ−アミノプロピルトリエトキシシランを
上記シリカ粉末に対して1部添加したものを、メタノー
ル中で均一に混合し脱溶媒した後、約100℃で約2時間
熱処理することにより表面処理シリカ粉末を得た。
[Example 3] To 100 parts of silica powder (containing a metal oxide) having a refractive index of 1.531 and an average particle diameter of 20 µm, γ-aminopropyltriethoxysilane as a silane coupling agent was added to the silica powder. The resulting mixture was uniformly mixed in methanol and desolvated, and then heat-treated at about 100 ° C. for about 2 hours to obtain a surface-treated silica powder.

つぎに、エポキシ当量185のビスフエノールA型エポ
キシ樹脂を67部、エポキシ当量240のビスフエノールAF
型エポキシ樹脂(液状樹脂)を33部、4−メチルヘキサ
ヒドロ無水フタル酸100部、2−エチル−4−メチルイ
ミダゾール0.4部(上記配合樹脂組成物の硬化性の屈折
率は1.536である)に、上記表面処理シリカ粉末を90部
添加混合したものを120℃で熱硬化させシリカ粉末含有
エポキシ樹脂組成物硬化体を得た。この硬化体の光透過
率は厚み4mmで80%という高い値であった。
Next, 67 parts of bisphenol A type epoxy resin having an epoxy equivalent of 185 and bisphenol AF having an epoxy equivalent of 240 were used.
To 33 parts of type epoxy resin (liquid resin), 100 parts of 4-methylhexahydrophthalic anhydride and 0.4 parts of 2-ethyl-4-methylimidazole (the curable refractive index of the resin composition is 1.536) A mixture obtained by adding and mixing 90 parts of the above surface-treated silica powder was thermally cured at 120 ° C. to obtain a cured silica resin-containing epoxy resin composition. The light transmittance of this cured product was as high as 80% at a thickness of 4 mm.

〔比較例1〕 シランカツプリング剤によるシリカ粉末の表面処理を
行わなかつた。それ以外は実施例1と同様にしてシリカ
粉末含有エポキシ樹脂組成物硬化体を得た。この硬化体
の光透過率は厚み4mmで約50%であつた。
[Comparative Example 1] The surface treatment of silica powder with a silane coupling agent was not performed. Otherwise in the same manner as in Example 1, a cured product of the silica powder-containing epoxy resin composition was obtained. The light transmittance of this cured product was about 50% at a thickness of 4 mm.

〔比較例2〕 シランカツプリング剤によるシリカ粉末の表面処理を
行わなかつた。それ以外は実施例2と同様にしてシリカ
粉末含有エポキシ樹脂組成物硬化体を得た。この硬化体
の光透過率は厚み4mmで約50%であつた。
Comparative Example 2 The surface treatment of the silica powder with the silane coupling agent was not performed. Otherwise in the same manner as in Example 2, a cured product of the silica powder-containing epoxy resin composition was obtained. The light transmittance of this cured product was about 50% at a thickness of 4 mm.

〔比較例3〕 シランカツプリング剤によるシリカ粉末の表面処理を
行わなかつた。それ以外は実施例3と同様にしてシリカ
粉末含有エポキシ樹脂組成物硬化体を得た。この硬化体
の光透過率は厚み4mmで約50%であつた。
Comparative Example 3 The surface treatment of silica powder with a silane coupling agent was not performed. Otherwise in the same manner as in Example 3, a cured product of the silica powder-containing epoxy resin composition was obtained. The light transmittance of this cured product was about 50% at a thickness of 4 mm.

〔実施例4〕 表面処理シリカ粉末の配合量を90部から200部に変え
た。それ以外は実施例1と同様にしてシリカ粉末含有エ
ポキシ樹脂組成物硬化体を得た。この硬化体の光透過率
は厚み4mmで約70%であつた。
Example 4 The blending amount of the surface-treated silica powder was changed from 90 parts to 200 parts. Otherwise in the same manner as in Example 1, a cured product of the silica powder-containing epoxy resin composition was obtained. The light transmittance of this cured product was about 70% at a thickness of 4 mm.

〔実施例5〕 表面処理シリカ粉末の配合量を90部から60部に変え
た。それ以外は実施例2と同様にしてシリカ粉末含有エ
ポキシ樹脂組成物硬化体を得た。この硬化体の光透過率
は厚み4mmで約85%であつた。
Example 5 The blending amount of the surface-treated silica powder was changed from 90 parts to 60 parts. Otherwise in the same manner as in Example 2, a cured product of the silica powder-containing epoxy resin composition was obtained. The light transmittance of this cured product was about 85% at a thickness of 4 mm.

〔実施例6〕 表面処理シリカ粉末の配合量を90部から370部に変え
た。それ以外は実施例3と同様にしてシリカ粉末含有エ
ポキシ樹脂組成物硬化体を得た。この硬化体の光透過率
は厚み4mmで約70%であつた。
Example 6 The blending amount of the surface-treated silica powder was changed from 90 parts to 370 parts. Otherwise in the same manner as in Example 3, a cured product of the silica powder-containing epoxy resin composition was obtained. The light transmittance of this cured product was about 70% at a thickness of 4 mm.

〔比較例4〕 シリカ粉末を用いずに、ビスフエノールA型エポキシ
樹脂(液状樹脂)100部、4−メチルヘキサフルヒドロ
無水フタル酸100部、2−エチル−4−メチルイミダゾ
ール0.4部を用いて添加混合してエポキシ樹脂組成物を
得た。
[Comparative Example 4] Without using silica powder, using 100 parts of bisphenol A type epoxy resin (liquid resin), 100 parts of 4-methylhexafluhydrophthalic anhydride, and 0.4 part of 2-ethyl-4-methylimidazole. The mixture was added and mixed to obtain an epoxy resin composition.

つぎに、上記実施例1〜6および比較例4で得られた
エポキシ樹脂組成物を用いて発光ダイオードを注型によ
り樹脂封止して光半導体装置を作製した。そして、この
光半導体装置の通電輝度劣化を測定した。その結果を下
記の表に示す。なお、上記通電輝度劣化の測定方法は、
つぎのようにして行つた。すなわち、上記光半導体装置
(LEDデバイス)に定電流を流し、輝度として電流印加
5秒後の受光素子の出力電流値を求め劣化率を測定し
た。
Next, using the epoxy resin compositions obtained in Examples 1 to 6 and Comparative Example 4, a light emitting diode was resin-sealed by casting to produce an optical semiconductor device. Then, the current-carrying luminance degradation of this optical semiconductor device was measured. The results are shown in the table below. The method for measuring the current-carrying luminance degradation is as follows:
I went as follows. That is, a constant current was applied to the optical semiconductor device (LED device), and as a luminance, an output current value of the light receiving element after 5 seconds from the current application was obtained, and the deterioration rate was measured.

パツケージ:直径5mmのパイロツトランプ。Package: Pilot lamp with a diameter of 5mm.

評価素子:GaAs,0.5mm×0.5mm。Evaluation element: GaAs, 0.5 mm x 0.5 mm.

評価条件:−30℃放置で20mA通電の1000時間後の輝度劣
化率を測定した。
Evaluation conditions: The luminance degradation rate was measured after 1000 hours of 20 mA conduction at −30 ° C.

上記表の結果から、実施例品は比較例品に比べて輝度
劣化が抑制され、光透過性とともに低応力性も向上して
いることがわかる。
From the results in the above table, it can be seen that the luminance of the example product is suppressed as compared with the comparative example product, and the low stress property as well as the light transmittance is improved.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 33/00 Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 33/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記の(A)〜(E)成分を混合して、
(D)成分のシリカ粉末の屈折率と、(A)〜(C)成
分からなるエポキシ樹脂硬化体の屈折率との差が±0.01
の範囲に設定されている光半導体封止用エポキシ樹脂組
成物を製造する方法において、予めシランカップリング
剤を用いてシリカ粉末表面を表面処理した後で、混合す
ることを特徴とする光半導体封止用エポキシ樹脂組成物
の製造方法。 (A)透明性エポキシ樹脂。 (B)酸無水物系硬化剤。 (C)硬化触媒。 (D)シリカ粉末。 (E)シランカップリング剤。
1. The following components (A) to (E) are mixed,
The difference between the refractive index of the silica powder of the component (D) and the refractive index of the epoxy resin cured product of the components (A) to (C) is ± 0.01.
In the method for producing an epoxy resin composition for optical semiconductor encapsulation set in the range of, the surface of the silica powder is previously treated with a silane coupling agent and then mixed. A method for producing an epoxy resin composition for stopping. (A) Transparent epoxy resin. (B) an acid anhydride-based curing agent; (C) a curing catalyst. (D) silica powder. (E) a silane coupling agent.
JP1340099A 1989-12-28 1989-12-28 Optical semiconductor device Expired - Lifetime JP2837478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1340099A JP2837478B2 (en) 1989-12-28 1989-12-28 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1340099A JP2837478B2 (en) 1989-12-28 1989-12-28 Optical semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16017298A Division JP3153171B2 (en) 1998-06-09 1998-06-09 Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor

Publications (2)

Publication Number Publication Date
JPH03201470A JPH03201470A (en) 1991-09-03
JP2837478B2 true JP2837478B2 (en) 1998-12-16

Family

ID=18333707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1340099A Expired - Lifetime JP2837478B2 (en) 1989-12-28 1989-12-28 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2837478B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851441B2 (en) * 1998-04-23 2006-11-29 日東電工株式会社 Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device
DE19936605A1 (en) * 1999-08-04 2001-02-15 Osram Opto Semiconductors Gmbh Transparent cast resin compound for SMT-compatible LED applications with high temperature and high brightness or luminosity
US20020111420A1 (en) * 2001-02-12 2002-08-15 International Business Machines Corporation Underfill compositions
JP2005327777A (en) * 2004-05-12 2005-11-24 Shin Etsu Chem Co Ltd Silicone resin constituent for light emitting diode
CN102030970A (en) * 2010-11-23 2011-04-27 上海旌纬微电子科技有限公司 Epoxy resin composition for packaging electronic element and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923847A (en) * 1972-06-28 1974-03-02
JPS607153A (en) * 1983-06-24 1985-01-14 Denki Kagaku Kogyo Kk Epoxy-resin-conposition sealing type semiconductor device
JP2539482B2 (en) * 1988-03-25 1996-10-02 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation

Also Published As

Publication number Publication date
JPH03201470A (en) 1991-09-03

Similar Documents

Publication Publication Date Title
JP5422121B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, MOLDED BODY, AND SEALING MEMBER
JP3153171B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor
JPH0725987A (en) Epoxy resin composition for sealing optical semiconductor
JPH10158473A (en) Epoxy resin composition for sealing optical semiconductor element, and optical semiconductor device sealed by using this epoxy resin composition
JP2006241353A (en) Epoxy resin composition and electronic part apparatus
JP2837478B2 (en) Optical semiconductor device
JP2796187B2 (en) Optical semiconductor device
JP5105974B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP6307352B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP3481452B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JP3017888B2 (en) Semiconductor device
JP2760889B2 (en) Optical semiconductor device
JPH056946A (en) Optical semiconductor device
JP6094450B2 (en) White thermosetting epoxy resin composition for LED reflector, and optical semiconductor device including cured product of the composition
JP3098663B2 (en) Thermosetting resin composition and production method thereof
JPH06279568A (en) Epoxy resin composition and photosemiconductor device used the same
JP5072070B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JPH06232296A (en) Semiconductor device
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JP2864842B2 (en) Epoxy resin composition for optical semiconductor encapsulation
JPH04330770A (en) Optical semiconductor device
JPH10158474A (en) Epoxy resin composition for semiconductor sealing and optical photoconductor device sealed therewith
JPH05183075A (en) Optical semiconductor device
JP3392052B2 (en) Epoxy resin composition and optical semiconductor device
JPH08198953A (en) Photosemiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101009

Year of fee payment: 12