JPH0559414A - Production of material and ball of metal-carbon composite - Google Patents

Production of material and ball of metal-carbon composite

Info

Publication number
JPH0559414A
JPH0559414A JP3244465A JP24446591A JPH0559414A JP H0559414 A JPH0559414 A JP H0559414A JP 3244465 A JP3244465 A JP 3244465A JP 24446591 A JP24446591 A JP 24446591A JP H0559414 A JPH0559414 A JP H0559414A
Authority
JP
Japan
Prior art keywords
metal
carbon
carbon composite
spheres
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3244465A
Other languages
Japanese (ja)
Inventor
Hidemasa Honda
英昌 本田
Kunio Esumi
邦男 江角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP3244465A priority Critical patent/JPH0559414A/en
Publication of JPH0559414A publication Critical patent/JPH0559414A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a metal-carbon composite material and ball wherein the metal is uniformly dispersed and deposited even in the carbon powder. CONSTITUTION:An aromatic condensed compd. having a hydrophilic group and a metallic salt soln. are mixed into an aq. alkali, and the obtained aq. alkali soln. is decomposed. Consequently, a carbon-metal composite material wherein the metal particles are sufficiently dispersed is obtained, and a completely spherical metal-carbon composite ball is obtained from the homogeneous soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は金属炭素複合材及び金
属炭素複合球の製造方法に関するもので、特に炭素材
(球)内部にも均一に分散析出している微粒子状の金属
炭素複合材及び金属炭素複合球の製造方法に関するもの
である。金属炭素複合材は、金属炭素複合球の用途の
他、たとえばガラスやセラミックス表面への磁性層や導
電層としてのコーティング材の用途、電磁波シールド材
などの構造材の用途、セラミックスやウィスカーを更に
分散した炭素繊維材の用途などがある。また、金属炭素
複合球は、たとえば白金族金属又は合金が担持された炭
素(「白金族金属又は合金/炭素」と略す。以下同
じ。)の触媒としての用途がある。また、Pt/C等の
白金族金属(合金)又は酸化物/炭素は海水電解用電極
や燃料電池用電極触媒としての用途がある。また、C
u、Ag、Pd/C等の導体金属/(酸化物)/炭素材
料はガラスや樹脂や溶媒等と混ぜて、(非)導電性ペー
スト、ペイント、インク等の用途がある。また、磁性材
や接合材あるいは焼結材、構造材の一要素としての用途
があり、Cu/CやAg/C複合球は殺菌剤として、A
u/C複合球は化粧料としての用途もある。しかしなが
ら、従来の金属炭素複合材及び金属炭素複合球は金属粒
子の分散が不十分であり、しかも金属炭素複合球では真
球のものが得られないため、これらの用途に適用できな
いのが実情であった。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-carbon composite material and a method for producing a metal-carbon composite sphere, and in particular, a fine-particle metal-carbon composite material uniformly dispersed and deposited inside a carbon material (sphere) and The present invention relates to a method for producing metal-carbon composite spheres. Metal-carbon composite materials are used in addition to the applications of metal-carbon composite spheres, for example, as coating materials for magnetic layers or conductive layers on glass or ceramics surfaces, as structural materials such as electromagnetic wave shielding materials, and for further dispersion of ceramics and whiskers. There are applications such as carbon fiber materials. Further, the metal-carbon composite sphere has a use as a catalyst of carbon carrying a platinum group metal or alloy (abbreviated as “platinum group metal or alloy / carbon”; the same applies hereinafter). Further, platinum group metals (alloys) such as Pt / C or oxides / carbon have applications as electrodes for seawater electrolysis and electrode catalysts for fuel cells. Also, C
The conductive metal / (oxide) / carbon material such as u, Ag, Pd / C, etc. is mixed with glass, resin, solvent, etc. and has applications such as (non) conductive paste, paint, ink and the like. It also has applications as a magnetic material, a bonding material, a sintered material, and an element of a structural material. Cu / C and Ag / C composite spheres are
The u / C composite sphere also has a use as a cosmetic. However, in the conventional metal-carbon composite material and metal-carbon composite sphere, the dispersion of metal particles is insufficient, and since a metal-carbon composite sphere cannot be obtained as a true sphere, it cannot be applied to these applications in the actual situation. there were.

【0002】[0002]

【従来の技術】現在、新しい機能を持った新素材の開発
は研究課題として重要であり、盛んに行われている。特
に、有機物質と無機物質との複合化された素材は従来に
見られない新機能の発現が期待できる。このような観点
から、高分子錯体焼成による金属炭素複合体合成法が開
発されている。たとえば、金属を担持したイオン交換樹
脂微小球体を熱分解する方法(特開昭51-33794号公報)
や有機金属高分子錯体を熱分解する方法(特開平1-2343
09号公報、特開平1-252514号公報及び表面第27巻6号48
9-498 頁(1989年発行)など)がある。これらの方法
は、イオン交換樹脂を焼成するか、有機金属ポリマーを
焼成するか、またはピッチなどに金属化合物や有機金属
モノマーを均一に混合してから焼成するかである。その
結果、超微粒子金属が分散した炭素材が得られるもので
ある。しかし、これらの場合、広い面積にわたって均一
に金属粒子を分散することができず、また金属炭素複合
球にあっては複合炭素材の形はほとんど制御されていな
い。これは炭素質成分と金属質成分が均一に混ざりあわ
ない結果、加熱分解工程において均質な炭素複合化が困
難で析出する金属微粒子も不安定なものになるからであ
る。
2. Description of the Related Art Currently, the development of new materials having new functions is an important research subject and is being actively conducted. In particular, a composite material of an organic substance and an inorganic substance can be expected to exhibit new functions that have never been seen before. From such a viewpoint, a method for synthesizing a metal-carbon composite by firing a polymer complex has been developed. For example, a method of thermally decomposing ion-exchange resin microspheres carrying a metal (Japanese Patent Laid-Open No. 51-33794).
And a method of thermally decomposing an organometallic polymer complex (Japanese Patent Laid-Open No. 1-2343
No. 09, JP-A 1-252514 and Surface No. 27, No. 6 48
Pages 9-498 (issued in 1989). These methods are firing an ion exchange resin, an organometallic polymer, or a mixture of a metal compound and an organometallic monomer in a pitch or the like and then firing. As a result, a carbon material in which ultrafine metal particles are dispersed can be obtained. However, in these cases, the metal particles cannot be uniformly dispersed over a wide area, and in the metal-carbon composite sphere, the shape of the composite carbon material is hardly controlled. This is because the carbonaceous component and the metallic component are not mixed uniformly, and as a result, it is difficult to form a homogeneous carbon composite in the thermal decomposition step, and the fine metal particles to be deposited are also unstable.

【0003】[0003]

【発明の目的】本願発明は上記欠点に着目してなされた
ものであり、親水性基を有する芳香族縮合化合物をアル
カリ水溶液に溶かし合わせることによって炭素粉内部に
も均一に金属が分散析出できる金属炭素複合材及び真球
状の金属炭素複合球を製造しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks. A metal capable of uniformly dispersing and depositing a metal inside carbon powder by dissolving an aromatic condensation compound having a hydrophilic group in an alkaline aqueous solution. It is intended to produce a carbon composite material and a spherical metal-carbon composite sphere.

【0004】[0004]

【発明の構成】本願発明は炭素を主成分とする炭素材中
に金属成分を分散する金属炭素複合材の製造方法におい
て、親水性基を有する芳香族縮合化合物と金属塩溶液と
をアルカリ水溶液に混合した後、このアルカリ水溶液を
分解することを特徴とする金属炭素複合材の製造方法で
ある。
According to the present invention, in a method for producing a metal-carbon composite material in which a metal component is dispersed in a carbon material containing carbon as a main component, an aromatic condensation compound having a hydrophilic group and a metal salt solution are dissolved in an alkaline aqueous solution. A method for producing a metal-carbon composite material, characterized by decomposing this alkaline aqueous solution after mixing.

【0005】また、本願発明は炭素を主成分とする炭素
球中に金属成分を分散する金属炭素複合球の製造方法に
おいて、親水性基を有する芳香族縮合化合物と金属塩溶
液とをアルカリ水溶液に混合した後、このアルカリ水溶
液を乳化し、その後に乾燥して分解することを特徴とす
る金属炭素複合球の製造方法である。
Further, the present invention is a method for producing a metal-carbon composite sphere in which a metal component is dispersed in a carbon sphere containing carbon as a main component, and the aromatic condensation compound having a hydrophilic group and the metal salt solution are treated with an alkaline aqueous solution. After mixing, the aqueous alkali solution is emulsified, and then dried and decomposed to produce a metal-carbon composite sphere.

【0006】また、本願発明は炭素を主成分とする炭素
球中に金属成分を分散する金属炭素複合球の製造方法に
おいて、親水性基を有する芳香族縮合化合物と金属塩溶
液とをアルカリ水溶液に混合した後、このアルカリ水溶
液を乳化し、その後に加熱分解することを特徴とする金
属炭素複合球の製造方法である。
Further, the present invention is a method for producing a metal-carbon composite sphere in which a metal component is dispersed in a carbon sphere containing carbon as a main component, and the aromatic condensation compound having a hydrophilic group and the metal salt solution are treated with an alkaline aqueous solution. This is a method for producing metal-carbon composite spheres, characterized by emulsifying this alkaline aqueous solution after mixing and then thermally decomposing it.

【0007】本願発明において親水性基とは水酸基、ニ
トロ基、カルボニル基、スルホン基及び/又はカルボキ
シル基などをいい、これらの基は単数でも複数でもよ
い。また芳香族縮合化合物とは芳香族縮合多環炭化水素
及び/又は複素環式縮合多環化合物をいう。例示すれ
ば、親水性基を有する芳香族縮合化合物としては、8−
ヒドロキシキノリン、α−ニトロソ−β−ナフトール、
キナルジン酸などがある。また、ナフタレン、インデ
ン、フルオレン、アセナフテン、アントラセン、ピレ
ン、クリセン、ナフタセン、プリン、カンフェン、コロ
ネンなどの芳香族縮合化合物(2種類以上混合して用い
てもよい)に水酸基、ニトロ基、カルボニル基、スルホ
ン基及び/又はカルボキシル基の親水性基を付与するこ
ともできる。また、ピッチ等の重質歴青物にも親水性基
を付与することもできる。この親水性基を有する芳香族
縮合化合物は親水性基が存在するため、アルカリ水溶液
中で溶解する。このため利用できる金属塩の種類が豊富
であり、均一な溶液ができるため分解工程中で炭素素地
中の金属の析出が円滑に行われ、金属粒子の分散状態の
よい金属炭素複合材が得られる。さらに精製した親水性
基を有する芳香族縮合化合物を得るには、このアルカリ
水溶液中に溶解したものを酸によってpH=2以下にす
ると、ほとんど全量析出する。一方、析出したものは酸
性水溶液中では泥状であるが、濾過したあと乾燥させる
と粒状となる。(以下、これを「アクアメソフェーズ」
と呼ぶ。)(特公昭64-9288 号公報等参照。)
In the present invention, the hydrophilic group means a hydroxyl group, a nitro group, a carbonyl group, a sulfone group and / or a carboxyl group, and these groups may be singular or plural. The aromatic condensed compound means an aromatic condensed polycyclic hydrocarbon and / or a heterocyclic condensed polycyclic compound. For example, as an aromatic condensed compound having a hydrophilic group, 8-
Hydroxyquinoline, α-nitroso-β-naphthol,
Such as quinaldic acid. In addition, aromatic condensed compounds such as naphthalene, indene, fluorene, acenaphthene, anthracene, pyrene, chrysene, naphthacene, purine, camphene and coronene (which may be used as a mixture of two or more kinds) with a hydroxyl group, a nitro group, a carbonyl group, A hydrophilic group such as a sulfone group and / or a carboxyl group can be added. Also, a hydrophilic group can be added to a heavy bituminous product such as pitch. Since the aromatic condensed compound having a hydrophilic group has a hydrophilic group, it is dissolved in an alkaline aqueous solution. For this reason, there are many types of metal salts that can be used, and a uniform solution can be formed, so that the metal in the carbon matrix can be smoothly precipitated during the decomposition process, and a metal-carbon composite material in which the metal particles are well dispersed can be obtained. .. In order to obtain a further purified aromatic condensation compound having a hydrophilic group, almost all of the compound is dissolved in this alkaline aqueous solution when the pH is adjusted to pH 2 or less with an acid. On the other hand, the precipitate is muddy in an acidic aqueous solution, but becomes granular when filtered and dried. (Hereinafter, this is called "Aqua Mesophase"
Call. (See Japanese Examined Patent Publication No. 64-9288, etc.)

【0008】なお、含塩素基や含リン基を有する芳香族
縮合化合物及び金属塩は本発明に適さない。分解しづら
いからである。本願発明の金属炭素複合球の調製は以下
の様に行った。アクアメソフェーズをアルカリ水溶液中
に溶かし、更に種々のアルカリ性金属塩を加える。これ
らの溶液を、これとは混ざりあわない液体中(例えば、
シリコン油、オリーブ油、炭化水素油)に添加し、撹拌
するとアルカリ水溶液のエマルジョンが生成する。この
エマルジョンから水分を取り除いていくと、金属炭素複
合球が生成してくる。この金属炭素複合球は加熱処理を
しなくても炭素まで分解され、しかも真球状である。そ
の後、加熱処理しても真球形状は変化せず、金属微粒子
が炭素球中に均一に分布するのが確認された。
Aromatic condensed compounds and metal salts having chlorine-containing groups or phosphorus-containing groups are not suitable for the present invention. It is difficult to disassemble. The metal-carbon composite spheres of the present invention were prepared as follows. Aqua mesophase is dissolved in an alkaline aqueous solution, and various alkaline metal salts are further added. Add these solutions to a liquid that is immiscible with it (for example,
Silicone oil, olive oil, hydrocarbon oil) and stirred to form an emulsion of alkaline aqueous solution. When water is removed from this emulsion, metal-carbon composite spheres are generated. The metal-carbon composite spheres are decomposed to carbon without heat treatment, and are spherical. After that, it was confirmed that the spherical shape did not change even after the heat treatment, and the metal fine particles were uniformly distributed in the carbon spheres.

【0009】とくに、金属塩が水酸化物、アンミン錯塩
及び/又はカルボン酸塩を用いると分解が容易なため炭
素質マトリックス中に均一微細に金属微粒子が分散した
ものが得られやすい。本発明の方法を次に実施例により
更に詳細に説明する。
Particularly, when the metal salt is a hydroxide, an ammine complex salt and / or a carboxylic acid salt, the decomposition is easy, so that a fine and uniform dispersion of metal fine particles in a carbonaceous matrix is easily obtained. The method of the invention will now be described in more detail by way of examples.

【0010】[0010]

【実施例1】石炭系重質油を 350〜 450℃の温度範囲に
加熱した時に生成する光学的異方性な小球体を分離して
使用した。この小球体はネマチック構造をもつ液晶と考
えられ、通常4環〜5環の芳香族縮合炭化水素から構成
されている。この小球体(以下、「メソフェーズ」とい
う。)は水に対する濡れ性が悪いので硫酸を触媒として
濃硝酸との混酸中で60℃で処理し、処理後硝酸等を除去
した。この処理においてニトロ基が導入された他に酸化
反応も同時に起こり、水酸基、カルボキシル基、ニトロ
基、スルホン基も有するアクアメソフェーズが生成し、
アルカリ水溶液中で溶解するようになった。(特公昭64
-9288 号公報等参照。) Cu/Cの金属炭素複合コーティング材 pH=12のアンモニア水30mlにアクアメソフェーズ1.2g
を加え、溶かす。その後、Cu (OH)2 0.12gを加えて
均一な溶液にする。この溶液を石英板にコーティング
し、室温で乾燥する。さらに、1000℃で焼成すると、炭
素中に均一に分散している銅のCu/Cコーティング材
が得られた。
Example 1 Optically anisotropic small spheres produced when a heavy coal-based oil was heated to a temperature range of 350 to 450 ° C. were used separately. The small spheres are considered to be liquid crystals having a nematic structure, and are usually composed of condensed 4-ring to 5-ring aromatic hydrocarbons. Since these small spheres (hereinafter referred to as "mesophase") have poor wettability with water, they were treated at 60 ° C in a mixed acid with concentrated nitric acid using sulfuric acid as a catalyst, and nitric acid and the like were removed after the treatment. In addition to the introduction of a nitro group in this treatment, an oxidation reaction also occurs at the same time, producing an aqua mesophase having a hydroxyl group, a carboxyl group, a nitro group, and a sulfone group,
It became soluble in an aqueous alkaline solution. (Japanese Patent Office Sho 64
-9288, etc. ) Cu / C metallic carbon composite coating material: Aqua mesophase 1.2g in 30ml ammonia water with pH = 12
Add and melt. Then, 0.12 g of Cu (OH) 2 is added to make a uniform solution. A quartz plate is coated with this solution and dried at room temperature. Further, when baked at 1000 ° C., a Cu / C coating material of copper uniformly dispersed in carbon was obtained.

【0011】[0011]

【実施例2】 Pt/Cの金属炭素複合球 (アクアメソフェーズの調製) (溶液調製)pH=12のアンモニア水30mlにアクアメソ
フェーズ 1.2gをくわえる。溶液が均一になるまでよく
振り、約1時間振とう後、計算量の錯体溶液(Pt (N
3)4(OH)2溶液(Ptとして20.33g/l、pH=13.42)
を加え、超音波を10分程度かけてから小球化を行う。 (小球化)約90℃に温めた 500mlのオリーブオイルに、
先に調製した溶液30mlを針付きシリンジを用いて素早く
滴下して75分間油温を90℃に保つ。尚、撹拌速度は1200
回転/分である。 (オイルとの分離)小球化が終了後、油温が下がるのを
待って遠心分離にかける。粗くオイルと分離した後、ガ
ラスフィルターにかけベンゼン、アセトンでそれぞれ洗
浄する。 (減圧乾燥)上でオイルから分離した小球体にベンゼン
を加え、約48時間振とうする。次にベンゼンから分離し
た小球体を約48時間減圧乾燥する。減圧乾燥は60〜70℃
前後で行う。 (金属炭素複合球)得られた白金炭素複合球は完全な真
球状であり、その粒径は4〜15μmで白金が10重量%含
有していた。この白金炭素複合球を 500℃、 700℃及び
1000℃の熱処理をしても複合球の形状に変化はなかっ
た。炭素球中に白金粒子が均一に分布していた。
Example 2 Pt / C metal-carbon composite spheres (preparation of aqua mesophase) (Solution preparation) 1.2 g of aqua mesophase is added to 30 ml of ammonia water having a pH = 12. Shake well until the solution becomes uniform, shake for about 1 hour, and then calculate the calculated amount of complex solution (Pt (N
H 3 ) 4 (OH) 2 solution (20.33 g / l as Pt, pH = 13.42)
And add ultrasonic waves for about 10 minutes before prilling. (Small spheres) In 500 ml of olive oil warmed to about 90 ℃,
30 ml of the solution prepared above is quickly added dropwise using a syringe with a needle, and the oil temperature is kept at 90 ° C for 75 minutes. The stirring speed is 1200
Revolutions / minute. (Separation from oil) After globulization is complete, wait for the oil temperature to drop and then centrifuge. After roughly separating from the oil, it is filtered on a glass filter and washed with benzene and acetone, respectively. (Drying under reduced pressure) Add benzene to the small spheres separated from the oil and shake for about 48 hours. Next, the small spheres separated from benzene are dried under reduced pressure for about 48 hours. Vacuum drying is 60-70 ℃
Do it before and after. (Metal-carbon composite spheres) The obtained platinum-carbon composite spheres were perfectly spherical, had a particle size of 4 to 15 μm, and contained 10% by weight of platinum. This platinum-carbon composite sphere is
The shape of the composite sphere did not change even after heat treatment at 1000 ℃. Platinum particles were uniformly distributed in the carbon spheres.

【0012】[0012]

【実施例3】 Cu/Cの金属炭素複合球 アクアメソフェーズを 0.6g及びCu(OH)2を0.07
g、0.08g、0.09g添加した以外は実施例2と同様にし
て、溶液調製、小球化、オイルとの分離及び減圧乾燥を
行った。 (金属炭素複合球)得られた銅炭素複合球は一部いびつ
なものを含むものの、ほぼ真球状であり、その粒径は2
〜20μm程度で銅が夫々7重量%、8重量%、9重量%
含有していた。この銅炭素複合球を1000℃で熱処理した
ところ複合炭素粒子の表面には非常に小さな微粒子が生
成し、XMA分析をしたところCuであることが確認で
きた。
Example 3 Cu / C Metal-Carbon Composite Sphere 0.6 g of aqua mesophase and 0.07 of Cu (OH) 2
In the same manner as in Example 2 except that g, 0.08 g, and 0.09 g were added, solution preparation, prilling, separation from oil, and vacuum drying were performed. (Metal-carbon composite spheres) The obtained copper-carbon composite spheres, although some of them were distorted, were almost spherical and had a particle size of 2
Approximately 20μm copper is 7%, 8% and 9% by weight respectively
Contained. When this copper-carbon composite sphere was heat-treated at 1000 ° C., very small particles were formed on the surface of the composite carbon particle, and XMA analysis confirmed that it was Cu.

【0013】[0013]

【実施例4】 Rh/Cの金属炭素複合球 Rh(NH3)6 Cl3 溶液(pH=8.04)のCl配位子
をイオン交換してOH配位子のRh(NH3)6(OH)3
液(pH=12.7)にしてロジウム炭素複合球をつくった
ところ、真球状のロジウム炭素複合球を得た。
Example 4 Rh / C metal-carbon composite spheres Rh (NH 3 ) 6 Cl 3 solution (pH = 8.04) was ion-exchanged with Cl ligands to form OH ligands Rh (NH 3 ) 6 (OH). ) A rhodium-carbon composite sphere was prepared by using 3 solution (pH = 12.7) to obtain a spherical rhodium-carbon composite sphere.

【0014】[0014]

【実施例5】 Pd/Cの金属炭素複合球 Pd(NH3)4 Cl2 溶液(pH=8.78)のCl配位子
をイオン交換してOH配位子のPd(NH3)4(OH)2
液(pH=12.93)にしてパラジウム炭素複合球をつくっ
たところ、真球状のパラジウム炭素複合球を得た。この
パラジウム炭素複合球を1000℃で熱処理したところ、炭
素粒子中に均一なパラジウム粒子が分布している複合炭
素粒子が得られた。
Example 5 Pd / C Metal-Carbon Composite Sphere Pd (NH 3 ) 4 Cl 2 solution (pH = 8.78) was ion-exchanged with Cl ligand to carry out OH ligand Pd (NH 3 ) 4 (OH). ) 2 solution (pH = 12.93) was used to prepare palladium-carbon composite spheres, and thus spherical palladium-carbon composite spheres were obtained. When this palladium-carbon composite sphere was heat-treated at 1000 ° C., composite carbon particles in which uniform palladium particles were distributed in the carbon particles were obtained.

【0015】[0015]

【実施例6】 Ni/Cの金属炭素複合球 (アクアメソフェーズの調製)ホルムアルデヒド 100重
量部とナフタリン 100重量部を硫酸を触媒として濃硝酸
との混酸50重量部中で90℃で処理し、アクアメソフェー
ズを得た(特開昭61-242906号公報参照)。 (溶液調製)pH=12のアンモニア水30mlをスクリュー
管にとり、アクアメソフェーズ0.6g及びNi(OH)2
0.07 gを加え均一な溶液に調製した。実施例1と同様
にして小球化、オイルとの分離、減圧乾燥をし、ニッケ
ル炭素複合球を得た。この複合球は完全な真球状であ
り、その粒径は5〜15μmでニッケルが7重量%含有し
ていた。このニッケル炭素複合球を1000℃の熱処理をし
ても複合球の形状に変化はなかった。
Example 6 Ni / C metal-carbon composite spheres (preparation of aqua mesophase) 100 parts by weight of formaldehyde and 100 parts by weight of naphthalene were treated at 90 ° C. in 50 parts by weight of a mixed acid with concentrated nitric acid using sulfuric acid as a catalyst to obtain aqua. A mesophase was obtained (see JP-A-61-242906). (Solution preparation) 30 ml of ammonia water of pH = 12 was placed in a screw tube and 0.6 g of aqua mesophase and Ni (OH) 2
0.07 g was added to prepare a uniform solution. In the same manner as in Example 1, globulization, separation from oil and drying under reduced pressure were performed to obtain nickel-carbon composite spheres. The composite sphere was perfectly spherical, had a particle size of 5 to 15 μm, and contained 7% by weight of nickel. Even when the nickel-carbon composite spheres were heat-treated at 1000 ° C., the shape of the composite spheres did not change.

【0016】[0016]

【比較例1】 Cu/Cの金属炭素複合球 アンモニア水の濃度をpH= 8.5にした以外は実施例2
と同一条件で銅炭素複合球を作ったところ、アクアメソ
フェーズの不溶部分が生じ均一な溶液が得られなかった
ため、いびつな複合炭素球しか得られなかった。(粒径
20〜50μm)なお銅の含有量が3重量%以下のものは均
一な溶液が得られ、真球状の複合炭素球が得られた。
Comparative Example 1 Cu / C metal-carbon composite sphere Example 2 except that the concentration of ammonia water was set to pH = 8.5.
When copper-carbon composite spheres were prepared under the same conditions as above, the insoluble part of aqua mesophase occurred and a uniform solution could not be obtained, so only distorted composite carbon spheres were obtained. (Particle size
20 to 50 μm) In addition, when the copper content was 3% by weight or less, a uniform solution was obtained, and a true spherical composite carbon sphere was obtained.

【0017】[0017]

【比較例2】 Rh/Cの金属炭素複合球 Rh(NH3)6 Cl3 溶液(pH=8.04) を用いた以外
は実施例3と同一条件でロジウム炭素複合球を作ったと
ころ、均一な溶液が得られなかったためいびつな複合炭
素球しか得られなかった。(粒径20〜40μm)なお、ロ
ジウムの含有量が1重量%以下のものは均一な溶液が得
られ、真球状の複合炭素球が得られた。
Comparative Example 2 Rh / C metal-carbon composite spheres Rhodium-carbon composite spheres were prepared under the same conditions as in Example 3 except that Rh (NH 3 ) 6 Cl 3 solution (pH = 8.04) was used. Since no solution was obtained, only distorted composite carbon spheres were obtained. (Particle size 20 to 40 μm) If the rhodium content was 1% by weight or less, a uniform solution was obtained, and true spherical composite carbon spheres were obtained.

【0018】[0018]

【比較例3】 Pd/Cの金属炭素複合球 Pd(NH3)4 Cl2 溶液(pH=8.78)を用いた以外
は実施例4と同一条件でパラジウム炭素複合球を作った
ところ、均一な溶液が得られなかったためいびつな複合
炭素球しか得られなかった。(粒径20〜40μm)なお、
パラジウムの含有量が1重量%以下のものは均一な溶液
が得られ、真球状の複合炭素球が得られた。
Comparative Example 3 Pd / C Metal-Carbon Composite Spheres Palladium-carbon composite spheres were prepared under the same conditions as in Example 4 except that Pd (NH 3 ) 4 Cl 2 solution (pH = 8.78) was used. Since no solution was obtained, only distorted composite carbon spheres were obtained. (Particle size 20-40 μm)
When the palladium content was 1% by weight or less, a uniform solution was obtained, and a true spherical composite carbon sphere was obtained.

【0019】[0019]

【従来例1】 Cu/Cの金属炭素複合コーティング材 単なるメソフェーズを用いた以外は実施例1と同様にし
て銅炭素複合コーティング材をえたが、Cu( OH)2
メソフェーズ中に均一に分散されないため、均一な銅炭
素複合コーティング材は得られなかった。また、Cu
(acac)をメソフェーズに添加して行った場合にも、均
一な銅炭素複合コーティング材は得られなかった。
Conventional Example 1 Cu / C metal-carbon composite coating material A copper-carbon composite coating material was obtained in the same manner as in Example 1 except that only mesophase was used, but Cu (OH) 2 was not uniformly dispersed in the mesophase. Therefore, a uniform copper-carbon composite coating material could not be obtained. Also, Cu
Even when (acac) was added to the mesophase, a uniform copper-carbon composite coating material could not be obtained.

【0020】[0020]

【従来例2】 Pt/Cの金属炭素複合球 単なるメソフェーズを用いた以外は実施例2と同様にし
て白金炭素複合球を得ようとしたが、メソフェーズとP
t錯体の相溶性が低いため、均一な白金炭素複合球は得
られなかった。
Conventional Example 2 Pt / C metal-carbon composite sphere An attempt was made to obtain a platinum-carbon composite sphere in the same manner as in Example 2 except that only mesophase was used.
Due to the low compatibility of the t complex, uniform platinum-carbon composite spheres could not be obtained.

【0021】[0021]

【従来例3】 Fe/Cの金属炭素複合球 実施例1の小球体10gにFe2(CO)8 1.8gをベンゼン
50mlで24時間還流して均一に混合し、これをろ過し、ろ
液にヘキサンを加え沈澱物をN2 中 500℃で焼成した。
しかし、高温でしか焼成できなかったためFe粒子の分
散が不均一であり、炭素質マトリックスもつながって金
属炭素複合球が得られなかった。
Conventional Example 3 Fe / C metal-carbon composite spheres 10 g of the small spheres of Example 1 were mixed with 1.8 g of Fe 2 (CO) 8 and benzene.
The mixture was refluxed with 50 ml for 24 hours, mixed uniformly, filtered, hexane was added to the filtrate, and the precipitate was calcined in N 2 at 500 ° C.
However, since it could only be fired at a high temperature, the dispersion of Fe particles was non-uniform, and the carbonaceous matrix was also connected, so that metal-carbon composite spheres could not be obtained.

【0022】[0022]

【発明の効果】以上詳述したように本願発明によれば、
金属粒子の分散性のよい金属炭素複合材が得られ、しか
も熱処理を加えなくても均一な溶液から真球状の金属炭
素複合球が得られ、その複合球は加熱処理をしても形状
が変化しないという効果がある。また、金属と炭素のな
じみがよいため炭素質マトリックス内部にも均一微細に
金属微粒子が分散しており、表面の金属粒子がなくなっ
ても金属炭素複合球の性質は変わらず維持できるという
効果がある。そのため、上述した種々の用途に適用でき
るという効果がある。
As described in detail above, according to the present invention,
A metal-carbon composite material with good dispersibility of metal particles can be obtained, and a spherical metal-carbon composite sphere can be obtained from a uniform solution without heat treatment. The effect is not to. In addition, since metal and carbon are well compatible with each other, fine metal particles are uniformly dispersed inside the carbonaceous matrix, and even if the metal particles on the surface are lost, the properties of the metal-carbon composite sphere can be maintained unchanged. .. Therefore, there is an effect that it can be applied to the various uses described above.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素を主成分とする炭素材中に金属成分
を分散する金属炭素複合材の製造方法において、親水性
基を有する芳香族縮合化合物と金属塩溶液とをアルカリ
水溶液に混合した後、このアルカリ水溶液を分解するこ
とを特徴とする金属炭素複合材の製造方法。
1. A method for producing a metal-carbon composite material in which a metal component is dispersed in a carbon material containing carbon as a main component, after an aromatic condensation compound having a hydrophilic group and a metal salt solution are mixed with an alkaline aqueous solution. A method for producing a metal-carbon composite material, which comprises decomposing the alkaline aqueous solution.
【請求項2】 炭素を主成分とする炭素球中に金属成分
を分散する金属炭素複合球の製造方法において、親水性
基を有する芳香族縮合化合物と金属塩溶液とをアルカリ
水溶液に混合した後、このアルカリ水溶液を乳化し、そ
の後に乾燥して分解することを特徴とする金属炭素複合
球の製造方法。
2. A method for producing a metal-carbon composite sphere in which a metal component is dispersed in a carbon sphere containing carbon as a main component, after an aromatic condensation compound having a hydrophilic group and a metal salt solution are mixed with an alkaline aqueous solution. A method for producing metal-carbon composite spheres, which comprises emulsifying the alkaline aqueous solution and then drying and decomposing.
【請求項3】 炭素を主成分とする炭素球中に金属成分
を分散する金属炭素複合球の製造方法において、親水性
基を有する芳香族縮合化合物と金属塩溶液とをアルカリ
水溶液に混合した後、このアルカリ水溶液を乳化し、そ
の後に加熱分解することを特徴とする金属炭素複合球の
製造方法。
3. A method for producing metal-carbon composite spheres in which a metal component is dispersed in carbon spheres containing carbon as a main component, after an aromatic condensation compound having a hydrophilic group and a metal salt solution are mixed with an alkaline aqueous solution. A method for producing metal-carbon composite spheres, which comprises emulsifying this alkaline aqueous solution and then thermally decomposing it.
JP3244465A 1991-08-29 1991-08-29 Production of material and ball of metal-carbon composite Pending JPH0559414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3244465A JPH0559414A (en) 1991-08-29 1991-08-29 Production of material and ball of metal-carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3244465A JPH0559414A (en) 1991-08-29 1991-08-29 Production of material and ball of metal-carbon composite

Publications (1)

Publication Number Publication Date
JPH0559414A true JPH0559414A (en) 1993-03-09

Family

ID=17119055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3244465A Pending JPH0559414A (en) 1991-08-29 1991-08-29 Production of material and ball of metal-carbon composite

Country Status (1)

Country Link
JP (1) JPH0559414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659206A (en) * 1993-12-13 1997-08-19 Nikon Corporation Electrical circuit system including voltage detector to selectively halt operation of an electrical circuit
JP2003528419A (en) * 1998-08-27 2003-09-24 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Metal-carbon composite powder, method for producing the powder, and apparatus produced from the powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659206A (en) * 1993-12-13 1997-08-19 Nikon Corporation Electrical circuit system including voltage detector to selectively halt operation of an electrical circuit
JP2003528419A (en) * 1998-08-27 2003-09-24 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Metal-carbon composite powder, method for producing the powder, and apparatus produced from the powder
JP4704563B2 (en) * 1998-08-27 2011-06-15 キャボット コーポレイション Metal-carbon composite powder, method for producing the powder, and apparatus produced from the powder

Similar Documents

Publication Publication Date Title
Arul Dhas et al. In situ preparation of amorphous carbon-activated palladium nanoparticles
JP4047304B2 (en) Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
CN102407329B (en) Method for preparing nickel-silver coreshell structure nanoparticles
CN101076496A (en) Transition metal-magnetic ferric oxide nano-composite material, its production and use
JPH08325195A (en) Metal-coated carbon nanotube and its production
DE19848032A1 (en) Pt / Rh / Fe alloy catalyst for fuel cells and process for its manufacture
CN101863725A (en) Method for preparing nano catalytic composite materials by utilizing integrating process of ultrasonic-film-anti-solvent method
CN109423637A (en) A kind of preparation method of high conductive material
JP5539091B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
JP5548548B2 (en) Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method.
JPH0559414A (en) Production of material and ball of metal-carbon composite
CN109967736A (en) A kind of Fe2O3@Ni composite granule and preparation method thereof with core-shell structure
CN109248709A (en) Nano silver/polystyrene-acrylic acid shell core three-decker complex microsphere catalyst
CN101306469B (en) Core-shell type nano iron-silver bimetal granule and preparation method thereof
CN1240689A (en) Process for preparing superfine powder by thermolyzing metal complex
JP2003013105A (en) Method for manufacturing carrier with metal fine particles
JPH0830204B2 (en) Method for producing fine metal powder
CN103071788A (en) Method of preparing nickel-silver nuclear shell structure nano-particles
Demopoulos et al. Hydrochemical preparation of fine precious metal powders
JP2000239713A (en) Production of flaky silver powder
CN105542332A (en) Preparation method of polystyrene/graphene/precious metal composite particle
KR101916761B1 (en) The manufacturing method of silver powder with high specific surface
JPS5855204B2 (en) Method for producing platinum powder for printing paste
JP3786191B2 (en) Method for producing metal fine powder and conductive paste using the same
JP2531588B2 (en) Method for producing metal-supported particles having ferromagnetism