JP3153171B2 - Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor - Google Patents

Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor

Info

Publication number
JP3153171B2
JP3153171B2 JP16017298A JP16017298A JP3153171B2 JP 3153171 B2 JP3153171 B2 JP 3153171B2 JP 16017298 A JP16017298 A JP 16017298A JP 16017298 A JP16017298 A JP 16017298A JP 3153171 B2 JP3153171 B2 JP 3153171B2
Authority
JP
Japan
Prior art keywords
epoxy resin
optical semiconductor
silica powder
component
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16017298A
Other languages
Japanese (ja)
Other versions
JPH1174424A (en
Inventor
豊 青木
修次 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP16017298A priority Critical patent/JP3153171B2/en
Publication of JPH1174424A publication Critical patent/JPH1174424A/en
Application granted granted Critical
Publication of JP3153171B2 publication Critical patent/JP3153171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光透過率および
低応力性の双方に優れた封止樹脂により樹脂封止された
光半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device which is sealed with a sealing resin having excellent light transmittance and low stress.

【0002】[0002]

【従来の技術】LED(発行ダイオード)等の光半導体
素子を封止する際に用いられる封止用樹脂組成物として
は、その硬化物が透明性を有することが要求され、一般
に、ビスフェノールA型エポキシ樹脂、脂環式エポキシ
樹脂等のエポキシ樹脂と、硬化剤に酸無水物とを用いて
得られるエポキシ樹脂組成物が汎用されている。
2. Description of the Related Art As a sealing resin composition used for sealing an optical semiconductor element such as an LED (emitting diode), it is required that a cured product thereof has transparency. An epoxy resin composition obtained by using an epoxy resin such as an epoxy resin or an alicyclic epoxy resin and an acid anhydride as a curing agent is widely used.

【0003】しかし、上記エポキシ樹脂組成物を封止樹
脂として用いると、エポキシ樹脂組成物の硬化時の硬化
収縮、またはエポキシ樹脂と光半導体素子との線膨張係
数の差に起因する歪みにより内部応力が発生する。その
結果、光半導体素子が劣化し、例えば、光半導体素子が
発光素子の場合、その輝度が低下するという問題が生じ
る。このため、従来から、上記内部応力を低減させる方
法として、シリカ粉末等の線膨張係数の小さい無機粉末
を添加してエポキシ樹脂組成物の線膨張係数を小さくし
光半導体素子のそれに近似させる方法が提案され一部で
実行されている。
However, when the epoxy resin composition is used as a sealing resin, internal stress due to curing shrinkage during curing of the epoxy resin composition or distortion caused by a difference in linear expansion coefficient between the epoxy resin and the optical semiconductor element. Occurs. As a result, the optical semiconductor element is deteriorated. For example, when the optical semiconductor element is a light emitting element, there is a problem that the luminance is reduced. For this reason, conventionally, as a method of reducing the internal stress, a method of adding an inorganic powder having a small linear expansion coefficient such as silica powder to reduce the linear expansion coefficient of the epoxy resin composition so as to approximate that of an optical semiconductor element is adopted. Proposed and implemented in part.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法は、エポキシ樹脂組成物の光透過率が著しく低下する
という光半導体封止用樹脂組成物としては致命的な欠点
を有している。これに対し、上記欠点を解決するため
に、樹脂成分とシリカ粉末の屈折率の差を小さくする方
法が提案され実行されている(特開昭49−23847
号)が、単に樹脂成分とシリカ粉末の屈折率の差を小さ
くするだけでは、例えば、厚み2mmのエポキシ樹脂組
成物硬化体の光透過率は70%程度であり、高輝度LE
D等の高性能光半導体素子の封止用樹脂組成物としては
不充分であり、より光透過率の高い、しかも低応力性に
優れた光半導体封止用樹脂組成物が切望されている。
However, the above method has a fatal drawback as a resin composition for encapsulating an optical semiconductor in that the light transmittance of the epoxy resin composition is significantly reduced. On the other hand, in order to solve the above-mentioned drawbacks, a method for reducing the difference in the refractive index between the resin component and the silica powder has been proposed and implemented (JP-A-49-23847).
However, simply reducing the difference between the refractive indices of the resin component and the silica powder, for example, would result in a cured epoxy resin composition having a thickness of 2 mm having a light transmittance of about 70% and a high brightness LE.
As a resin composition for encapsulating a high performance optical semiconductor device such as D, it is insufficient, and a resin composition for optical semiconductor encapsulation having higher light transmittance and excellent in low stress has been desired.

【0005】この発明は、このような事情に鑑みなされ
たもので、内部応力が小さく、しかも光透過性に優れた
光半導体装置に関するものである。
The present invention has been made in view of such circumstances, and relates to an optical semiconductor device having small internal stress and excellent light transmittance.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の光半導体装置は、下記の(A)〜(E)
成分を含み、(D)成分のシリカ粉末の屈折率と、
(A)〜(C)成分からなるエポキシ樹脂硬化体の屈折
率との差が±0.01の範囲に設定されているエポキシ
樹脂組成物を用いて光半導体素子を封止するという構成
をとる。 (A)透明性エポキシ樹脂。 (B)酸無水物系硬化剤。 (C)硬化触媒。 (D)酸化鉛または酸化チタンを混入したシリカ粉末。 (E)シランカップリング剤。
In order to achieve the above object, the optical semiconductor device of the present invention comprises the following (A) to (E).
Component (D), the refractive index of the silica powder of the component,
The optical semiconductor element is sealed using an epoxy resin composition in which the difference from the refractive index of the cured epoxy resin composed of the components (A) to (C) is set within a range of ± 0.01. . (A) Transparent epoxy resin. (B) an acid anhydride-based curing agent. (C) a curing catalyst. (D) Silica powder mixed with lead oxide or titanium oxide . (E) a silane coupling agent.

【0007】[0007]

【発明の実施の形態】すなわち、本発明者らは、内部応
力が小さく、しかも光透過性に優れた封止樹脂を得るた
めに一連の研究を重ねた。その研究の過程で、上記光透
過性が低いのは、樹脂成分とシリカ粉末との界面の密着
性が低いのではないかと想起し、この密着性を高めるた
めに、さらに研究を重ねた。その結果、シランカップリ
ング剤を配合し、酸化鉛または酸化チタンを混入した
リカ粉末(以下、「混入シリカ粉末」と略す。)を表面
処理することにより樹脂成分と混入シリカ粉末の界面の
密着性を向上させ、混入シリカ粉末の屈折率をエポキシ
樹脂硬化体のそれに近似させると、透明で内部応力の低
減された封止樹脂が得られることを見出しこの発明に到
達した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have conducted a series of studies to obtain a sealing resin having a small internal stress and excellent light transmittance. In the course of the study, I imagined that the low light transmittance might be the low adhesion at the interface between the resin component and the silica powder, and further research was conducted to enhance the adhesion. As a result, the resin component and the mixed silica powder are mixed with a silane coupling agent and surface-treated with a silica powder mixed with lead oxide or titanium oxide (hereinafter abbreviated as “mixed silica powder”). The present inventors have found that, by improving the adhesion at the interface of the above and making the refractive index of the mixed silica powder close to that of the cured epoxy resin, it is possible to obtain a transparent sealing resin with reduced internal stress, and reached the present invention.

【0008】この発明に用いるエポキシ樹脂組成物は、
透明性エポキシ樹脂(A成分)と、酸無水物系硬化剤
(B成分)と、硬化触媒(C成分)と、混入シリカ粉末
(D成分)と、シランカップリング剤(E成分)とを用
いて得られるものであって、通常、液状、粉末状もしく
はこの粉末を打錠したタブレット状になっている。
The epoxy resin composition used in the present invention comprises:
Using a transparent epoxy resin (A component), an acid anhydride-based curing agent (B component), a curing catalyst (C component), mixed silica powder (D component), and a silane coupling agent (E component). It is usually in the form of a liquid, a powder, or a tablet obtained by compressing this powder.

【0009】上記A成分(透明性エポキシ樹脂)として
は、ビスフェノール型エポキシ樹脂、脂環式エポキシ樹
脂が透明性を有するため好ましいが、場合により他のエ
ポキシ樹脂を併用してもよい。そして、上記他のエポキ
シ樹脂を用いる場合、その使用割合は、通常、エポキシ
樹脂全体の50重量%(以下「%」と略す)以下に設定
するのが好適である。このようなエポキシ樹脂として
は、一般に、エポキシ当量100〜1000、軟化点1
20℃以下のものが用いられる。なお、上記透明性エポ
キシ樹脂の透明性とは、着色透明の場合も含み、厚み1
mm相当で、600nmの波長の光透過率が80〜10
0%をいう(分光光度計により測定)。
As the component A (transparent epoxy resin), bisphenol-type epoxy resins and alicyclic epoxy resins are preferred because of their transparency, but other epoxy resins may be used in some cases. When the other epoxy resin is used, it is generally preferable to set the usage ratio to 50% by weight or less (hereinafter abbreviated as “%”) of the entire epoxy resin. Such an epoxy resin generally has an epoxy equivalent of 100 to 1000 and a softening point of 1
Those having a temperature of 20 ° C or less are used. In addition, the transparency of the transparent epoxy resin includes the case of coloring and transparency, and has a thickness of 1
mm, the light transmittance at a wavelength of 600 nm is 80 to 10
0% (measured by spectrophotometer).

【0010】上記A成分(透明性エポキシ樹脂)ととも
に用いられるB成分(酸無水物系硬化剤)としては、分
子量140〜200程度のものが好ましく用いられ、例
えば、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フ
タル酸、メチルヘキサヒドロ無水フタル酸、メチルテト
ラヒドロ無水フタル酸等の無色ないし淡黄色の酸無水物
があげられる。上記B成分(酸無水物系硬化剤)の配合
量は、上記A成分(透明性エポキシ樹脂)100重量部
(以下「部」と略す)に対して50〜200部の範囲に
設定することが好ましい。
As the component B (acid anhydride-based curing agent) used together with the component A (transparent epoxy resin), those having a molecular weight of about 140 to 200 are preferably used, for example, hexahydrophthalic anhydride, tetrahydrophthalic anhydride. Colorless to pale yellow acid anhydrides such as acid, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride and the like. The compounding amount of the component B (acid anhydride-based curing agent) may be set in the range of 50 to 200 parts with respect to 100 parts by weight of the component A (transparent epoxy resin) (hereinafter abbreviated as “part”). preferable.

【0011】上記A成分(透明性エポキシ樹脂)、B成
分(酸無水物系硬化剤)とともに用いられるC成分(硬
化触媒)としては、第三級アミン、イミダゾール化合物
および有機金属錯塩等があげられる。
Examples of the component C (curing catalyst) used together with the component A (transparent epoxy resin) and component B (acid anhydride curing agent) include tertiary amines, imidazole compounds, and organometallic complex salts. .

【0012】なお、上記D成分(混入シリカ粉末)と、
上記A〜C成分からなるエポキシ樹脂組成物硬化体の屈
折率との差を±0.01の範囲に設定する方法として
は、下記の〜の方法があげられる。 上記A〜C
成分からなるエポキシ樹脂組成物硬化体のみの屈折率を
調整する方法(例えば、A成分の種類の選択、A成分の
2種類以上の併用あるいはB成分の種類の選択、B成分
の2種類以上の併用等)。 D成分(混入シリカ粉
末)の屈折率を調節する方法。 上記およびを併
用する方法。
The above-mentioned component D ( mixed silica powder)
As a method for setting the difference between the refractive index of the cured epoxy resin composition composed of the components A to C to within a range of ± 0.01, there are the following methods 1 to 3. A to C above
A method for adjusting the refractive index of only the epoxy resin composition cured product composed of the components (for example, selection of the type of the component A, use of two or more types of the component A or selection of the type of the component B, and selection of the type of the component B Etc.). A method of adjusting the refractive index of the D component ( mixed silica powder). A method using the above and in combination.

【0013】そして、上記A成分(透明性エポキシ樹
脂)、B成分(酸無水物系硬化剤)、C成分(硬化触
媒)とともに用いられるD成分(混入シリカ粉末)とし
ては、溶融性のものが用いられる。
[0013] Then, the component A (transparent epoxy resin), B component (acid anhydride curing agent), as the C component D component to be used together with the (curing catalyst) (mixed silica powder), those meltable Used.

【0014】このような混入シリカ粉末としては、平均
粒径3〜60μmのものを用いるのが好ましい。すなわ
ち、平均粒径が3μm未満であると粘度が高くなりエポ
キシ樹脂組成物の成形性が劣化し、60μmを超えると
光半導体素子に損傷を与える可能性が高くなるからであ
る。さらに、混入シリカ粉末の含有量は、エポキシ樹脂
組成物全体の10〜70%の範囲に設定するのが好適で
ある。
As such mixed silica powder, those having an average particle diameter of 3 to 60 μm are preferably used. That is, if the average particle size is less than 3 μm, the viscosity increases and the moldability of the epoxy resin composition deteriorates. If the average particle size exceeds 60 μm, the possibility of damaging the optical semiconductor element increases. Further, the content of the mixed silica powder is preferably set in the range of 10 to 70% of the entire epoxy resin composition.

【0015】上記A成分(透明性エポキシ樹脂)、B成
分(酸無水物系硬化剤)、C成分(硬化触媒)およびD
成分(混入シリカ粉末)とともに用いられるE成分(シ
ランカップリング剤)としては、エポキシ基またはアミ
ノ基を有するものが好ましく、具体的には、エポキシ基
を有するものとして、β−(3,4−エポキシシクロヘ
キシル)エチルトリメトキシシラン、γ−グリシドキシ
プロピルトリメトキシシラン、γ−グリシドキシプロピ
ルメチルジエトキシシラン等があげられ、アミノ基を有
するものとしては、、N−β−アミノエチル−γ−アミ
ノプロピルトリメトキシシラン、N−β−アミノエチル
−γ−アミノプロピルメチルジメトキシシラン、γ−ア
ミノプロピルトリエトキシシラン、N−フェニル−γ−
アミノプロピルトリメトキシシラン等があげられる。上
記E成分(シランカップリング剤)の使用量は、D成分
混入シリカ粉末)に対して0.5〜3%の範囲内に設
定するのが好適である。
The above component A (transparent epoxy resin), component B (acid anhydride curing agent), component C (curing catalyst) and D
As the E component (silane coupling agent) used together with the component ( mixed silica powder), a component having an epoxy group or an amino group is preferable. Specifically, as a component having an epoxy group, β- (3,4- Epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane and the like. Examples of those having an amino group include N-β-aminoethyl-γ -Aminopropyltrimethoxysilane, N-β-aminoethyl-γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-
Aminopropyltrimethoxysilane and the like. The use amount of the component E (silane coupling agent) is preferably set in the range of 0.5 to 3% based on the component D ( mixed silica powder).

【0016】なお、この発明に用いるエポキシ樹脂組成
物には、上記A〜E成分以外に、必要に応じて染料、変
性剤、変色防止剤、老化防止剤、離型剤、反応性ないし
非反応性の希釈剤等の従来公知の添加剤を適宜配合する
ことができる。
The epoxy resin composition used in the present invention may contain, in addition to the above-mentioned components A to E, a dye, a modifier, a discoloration inhibitor, an antioxidant, a release agent, a reactive or non-reactive Conventionally known additives such as a water-soluble diluent can be appropriately compounded.

【0017】そして、この発明に用いるエポキシ樹脂組
成物として、上記A成分、B成分およびC成分からなる
エポキシ樹脂硬化体の屈折率と、上記D成分(混入シリ
カ粉末)の屈折率との差が、±0.01以内のものを用
いる必要がある。なお、上記屈折率はアッベ屈折計を用
いて測定される。
As the epoxy resin composition used in the present invention, the refractive index of the cured epoxy resin composed of the components A, B and C and the refractive index of the component D ( mixed silica powder) are described. It is necessary to use one having a difference from the rate within ± 0.01. The refractive index is measured using an Abbe refractometer.

【0018】この発明に用いる上記エポキシ樹脂組成物
は、例えばつぎのようにして製造することができる。す
なわち、上記A〜E成分および従来公知の添加剤を配合
して溶融混合してのち、これを室温に冷却して公知の手
段により粉砕し必要に応じて打錠することにより製造す
ることができる。また、上記エポキシ樹脂組成物が液状
物の場合は、上記各成分を混合するのみでよい。なお、
上記製法において、各成分を混合するまえに、予めシラ
ンカツプリング剤を用いて混入シリカ粉末表面を表面処
理するのが光透過性および低応力性の向上の観点から効
果的である。この場合の表面処理方法としては、例えば
メタノール中で、シランカツプリング剤と混入シリカ粉
末を均一に混合し脱溶媒した後、約100℃で約2時間
熱処理する方法があげられる。
The epoxy resin composition used in the present invention can be produced, for example, as follows. That is, after mixing and melt-mixing the above-mentioned components A to E and conventionally known additives, the mixture can be cooled to room temperature, pulverized by a known means, and tableted if necessary, and can be produced. . When the epoxy resin composition is a liquid, it is only necessary to mix the above components. In addition,
In the above-mentioned production method, it is effective to treat the surface of the mixed silica powder with a silane coupling agent in advance before mixing the components from the viewpoint of improving light transmittance and low stress. As a surface treatment method in this case, for example, there is a method in which a silane coupling agent and a mixed silica powder are uniformly mixed in methanol, the solvent is removed, and then heat treatment is performed at about 100 ° C. for about 2 hours.

【0019】このようなエポキシ樹脂組成物を用いての
光半導体素子の封止は、特に限定するものではなく、通
常のトランスファー成形、注型等の公知のモールド方法
により行うことができる。
The sealing of the optical semiconductor device using such an epoxy resin composition is not particularly limited, and can be performed by a known molding method such as ordinary transfer molding and casting.

【0020】このようにして得られる光半導体装置は、
透明性に優れ、内部応力が極めて小さく高い信頼性を備
えている。これは、シランカツプリング剤を配合するこ
とにより混入シリカ粉末の表面処理がなされ、樹脂成分
混入シリカ粉末の界面の密着性が向上し、しかも樹脂
成分の硬化体と混入シリカ粉末の屈折率の差が非常に小
さいからであると考えられる。
The optical semiconductor device thus obtained is
It has excellent transparency, extremely low internal stress, and high reliability. This surface treatment of the mixed silica powder by blending the silane cutlet coupling agent is performed to improve the adhesion at the interface of the mixed silica powder and resin component, yet the refractive index of the mixed silica powder and the cured body of the resin component It is considered that the difference is very small.

【0021】[0021]

【発明の効果】以上のように、この発明の光半導体装置
は、混入シリカ粉末、シランカツプリング剤を含み、し
かも混入シリカ粉末と樹脂成分の硬化体との屈折率の差
が特定の範囲内であるエポキシ樹脂組成物を用いて光半
導体素子を樹脂封止して構成されているため、その封止
樹脂が光透過性に優れ、しかも内部応力が小さく、例え
ば発光素子の輝度劣化の抑制等のなされた信頼性の極め
て高いものである。
As described above, the optical semiconductor device of the present invention contains mixed silica powder and a silane coupling agent, and the difference in refractive index between the mixed silica powder and the cured product of the resin component is within a specific range. Since the optical semiconductor element is formed by resin sealing using the epoxy resin composition, the sealing resin is excellent in light transmittance and has low internal stress, for example, suppression of luminance deterioration of the light emitting element. It is extremely reliable.

【0022】つぎに、実施例について比較例と併せて説
明する。
Next, examples will be described together with comparative examples.

【0023】[0023]

【実施例1】屈折率が1.536で、平均粒径25μm
のシリカ粉末(金属酸化物が混入されている)100部
に、シランカツプリング剤としてγ−グリシドキシプロ
ピルトリメトキシシランを上記シリカ粉末に対して1部
添加したものを、メタノール中で均一に混合し脱溶媒し
た後、約100℃で約2時間熱処理することにより表面
処理シリカ粉末を得た。
Example 1 A refractive index of 1.536 and an average particle size of 25 μm
100 parts of silica powder (containing a metal oxide) and 1 part of γ-glycidoxypropyltrimethoxysilane as a silane coupling agent were added to the above silica powder, and the mixture was uniformly mixed with methanol. After mixing and removing the solvent, the mixture was heat-treated at about 100 ° C. for about 2 hours to obtain a surface-treated silica powder.

【0024】つぎに、エポキシ当量185のビスフエノ
ールA型エポキシ樹脂(液状樹脂)を82部、下記の構
造式で表されるエポキシ当量252の脂環式エポキシ樹
脂(液状樹脂)12部、
Next, 82 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, 12 parts of an alicyclic epoxy resin (liquid resin) having an epoxy equivalent of 252 represented by the following structural formula,

【0025】[0025]

【化1】 Embedded image

【0026】4−メチルヘキサヒドロ無水フタル酸10
0部、2−エチル−4−メチルイミダゾール0.4 部(上
記配合樹脂組成物の硬化体の屈折率は1.536であ
る)に、上記表面処理シリカ粉末を90部添加混合した
ものを120℃で熱硬化させシリカ粉末含有エポキシ樹
脂組成物硬化体を得た。この硬化体の光透過率は厚み4
で80%という高い値であった。
4-methylhexahydrophthalic anhydride 10
0 part, 0.4 part of 2-ethyl-4-methylimidazole (refractive index of the cured product of the above-mentioned resin composition is 1.536), 90 parts of the above-mentioned surface-treated silica powder, and mixed at 120 ° C. The composition was thermally cured to obtain a cured product of a silica powder-containing epoxy resin composition. The light transmittance of this cured product is 4
Was as high as 80%.

【0027】[0027]

【実施例2】屈折率が1.510で、平均粒径25μm
のシリカ粉末(金属酸化物が混入されている)100部
に、シランカツプリング剤としてβ−(3,4−エポキ
シシクロヘキシル)エチルトリメトキシシランを上記シ
リカ粉末に対して1部添加したものを、メタノール中で
均一に混合し脱溶媒した後、約100℃で約2時間熱処
理することにより表面処理シリカ粉末を得た。
Embodiment 2 The refractive index is 1.510 and the average particle size is 25 μm.
100 parts of a silica powder (containing a metal oxide), and 1 part of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane as a silane coupling agent added to the silica powder, After uniformly mixing in methanol and removing the solvent, the mixture was heat-treated at about 100 ° C. for about 2 hours to obtain a surface-treated silica powder.

【0028】つぎに、エポキシ当量185のビスフエノ
ールA型エポキシ樹脂(液状樹脂)を17部、下記の構
造式で表されるエポキシ当量252の脂環式エポキシ樹
脂83部、
Next, 17 parts of a bisphenol A type epoxy resin (liquid resin) having an epoxy equivalent of 185, 83 parts of an alicyclic epoxy resin having an epoxy equivalent of 252 represented by the following structural formula,

【0029】[0029]

【化2】 Embedded image

【0030】4−メチルヘキサヒドロ無水フタル酸10
0部、2−エチル−4−メチルイミダゾール0.4部
(上記配合樹脂組成物の硬化体の屈折率は1.510で
ある)に、上記表面処理シリカ粉末を90部添加混合し
たものを120℃で熱硬化させシリカ粉末含有エポキシ
樹脂組成物硬化体を得た。この硬化体の光透過率は厚み
4mm で85%という高い値であつた。
4-methylhexahydrophthalic anhydride 10
120 parts of a mixture obtained by adding 90 parts of the above-mentioned surface-treated silica powder to 0 parts, 0.4 parts of 2-ethyl-4-methylimidazole (the refractive index of the cured product of the above-mentioned resin composition is 1.510), and mixing them. The composition was heat-cured at a temperature of ° C to obtain a cured product of an epoxy resin composition containing silica powder. The light transmittance of this cured product is the thickness
It was as high as 85% at 4mm.

【0031】[0031]

【実施例3】屈折率が1.531で、平均粒径20μm
のシリカ粉末(金属酸化物が混入されている)100部
に、シランカツプリング剤としてγ−アミノプロピルト
リエトキシシランを上記シリカ粉末に対して1部添加し
たものを、メタノール中で均一に混合し脱溶媒した後、
約100℃で約2時間熱処理することにより表面処理シ
リカ粉末を得た。
Embodiment 3 The refractive index is 1.531 and the average particle size is 20 μm.
100 parts of silica powder (containing a metal oxide) and 1 part of γ-aminopropyltriethoxysilane as a silane coupling agent were added to the above silica powder, and the mixture was uniformly mixed in methanol. After desolvation,
Heat treatment was performed at about 100 ° C. for about 2 hours to obtain a surface-treated silica powder.

【0032】つぎに、エポキシ当量185のビスフエノ
ールA型エポキシ樹脂を67部、エポキシ当量240の
ビスフエノールAF型エポキシ樹脂(液状樹脂)を33
部、4−メチルヘキサヒドロ無水フタル酸100部、2
−エチル−4−メチルイミダゾール0.4部(上記配合
樹脂組成物の硬化体の屈折率は1.536である)に、
上記表面処理シリカ粉末を90部添加混合したものを1
20℃で熱硬化させシリカ粉末含有エポキシ樹脂組成物
硬化体を得た。この硬化体の光透過率は厚み4mmで8
0%という高い値であった。
Next, 67 parts of a bisphenol A type epoxy resin having an epoxy equivalent of 185 and 33 parts of a bisphenol AF type epoxy resin (liquid resin) having an epoxy equivalent of 240 were used.
Parts, 4-methylhexahydrophthalic anhydride 100 parts, 2
-Ethyl-4-methylimidazole 0.4 part (the refractive index of the cured product of the compounded resin composition is 1.536),
90 parts of the above surface-treated silica powder was added and mixed, and
The composition was thermally cured at 20 ° C. to obtain a cured product of an epoxy resin composition containing silica powder. The light transmittance of this cured product was 8 at a thickness of 4 mm.
The value was as high as 0%.

【0033】[0033]

【比較例1】シランカツプリング剤によるシリカ粉末の
表面処理を行わなかった。それ以外は実施例1と同様に
してシリカ粉末含有エポキシ樹脂組成物硬化体を得た。
この硬化体の光透過率は厚み4mmで約50%であっ
た。
Comparative Example 1 The surface treatment of silica powder with a silane coupling agent was not performed. Otherwise in the same manner as in Example 1, a cured product of the silica powder-containing epoxy resin composition was obtained.
The light transmittance of this cured product was about 50% at a thickness of 4 mm.

【0034】[0034]

【比較例2】シランカツプリング剤によるシリカ粉末の
表面処理を行わなかった。それ以外は実施例2と同様に
してシリカ粉末含有エポキシ樹脂組成物硬化体を得た。
この硬化体の光透過率は厚み4mmで約50%であっ
た。
Comparative Example 2 The surface treatment of the silica powder with the silane coupling agent was not performed. Otherwise in the same manner as in Example 2, a cured product of the silica powder-containing epoxy resin composition was obtained.
The light transmittance of this cured product was about 50% at a thickness of 4 mm.

【0035】[0035]

【比較例3】シランカツプリング剤によるシリカ粉末の
表面処理を行わなかった。それ以外は実施例3と同様に
してシリカ粉末含有エポキシ樹脂組成物硬化体を得た。
この硬化体の光透過率は厚み4mmで約50%であっ
た。
Comparative Example 3 The surface treatment of the silica powder with the silane coupling agent was not performed. Otherwise in the same manner as in Example 3, a cured product of the silica powder-containing epoxy resin composition was obtained.
The light transmittance of this cured product was about 50% at a thickness of 4 mm.

【0036】[0036]

【実施例4】表面処理シリカ粉末の配合量を90部から
200部に変えた。それ以外は実施例1と同様にしてシ
リカ粉末含有エポキシ樹脂組成物硬化体を得た。この硬
化体の光透過率は厚み4mmで約70%であった。
Example 4 The amount of the surface-treated silica powder was changed from 90 parts to 200 parts. Otherwise in the same manner as in Example 1, a cured product of the silica powder-containing epoxy resin composition was obtained. The light transmittance of this cured product was about 70% at a thickness of 4 mm.

【0037】[0037]

【実施例5】表面処理シリカ粉末の配合量を90部から
60部に変えた。それ以外は実施例2と同様にしてシリ
カ粉末含有エポキシ樹脂組成物硬化体を得た。この硬化
体の光透過率は厚み4mmで約85%であった。
Example 5 The amount of the surface-treated silica powder was changed from 90 parts to 60 parts. Otherwise in the same manner as in Example 2, a cured product of the silica powder-containing epoxy resin composition was obtained. The light transmittance of this cured product was about 85% at a thickness of 4 mm.

【0038】[0038]

【実施例6】表面処理シリカ粉末の配合量を90部から
370部に変えた。それ以外は実施例3と同様にしてシ
リカ粉末含有エポキシ樹脂組成物硬化体を得た。この硬
化体の光透過率は厚み4mmで約70%であった。
Example 6 The amount of the surface-treated silica powder was changed from 90 parts to 370 parts. Otherwise in the same manner as in Example 3, a cured product of the silica powder-containing epoxy resin composition was obtained. The light transmittance of this cured product was about 70% at a thickness of 4 mm.

【0039】[0039]

【比較例4】シリカ粉末を用いずに、ビルフエノールA
型エポキシ樹脂(液状樹脂)100部、4−メチルヘキ
サヒドロ無水フタル酸100部、2−エチル−4−メチ
ルイミダゾール0.4部を用いて添加混合してエポキシ
樹脂組成物を得た。
[Comparative Example 4] Virphenol A without silica powder
An epoxy resin composition was obtained by adding and mixing 100 parts of a type epoxy resin (liquid resin), 100 parts of 4-methylhexahydrophthalic anhydride, and 0.4 part of 2-ethyl-4-methylimidazole.

【0040】つぎに、上記実施例1〜6および比較例4
で得られたエポキシ樹脂組成物を用いて発光ダイオード
を注型により樹脂封止して光半導体装置を作製した。そ
して、この光半導体装置の通電輝度劣化を測定した。そ
の結果を表1に示す。なお、上記通電輝度劣化の測定方
法は、つぎのようにして行った。すなわち、上記光半導
体装置(LEDデバイス)に定電流を流し、輝度として
電流印加5秒後の受光素子の出力電流値を求め劣化率を
測定した。
Next, the above Examples 1 to 6 and Comparative Example 4
Using the epoxy resin composition obtained in the above, a light emitting diode was resin-sealed by casting to produce an optical semiconductor device. Then, the current-carrying luminance degradation of this optical semiconductor device was measured. Table 1 shows the results. The method for measuring the deterioration of the current-carrying luminance was performed as follows. That is, a constant current was applied to the optical semiconductor device (LED device), and as a luminance, an output current value of the light receiving element after 5 seconds of current application was obtained, and a deterioration rate was measured.

【0041】パッケージ:直径5mmのパイロットラン
プ。 評価素子:GaAs,0.5mm×0.5mm。 評価条件:−30℃放置で20mA通電の1000時間
後の輝度劣化率を測定した。
Package: pilot lamp with a diameter of 5 mm. Evaluation element: GaAs, 0.5 mm × 0.5 mm. Evaluation conditions: The luminance deterioration rate was measured after 1000 hours of 20 mA conduction at −30 ° C.

【0042】[0042]

【表1】 [Table 1]

【0043】表1の結果から、実施例品は比較例品に比
べて輝度劣化が抑制され、光透過性とともに低応力性も
向上していることがわかる。
From the results shown in Table 1, it can be seen that the product of the example has less luminance degradation than the product of the comparative example, and has improved light transmittance and low stress.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 33/00 (58)調査した分野(Int.Cl.7,DB名) H01L 23/29,23/31,33/00 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 identification code FI H01L 33/00 (58) Field surveyed (Int.Cl. 7 , DB name) H01L 23 / 29,23 / 31,33 / 00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の(A)〜(E)成分を含み、
(D)成分のシリカ粉末の屈折率と、(A)〜(C)成
分からなるエポキシ樹脂硬化体の屈折率との差が±0.
01の範囲に設定されているエポキシ樹脂組成物を用い
て光半導体素子を封止してなる光半導体装置。 (A)透明性エポキシ樹脂。 (B)酸無水物系硬化剤。 (C)硬化触媒。 (D)酸化鉛または酸化チタンを混入したシリカ粉末。 (E)シランカップリング剤。
1. It comprises the following components (A) to (E):
The difference between the refractive index of the silica powder as the component (D) and the refractive index of the cured epoxy resin composed of the components (A) to (C) is ± 0.
An optical semiconductor device comprising an optical semiconductor element encapsulated with an epoxy resin composition set in the range of 01. (A) Transparent epoxy resin. (B) an acid anhydride-based curing agent; (C) a curing catalyst. (D) Silica powder mixed with lead oxide or titanium oxide . (E) a silane coupling agent.
【請求項2】 (E)成分のシランカップリング剤が、
エポキシ基またはアミノ基を有するものである請求項1
に記載の光半導体装置。
2. The silane coupling agent of the component (E),
2. An epoxy resin having an epoxy group or an amino group.
An optical semiconductor device according to item 1.
【請求項3】 (D)成分のシリカ粉末の含有量が、エ
ポキシ樹脂組成物全体の10〜70重量%である請求項
1または2に記載の光半導体装置。
3. The optical semiconductor device according to claim 1, wherein the content of the silica powder as the component (D) is 10 to 70% by weight of the whole epoxy resin composition.
【請求項4】 (A)成分の透明性エポキシ樹脂が、ビ
スフェノール型エポキシ樹脂および脂環式エポキシ樹脂
の少なくとも一方である請求項1〜3のいずれか一項に
記載の光半導体装置。
4. The optical semiconductor device according to claim 1, wherein the transparent epoxy resin (A) is at least one of a bisphenol epoxy resin and an alicyclic epoxy resin.
【請求項5】 (D)成分のシリカ粉末が、平均粒径3
〜60μmの範囲のものである請求項1〜4のいずれか
一項に記載の光半導体装置。
5. The silica powder of component (D) has an average particle size of 3
The optical semiconductor device according to any one of claims 1 to 4, wherein the optical semiconductor device has a thickness in a range of from 60 to 60 m.
【請求項6】 下記の(A)〜(E)成分を含み、
(D)成分のシリカ粉末の屈折率と、(A)〜(C)成
分からなるエポキシ樹脂硬化体の屈折率との差が±0.
01の範囲に設定されている光半導体封止用エポキシ樹
脂組成物。 (A)透明性エポキシ樹脂。 (B)酸無水物系硬化剤。 (C)硬化触媒。 (D)酸化鉛または酸化チタンを混入したシリカ粉末。 (E)シランカップリング剤。
6. It comprises the following components (A) to (E),
The difference between the refractive index of the silica powder as the component (D) and the refractive index of the cured epoxy resin composed of the components (A) to (C) is ± 0.
An epoxy resin composition for encapsulating an optical semiconductor, which is set in the range of 01. (A) Transparent epoxy resin. (B) an acid anhydride-based curing agent. (C) a curing catalyst. (D) Silica powder mixed with lead oxide or titanium oxide . (E) a silane coupling agent.
JP16017298A 1998-06-09 1998-06-09 Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor Expired - Lifetime JP3153171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16017298A JP3153171B2 (en) 1998-06-09 1998-06-09 Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16017298A JP3153171B2 (en) 1998-06-09 1998-06-09 Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1340099A Division JP2837478B2 (en) 1989-12-28 1989-12-28 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPH1174424A JPH1174424A (en) 1999-03-16
JP3153171B2 true JP3153171B2 (en) 2001-04-03

Family

ID=15709416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16017298A Expired - Lifetime JP3153171B2 (en) 1998-06-09 1998-06-09 Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor

Country Status (1)

Country Link
JP (1) JP3153171B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685252B2 (en) * 2000-09-12 2005-08-17 信越化学工業株式会社 Light transmissive epoxy resin composition and flip chip type semiconductor device
JP4010299B2 (en) * 2001-06-20 2007-11-21 日亜化学工業株式会社 Semiconductor light emitting device and method for forming the same
US6841888B2 (en) 2003-06-04 2005-01-11 Yazaki Corporation Encapsulant for opto-electronic devices and method for making it
JP2005089660A (en) * 2003-09-18 2005-04-07 Nitto Denko Corp Resin composition for semiconductor sealing
TW200517437A (en) 2003-10-16 2005-06-01 Nitto Denko Corp Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JP4180537B2 (en) * 2003-10-31 2008-11-12 シャープ株式会社 Optical element sealing structure, optical coupler, and optical element sealing method
CN100431181C (en) * 2003-10-31 2008-11-05 夏普株式会社 Sealed structure of optical device, optical coupler, and method for sealing optical device
US7381359B2 (en) 2004-10-14 2008-06-03 Yazaki Corporation Method for making filled epoxy resin compositions
US7311972B2 (en) 2004-10-14 2007-12-25 Yazaki Corporation Filled epoxy resin compositions
TW200913181A (en) 2007-07-10 2009-03-16 Arakawa Chem Ind Optical semiconductor-sealing composition
JP5392084B2 (en) * 2007-09-06 2014-01-22 株式会社ニコン Light emitting diode element and method for manufacturing the same
JPWO2009069429A1 (en) 2007-11-29 2011-04-07 日産化学工業株式会社 Silica-containing epoxy curing agent and epoxy resin cured product
JP2010248311A (en) * 2009-04-13 2010-11-04 Polymatech Co Ltd Transparent thermoconductive composition, and transparent thermoconductive molded item
JP5738541B2 (en) * 2010-04-21 2015-06-24 日東電工株式会社 Optical semiconductor device

Also Published As

Publication number Publication date
JPH1174424A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP3153171B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor
JP5422121B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, MOLDED BODY, AND SEALING MEMBER
JPH10158473A (en) Epoxy resin composition for sealing optical semiconductor element, and optical semiconductor device sealed by using this epoxy resin composition
JP4722686B2 (en) Manufacturing method of resin composition for encapsulating optical semiconductor element, resin composition for encapsulating optical semiconductor element and optical semiconductor device obtained thereby
JP2012041403A (en) Thermosetting epoxy resin composition and semiconductor device
JP2796187B2 (en) Optical semiconductor device
JP2837478B2 (en) Optical semiconductor device
JP5105974B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP5544819B2 (en) Epoxy group-containing adhesive resin composition and optical semiconductor adhesive using the same
JP3481452B2 (en) Epoxy resin composition for encapsulating optical semiconductor element and optical semiconductor device using the same
JP3017888B2 (en) Semiconductor device
JP2760889B2 (en) Optical semiconductor device
JP3098663B2 (en) Thermosetting resin composition and production method thereof
JPH09302201A (en) Epoxy resin composition for hermetic sealing
JPH056946A (en) Optical semiconductor device
JPH06279568A (en) Epoxy resin composition and photosemiconductor device used the same
JP5072070B2 (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JPH06232296A (en) Semiconductor device
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JP2006111823A (en) Epoxy resin composition for sealing optical semiconductor element and optical semiconductor by using the same
JP3392052B2 (en) Epoxy resin composition and optical semiconductor device
JP2011088949A (en) Epoxy resin composition and semiconductor device
JP2005120229A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JPH09176286A (en) Epoxy resin composition and resin-sealed semiconductor device
JP2000063635A (en) Epoxy resin composition for photo-semiconductor and photo-semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term