JPH0562833A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0562833A
JPH0562833A JP22071191A JP22071191A JPH0562833A JP H0562833 A JPH0562833 A JP H0562833A JP 22071191 A JP22071191 A JP 22071191A JP 22071191 A JP22071191 A JP 22071191A JP H0562833 A JPH0562833 A JP H0562833A
Authority
JP
Japan
Prior art keywords
thin film
substrate
film
magnetic
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22071191A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamamoto
哲也 山元
Akihiko Okabe
明彦 岡部
Kazunobu Chiba
一信 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22071191A priority Critical patent/JPH0562833A/en
Publication of JPH0562833A publication Critical patent/JPH0562833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain an in plane coercive force without increasing a substrate temperature, to reduce a coercive-force squareness ratio and to reduce a noise by a method wherein, while a flexible substrate is being moved, a magnetic thin film whose composition formula is specific is formed on the substrate. CONSTITUTION:While a flexible substrate, e.g. a PET sheet or a long thin-film substrate 1 such as a tape or the like, is being moved at a speed of 0.1 to 300m/min around the circumferential face of a cylindrical can roll 2, a magnetic thin film is formed on it by a sputtering operation. The thin film is formed by using a continuous film formation apparatus provided with, e.g. a magnetron- type sputtering electrode. Especially, the composition formula of (CoaPtbBc)100-xOx [where (a), (b), (c) and (x) represent atomic %] is used as the composition of the magnetic thin-film. In the composition formula, a=100-b-c 0<=b<=50, 0.1<=c<=30 and 0<=x<=15. It is sputtered so as to have a thickness of 500 to 10000Angstrom , preferably 1000 to 5000Angstrom . Thereby, a magnetic recording medium which is suitable for mass production and whose cost is lowered can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、長尺物のフレキシブル
磁気テープに適用して好適な磁気記録媒体、特に面内磁
気記録型の磁気記録媒体に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium suitable for application to a long flexible magnetic tape, and more particularly to a longitudinal magnetic recording type magnetic recording medium.

【0002】[0002]

【従来の技術】従来、高密度面内磁気記録媒体の薄膜磁
性材料としては、CoNiCr,CoCrTa,CoC
rPt等が報告されている。これら磁性材料による磁性
薄膜を、1500(Oe)程度以上に高い面内保磁力に
形成するには、そのスパッタによる磁性薄膜の成膜時に
おける基体温度は、100〜300℃という比較的高い
温度にする必要があると共に、数10〜数100V程度
のバイアス電圧を基体に印加する必要がある。
2. Description of the Related Art Conventionally, CoNiCr, CoCrTa and CoC have been used as thin film magnetic materials for high density longitudinal magnetic recording media.
rPt and the like have been reported. In order to form a magnetic thin film of these magnetic materials with an in-plane coercive force as high as about 1500 (Oe) or higher, the substrate temperature at the time of forming the magnetic thin film by sputtering should be a relatively high temperature of 100 to 300 ° C. In addition to this, it is necessary to apply a bias voltage of about several tens to several hundreds of V to the substrate.

【0003】したがってこの場合、磁気記録媒体、例え
ば磁気テープの基体、即ち磁性薄膜の挟持体として、安
価なポリエチレンテレフタレート(PET)は、これの
耐熱性が低いことから使用できず、また、その製造装置
を大掛りになるという問題がある。このような成膜時の
基体温度を高める必要がある等の課題を解決し、充分な
飽和磁束密度或いは(及び)高い保磁力を有する垂直磁
化膜としての磁性薄膜は、例えば本出願人の出願に係わ
る特開平2−74012号公報及び特開平2−7351
0号公報で提案された。これらは、CoPtBO系、或
いはCoPtBM1 O系(但しM1 は、Ti,Zr,
V,Cr……等の1種以上)より成る磁性薄膜であっ
て、垂直磁気記録媒体としての磁気特性はすぐれている
ものの、面内磁気記録媒体として特に例えばコンタクト
プリントのメタルテープ用マスターテープ等としては充
分な面内保磁力が得られていない。
Therefore, in this case, inexpensive polyethylene terephthalate (PET) cannot be used as the base material of the magnetic recording medium, for example, the magnetic tape, that is, the holding body of the magnetic thin film, because of its low heat resistance, and its production. There is a problem that the device becomes bulky. A magnetic thin film as a perpendicular magnetization film having a sufficient saturation magnetic flux density and / or a high coercive force, which solves the problems such as the need to raise the substrate temperature during film formation, is disclosed in, for example, the applicant's application. JP-A-2-74012 and JP-A-2-7351
It was proposed in No. 0 publication. These are CoPtBO-based or CoPtBM 1 O-based (where M 1 is Ti, Zr,
V, Cr, etc.), which is a magnetic thin film and has excellent magnetic characteristics as a perpendicular magnetic recording medium, but is particularly useful as an in-plane magnetic recording medium, for example, a master tape for a metal tape for contact printing. As a result, a sufficient in-plane coercive force is not obtained.

【0004】これに対し、本出願人は先に特開平3−8
6915号公報において、CoPtBM2 O系(但しM
2 はTi,Zr,V,Cr……等の1種以上)より成る
磁性薄膜を基体上に斜めに蒸着することによって、成膜
時の基体温度を高めることなく、また比較的厚い膜厚で
も高い保磁力Hc、ないしは高い飽和磁束密度、高い異
方性磁界を得ることができる磁気記録媒体を提案した。
On the other hand, the present applicant has previously filed Japanese Patent Application Laid-Open No. 3-8.
6915, CoPtBM 2 O system (however, M
(2 is at least one kind of Ti, Zr, V, Cr ...) By obliquely depositing a magnetic thin film on the substrate, the temperature of the substrate during film formation is not increased, and a relatively thick film is formed. We have proposed a magnetic recording medium capable of obtaining a high coercive force Hc, a high saturation magnetic flux density, and a high anisotropic magnetic field.

【0005】また更に本出願人は、先に特開平2−73
511号公報において、CoPt系磁性薄膜の下地層と
して、Ti,Zr,V,Cr……等の非磁性配向制御層
を設けることによって、基体温度を高めることなく、ま
た磁性層の膜厚を大とした場合においても垂直磁性記録
媒体として優れた磁気特性を示す媒体を得ている。
Furthermore, the applicant of the present invention previously disclosed in Japanese Patent Laid-Open No. 2-73.
No. 511, by providing a non-magnetic orientation control layer such as Ti, Zr, V, Cr ... As an underlayer of a CoPt magnetic thin film, it is possible to increase the film thickness of the magnetic layer without increasing the substrate temperature. Even in such a case, a medium exhibiting excellent magnetic characteristics as a perpendicular magnetic recording medium is obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述したよ
うな基体温度を高めることなく、充分高い面内保磁力が
得られ、更に、特に保磁力角形比が小さくノイズの低減
化をはかる磁気記録媒体を得ることを目的とする。
SUMMARY OF THE INVENTION According to the present invention, a sufficiently high in-plane coercive force can be obtained without increasing the substrate temperature as described above, and further, the magnetic coercive force squareness ratio is small and noise is reduced. The purpose is to obtain a recording medium.

【0007】[0007]

【課題を解決するための手段】本発明は、図1に示すよ
うにフレキシブル基体1を移動させながら、この基体1
上に、その組成式が、 (Coa Ptb c 100-x x ,(a,b,c,xは
それぞれ原子%)で示され、この組成式において、 a=100−b−C 0≦b≦15 0.1≦c≦30 0<x≦15 なる磁性薄膜を成膜する。また、本発明においては、上
述の磁性薄膜の下地膜としてCr薄膜を被着する。
According to the present invention, as shown in FIG. 1, a flexible substrate 1 is moved while the substrate 1 is being moved.
Above, the composition formula, (Co a Pt b B c ) 100-x O x, indicated (a, b, c, x, respectively atomic%), in this composition formula, a = 100-b- A magnetic thin film of C 0 ≤ b ≤ 15 0.1 ≤ c ≤ 30 0 <x ≤ 15 is formed. Further, in the present invention, a Cr thin film is deposited as a base film of the above magnetic thin film.

【0008】[0008]

【作用】このような本発明による磁気記録媒体は、室温
程度で、フレキシブル基体を加熱することなく、スパッ
タすることができる。したがってPETのように耐熱性
に乏しいフレキシブル基体を用いることができるもので
あり、この磁気記録媒体の磁性薄膜は面内保磁力Hch
が1500(Oe)以上の面内磁化膜として得られた。
The magnetic recording medium according to the present invention can be sputtered at room temperature without heating the flexible substrate. Therefore, a flexible substrate having poor heat resistance such as PET can be used, and the magnetic thin film of this magnetic recording medium has an in-plane coercive force Hc h.
Was obtained as an in-plane magnetized film of 1500 (Oe) or more.

【0009】因みに、4πMs(kG)>Hk(kO
e)のとき、面内磁化膜としての特性を有すると考えら
れるが、本発明による磁気記録媒体では4πMs≧8k
Gが得られた。また、特に上述の磁性薄膜の下地膜とし
てCrを被着することによって、Hch ≧1500とす
ることができた。
Incidentally, 4πMs (kG)> Hk (kO
In the case of e), it is considered that the magnetic recording medium has characteristics as an in-plane magnetized film, but the magnetic recording medium according to the present invention has 4πMs ≧ 8k.
G was obtained. Further, in particular by depositing a Cr as a base film of the magnetic thin film described above, it was possible to Hc h ≧ 1500.

【0010】[0010]

【実施例】本発明においては、図1に示すように、フレ
キシブル基体、例えばPETシート、ないしはテープ等
の長尺薄膜基体1を、円筒状キャンロール2の周面を繞
って0.1〜300m/分の速度で移行させつつこれに
磁性薄膜をスパッタによって成膜する例えばマグネトロ
ン型スパッタ電極を持つ連続成膜装置によって形成す
る。図1において4はスパッタ位置を制御する遮蔽板を
示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, as shown in FIG. 1, a flexible substrate, for example, a long thin film substrate 1 such as a PET sheet or a tape, is attached to the peripheral surface of a cylindrical can roll 2 by 0.1 to 0.1. The magnetic thin film is formed by sputtering while moving at a speed of 300 m / min, for example, by a continuous film forming apparatus having a magnetron type sputtering electrode. In FIG. 1, reference numeral 4 indicates a shield plate for controlling the sputtering position.

【0011】そして、特に磁性薄膜として、その組成
を、(Coa Ptb c 100-x x (a,b,c,x
は原子%)の組成式において、 a=100−b−c、 0≦b≦50、 0.1≦c≦30、 0<x≦15 となる組成をもって厚さ500〜10000Å、好まし
くは1000〜5000Åにスパッタする。
In particular, as a magnetic thin film, its composition is (Co a Pt b B c ) 100-x O x (a, b, c, x
In the composition formula of a), a = 100-bc, 0 ≦ b ≦ 50, 0.1 ≦ c ≦ 30, 0 <x ≦ 15 and a thickness of 500 to 10000 Å, preferably 1000 to Sputter to 5000Å.

【0012】実施例1 上述のマグネトロン型スパッタ電極を持つ連続成膜装置
を用いて、Co71Pt 227 の組成を有し、175mm
×250mmの長方形を有し、厚さ3mmの合金ターゲ
ット3を用いて、PET基体1を図1に示すように、キ
ャンロール2を繞って1.0m/分の速度で移行させ
て、アルゴンと酸素の混合ガス中にスパッタして厚さ1
000Åの磁性薄膜を基体1上に成膜した。このときの
スパッタ条件は、 バックグランド真空度:9×10-4Pa 基体温度:室温 スパッタ投入電力:DC2.2kW スパッタ全ガス圧:2.0Pa 全ガス流量:450SCCM とした。
Example 1 A continuous film forming apparatus having the magnetron type sputtering electrode described above.
Using Co71Pt twenty twoB7Has a composition of 175 mm
An alloy target with a thickness of 3 mm and a rectangle of × 250 mm
1 and the PET substrate 1 as shown in FIG.
Swivel the roll 2 and move it at a speed of 1.0 m / min.
And sputter it into a mixed gas of argon and oxygen to a thickness of 1
A magnetic thin film of 000Å was formed on the substrate 1. At this time
Sputtering conditions are background vacuum degree: 9 × 10-FourPa substrate temperature: room temperature Sputtering power: DC 2.2 kW Sputtering total gas pressure: 2.0 Pa Total gas flow rate: 450 SCCM.

【0013】この実施例1において、酸素分圧Po2
変化させて面内保磁力Hch とPo 2 との関係をみた。
その測定結果を図2に示す。図2中、曲線2A及び2B
は、それぞれそのスパッタに際して、フレキシブル基体
1の移行方向及びスパッタ範囲を、図1において矢印A
及びBをもって示す方向を範囲に、つまり、図において
時計方向に、かつターゲット3と正対する領域と、これ
以上のスパッタ可能領域に及んで形成した場合を示す。
In the first embodiment, the oxygen partial pressure Po2To
In-plane coercive force HchAnd Po 2I saw a relationship with.
The measurement result is shown in FIG. In FIG. 2, curves 2A and 2B
The flexible substrate
The transition direction and the sputtering range of No. 1 are indicated by arrow A in FIG.
And B are within the range, that is, in the figure
A region facing the target 3 in the clockwise direction and this
The case where the film is formed so as to extend to the above sputterable region is shown.

【0014】これによれば、面内保磁力Hch ≧150
0(Oe)とするにはPo2 は3.5〜4.5Pa程度
とするが、磁性薄膜の形成に当たって下地膜としてCr
200〜2000Åの厚さでスパッタするときは、Hc
h ≧1500(Oe)とし得る酸素分圧Po2 範囲は広
げられる。
According to this, the in-plane coercive force Hc h ≧ 150
To obtain 0 (Oe), Po 2 is set to about 3.5 to 4.5 Pa, but Cr is used as a base film when forming the magnetic thin film.
When sputtering with a thickness of 200 to 2000Å, Hc
The oxygen partial pressure Po 2 range where h ≧ 1500 (Oe) can be expanded.

【0015】次に、この場合の実施例について説明す
る。 実施例2 実施例1と同様の条件で磁性薄膜を作成したが、その成
膜に先立ってCrを図1の装置によってアルゴンガスの
みを使用して500Åの厚さにスパッタした。
Next, an embodiment in this case will be described. Example 2 A magnetic thin film was prepared under the same conditions as in Example 1, but prior to the film formation, Cr was sputtered to a thickness of 500 Å using only the argon gas by the apparatus shown in FIG.

【0016】この実施例2において、酸素分圧Po2
変化させて面内保磁力Hch とPo 2 との関係をみた。
その測定結果を図3に示す。
In the second embodiment, the oxygen partial pressure Po2To
In-plane coercive force HchAnd Po 2I saw a relationship with.
The measurement result is shown in FIG.

【0017】図3中、曲線3A,3B及び3Cは、それ
ぞれそのスパッタに際して、フレキシブル基体1の移行
方向及びスパッタ範囲を、図1において矢印A,B及び
Cをもって示す方向を範囲に、つまり、図において時計
方向に、かつターゲット3と正対する領域と、これ以上
のスパッタ可能領域に及んで形成した場合及び反時計方
向に移行させ領域Bと同等の領域Cをもってスパッタし
た場合を示す。
Curves 3A, 3B and 3C in FIG. 3 indicate the transition direction of the flexible substrate 1 and the sputtering range in the sputtering, respectively, in the directions indicated by arrows A, B and C in FIG. 3A shows the case where the region is formed in the clockwise direction and the region directly facing the target 3 and the sputterable region beyond this, and the case where the region is shifted counterclockwise and the region C equivalent to the region B is sputtered.

【0018】これによれば、実施例1の場合とほぼ同条
件下では面内保磁力Hch ≧2000(Oe)とするこ
とができ、Hch ≧1500(Oe)とするに、実施例
1に比して選べる酸素分圧Po2 範囲は広げられる。
According to this, the in-plane coercive force Hc h ≧ 2000 (Oe) can be obtained under almost the same conditions as in the case of the first embodiment, and Hc h ≧ 1500 (Oe). The oxygen partial pressure Po 2 range that can be selected is widened.

【0019】更に、上述の実施例1及び2において、図
1で示した矢印A,B及びCで示した方向の移行及びス
パッタ領域で磁性薄膜をPETフィルム上に形成した場
合の各面内磁化曲線を図4にそれぞれA,B,Cとして
示す。S* は各例の保磁力角形比で、図5に示すように
面内保磁力Hch における磁化曲線の接線と残台磁化M
rとの交点の磁界hを面内保磁力で除した値S* =h/
Hch で与えられ、この値が小さいほどノイズが小さく
なる、即ちS/Nが向上する。
Further, in the above-mentioned Examples 1 and 2, in-plane magnetization when a magnetic thin film is formed on the PET film in the transition and sputter regions in the directions indicated by arrows A, B and C shown in FIG. The curves are shown in FIG. 4 as A, B and C, respectively. S * is a coercive force squareness ratio of each example, tangent Zandai magnetization M of the magnetization curve in the plane coercivity Hc h as shown in FIG. 5
A value obtained by dividing the magnetic field h at the intersection with r by the in-plane coercive force S * = h /
It is given by Hc h , and the smaller this value is, the smaller the noise is, that is, the S / N is improved.

【0020】図4より明らかなように、スパッタ態様が
A,B,Cのいずれかであっても、特性上差程影響はな
いが、Crの下地膜を形成するときは、S* の減少がは
かられることが分かる。上述したところから明らかなよ
うに、本発明によれば、基体温度と高めることなく室温
で、したがってPET基体1を用いて、しかも1000
0Åに及ぶ磁性薄膜層を形成する場合でも、高い面内保
磁力Hch 、即ち1500(Oe)以上に、またCr下
地膜を設ける場合は2000(Oe)にすることができ
た。尚、Cr下地膜は、その厚さを200〜2000Å
に選定することが望まれる。これは200Å未満ではC
r下地膜を設けることによるHch の向上が殆どみられ
ず、2000Åを超えるとフレキシブル性を阻害して来
ることに因る。
As is clear from FIG. 4, there is no significant difference in characteristics whether the sputtering mode is A, B, or C, but when forming a Cr underlayer, S * decreases. You can see that it comes off. As is apparent from the above description, according to the present invention, the temperature of the substrate is not increased and the temperature of the substrate is therefore increased.
Even when a magnetic thin film layer reaching 0 Å was formed, it was possible to obtain a high in-plane coercive force Hc h , that is, 1500 (Oe) or more, and 2000 (Oe) when a Cr underlayer was provided. The Cr underlayer has a thickness of 200 to 2000Å
It is desirable to select This is C at less than 200Å
The improvement of Hc h due to the provision of the r base film is hardly seen, and when it exceeds 2000 Å, the flexibility is impaired.

【0021】[0021]

【発明の効果】上述したように本発明構成によれば、そ
のスパッタによる磁性薄膜に当たって、基体温度を上げ
ることなく、また基体にバイアス電圧を印加することな
く、500〜10000Åの厚さの磁性薄膜を1500
(Oe)以上の面内保磁力をもって更に下地膜としてC
rを形成するときは、2000(Oe)以上の面内保磁
力を有し、保磁力角形比S* の小さい磁気記録媒体を得
ることができる。
As described above, according to the structure of the present invention, the magnetic thin film of 500 to 10000 Å is hit without hitting the magnetic thin film by sputtering and without applying a bias voltage to the substrate. 1500
With an in-plane coercive force of (Oe) or more, C as a base film
When r is formed, a magnetic recording medium having an in-plane coercive force of 2000 (Oe) or more and a small coercive force squareness ratio S * can be obtained.

【0022】そして、その基体1としては安価なPET
フレキシブル基体1の使用が可能となることによって、
また基体の移行によって磁性薄膜を作成し得ることによ
って量産化に好適となり、磁気記録媒体の低廉化をはか
ることができる。
The substrate 1 is inexpensive PET
By making it possible to use the flexible substrate 1,
Further, since the magnetic thin film can be formed by moving the substrate, it is suitable for mass production, and the cost of the magnetic recording medium can be reduced.

【0023】尚、磁性薄膜の成膜に当たって基体1の移
行下で行うことによってその面内保磁力の向上がはから
れる理由は明確ではないが、斜め蒸着の効果が生じてい
るものと思われる。
The reason why the in-plane coercive force can be improved by performing the film formation of the magnetic thin film while the substrate 1 is being moved is not clear, but it is considered that the oblique evaporation effect is produced. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気記録媒体を得る成膜作業の説
明図である。
FIG. 1 is an explanatory diagram of a film forming operation for obtaining a magnetic recording medium according to the present invention.

【図2】本発明による磁気記録媒体の面内保磁力と酸素
分圧の関係の測定曲線図である。
FIG. 2 is a measurement curve diagram of a relationship between in-plane coercive force and oxygen partial pressure of the magnetic recording medium according to the present invention.

【図3】本発明による磁気記録媒体の面内保磁力と酸素
分圧の関係の測定曲線図である。
FIG. 3 is a measurement curve diagram of a relationship between in-plane coercive force and oxygen partial pressure of the magnetic recording medium according to the present invention.

【図4】本発明の実施例の磁化曲線図である。FIG. 4 is a magnetization curve diagram of an example of the present invention.

【図5】保磁力角形比の説明に供する磁化曲線図であ
る。
FIG. 5 is a magnetization curve diagram for explaining a coercive force squareness ratio.

【符号の説明】[Explanation of symbols]

1 フレキシブル基体 2 キャンロール 3 ターゲット 1 flexible substrate 2 can roll 3 target

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フレキシブル基体を移動させながら、該
基体上に、 その組成式が(Coa Ptb c 100-x x (a,
b,c,xは原子%)で示され、この組成式において、 a=100−b−c、 0≦b≦15、 0.1≦c≦30、 0<x≦15 なる磁性薄膜を成膜したことを特徴とする磁気記録媒
体。
1. A composition having a composition formula of (Co a Pt b B c ) 100-x O x (a,
b, c, x are expressed in atomic%), and in this composition formula, a = 100-bc, 0 ≦ b ≦ 15, 0.1 ≦ c ≦ 30, 0 <x ≦ 15 A magnetic recording medium having a film.
【請求項2】 磁性薄膜の下地膜としてCr薄膜を被着
した請求項1に記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein a Cr thin film is deposited as a base film of the magnetic thin film.
JP22071191A 1991-08-30 1991-08-30 Magnetic recording medium Pending JPH0562833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22071191A JPH0562833A (en) 1991-08-30 1991-08-30 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22071191A JPH0562833A (en) 1991-08-30 1991-08-30 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0562833A true JPH0562833A (en) 1993-03-12

Family

ID=16755310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22071191A Pending JPH0562833A (en) 1991-08-30 1991-08-30 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0562833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859032A (en) * 1996-03-18 1999-01-12 Nishino; Chikao Pyridine derivative, anti-ulcer drug, and antibacterial drug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859032A (en) * 1996-03-18 1999-01-12 Nishino; Chikao Pyridine derivative, anti-ulcer drug, and antibacterial drug

Similar Documents

Publication Publication Date Title
US5851656A (en) Magnetic recording medium
JPH0714142A (en) Thin film magnetic recording medium
Aoyama et al. Fabrication and properties of CoPt patterned media with perpendicular magnetic anisotropy
JP2796511B2 (en) Manufacturing method of thin-film perpendicular magnetic recording medium and thin-film perpendicular magnetic recording medium
Okumura et al. Magnetic properties and microstructure of sputtered CoSm/X (X= Ti, V, Cu and Cr) thin films
JP4716534B2 (en) Magnetic recording medium
JPH0562833A (en) Magnetic recording medium
JP3426894B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2004134078A (en) High density magnetic recording medium having homogeneous coercive force distribution of local region, fine crystal grain, and homogeneous crystal grain size distribution, and its manufacturing method
JPH0814889B2 (en) Perpendicular magnetic recording media
JP3833335B2 (en) Magnetic recording medium and manufacturing method thereof
Cord et al. Application of magnetic thin films for high-density data storage
JPH0311531B2 (en)
JP2707560B2 (en) Artificial lattice magneto-optical recording medium
JP2607288B2 (en) Magnetic recording medium and method of manufacturing the same
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPS61258331A (en) Magnetic recording medium
JP2797509B2 (en) Magnetic thin film material
JPH05325163A (en) Magnetic recording medium
JP2707561B2 (en) Artificial lattice magneto-optical recording medium
JPH06104113A (en) Metal thin film magnetic recording medium
JPH0485716A (en) Thin magnetic film for magnetic head
JPS6256570B2 (en)
JPH06282841A (en) Magnetic recording medium and manufacture thereof