JP2003013105A - Method for manufacturing carrier with metal fine particles - Google Patents

Method for manufacturing carrier with metal fine particles

Info

Publication number
JP2003013105A
JP2003013105A JP2001199727A JP2001199727A JP2003013105A JP 2003013105 A JP2003013105 A JP 2003013105A JP 2001199727 A JP2001199727 A JP 2001199727A JP 2001199727 A JP2001199727 A JP 2001199727A JP 2003013105 A JP2003013105 A JP 2003013105A
Authority
JP
Japan
Prior art keywords
carrier
metal
liquid
fine particles
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001199727A
Other languages
Japanese (ja)
Inventor
Keizo Hayashi
桂三 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2001199727A priority Critical patent/JP2003013105A/en
Publication of JP2003013105A publication Critical patent/JP2003013105A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a carrier with metal fine- particles, by forming metal fine-particles at a low cost by a simple operation, and further by attaching them to the surface of a solid material. SOLUTION: In the method for manufacturing the carrier with metal fine- particles, a liquid containing metal compounds or ions, in which a reducible liquid or a reducing material is dissolved, is irradiated with a microwave in the existence of a solid material for the carrier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は表面に金属微粒子を
付着させた担体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carrier having metal fine particles attached to its surface.

【0002】[0002]

【従来の技術】金属微粒子、特に粒径1〜100nmの
微粒子は、種々の特異な性能を有することから、触媒、
センサー用電極あるいは電子材料と言うような分野で盛
んに注目されており、それに伴なって、各種の製造方法
が考えられている。代表的な製造方法としては、金属イ
オンを還元剤の存在下で加熱還元して金属元素とした後
に微粒子まで成長させる方法や、金属分を高温で蒸発さ
せた後に、トラップ等で捕捉する方法等が挙げられる。
2. Description of the Related Art Since metal fine particles, especially fine particles having a particle size of 1 to 100 nm, have various peculiar performances, catalysts,
In the field of sensor electrodes or electronic materials, attention is being paid to it, and various manufacturing methods are being considered. As a typical manufacturing method, a method of heating and reducing metal ions in the presence of a reducing agent to form a metal element and then growing into fine particles, a method of evaporating a metal component at a high temperature, and then trapping it with a trap etc. Is mentioned.

【0003】しかし、前者の場合、微粒子の成長と凝集
の制御が難しく、また後者の場合は特殊な装置が必要で
かつ煩雑な工程を踏まなければ製造できない等の問題を
有していた。
However, in the former case, it is difficult to control the growth and agglomeration of fine particles, and in the latter case, there is a problem that a special device is required and the production cannot be performed without complicated steps.

【0004】更に、これらの方法等で得られた金属微粒
子を、触媒等として実用化するためには、固体物質から
なる担体の表面に付着させる必要がある。しかしなが
ら、一度生成した金属微粒子を更に担体に付着させる方
法は、煩雑かつ経済的ではなく、更に生成した微粒子が
二次凝集を起こし均一に付着できないという問題もあっ
た。
Further, in order to put the fine metal particles obtained by these methods into practical use as a catalyst or the like, it is necessary to adhere them to the surface of a carrier made of a solid substance. However, the method of further adhering the metal fine particles once produced to the carrier is not complicated and economical, and there is also a problem that the fine particles produced further cause secondary aggregation and cannot be evenly attached.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の欠点を解決し、簡単な操作で、安価に金属の
微粒子を生成させ、更にこれを固体物質表面に付着させ
た金属微粒子付着担体を製造する方法を提供することで
ある。
DISCLOSURE OF THE INVENTION The object of the present invention is to solve the above-mentioned drawbacks of the prior art, to produce fine metal particles at low cost by a simple operation, and further to attach the fine metal particles to the surface of a solid substance. It is to provide a method for producing an adherent carrier.

【0006】[0006]

【課題を解決するための手段】本発明者等は、金属微粒
子および金属微粒子付着担体の製造に関して鋭意検討を
重ねた結果、特定の液体中に金属の化合物やイオンを含
有させ、ここにマイクロ波を照射すると液体中に金属微
粒子が生成し、その系にカーボン粒子または粉体等の固
体物質からなる担体を存在させると、容易に目的とする
金属微粒子付着担体を製造できることを見出して本発明
を完成するに至った。
The inventors of the present invention have conducted extensive studies as to the production of metal fine particles and a carrier on which metal fine particles are adhered, and as a result, a metal compound or ion is contained in a specific liquid and microwaves are added to the liquid. The present invention was found to be able to easily produce a target metal fine particle-adhered carrier by the presence of a carrier made of a solid substance such as carbon particles or powder in the system when metal fine particles are generated in a liquid upon irradiation with It came to completion.

【0007】即ち、本発明は、担体となる固体物質の存
在下、金属の化合物またはイオンを含有した、還元能を
有する液体または還元物質を溶解した液体に、マイクロ
波を照射させるか、或いは、金属の化合物またはイオン
を含有した、還元能を有する液体または還元物質を溶解
した液体に、マイクロ波を照射させた後に、担体となる
固体物質を存在させることを特徴とする、金属微粒子を
表面に付着させた金属微粒子付着担体の製造方法であ
る。
That is, according to the present invention, in the presence of a solid substance serving as a carrier, a liquid containing a metal compound or ions and having a reducing ability or a liquid in which a reducing substance is dissolved is irradiated with microwaves, or A liquid containing a compound or ion of a metal, having a reducing ability or a liquid in which a reducing substance is dissolved, is irradiated with microwaves, and then a solid substance serving as a carrier is present on the surface of the metal fine particles. This is a method for producing a carrier having metal fine particles attached thereto.

【0008】[0008]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。 ○還元能を有する液体または還元物質を溶解した液体 本発明において反応は、還元能を有する液体または還元
物質を溶解した液体中で行なわれる。還元能を有する液
体とは、還元性の基を有する、即ち自己が酸化され得る
有機溶剤等が挙げられる。還元性を有する基としては、
アルコール性水酸基、アルデヒド基、アミノ基、イミノ
基等が挙げられ、具体的な有機溶剤としては、メタノー
ル、エタノール、プロパノール、ブタノール、オクタノ
ール、シクロヘキサノール、デカノール等のアコール
類;エチレングリコール、グリセリン等の多価アルコー
ル類;アニリン、エタノールアミン等の有機アミン類;
N,N−ジメチルホルムアミド、ジメチルスルホキシ
ド、アセトン等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below. -Liquid having a reducing ability or liquid having a reducing substance dissolved therein In the present invention, the reaction is carried out in a liquid having a reducing ability or a liquid having a reducing substance dissolved therein. Examples of the liquid having a reducing ability include organic solvents having a reducing group, that is, capable of being self-oxidized. Examples of the reducing group include
Examples thereof include alcoholic hydroxyl group, aldehyde group, amino group, imino group, and the like. Specific organic solvents include alcohols such as methanol, ethanol, propanol, butanol, octanol, cyclohexanol, and decanol; ethylene glycol, glycerin, etc. Polyhydric alcohols; Organic amines such as aniline and ethanolamine;
Examples include N, N-dimethylformamide, dimethyl sulfoxide, acetone and the like.

【0009】また、還元物質を溶解した液体としては、
ギ酸、シュウ酸、糖類等の水溶液または有機溶剤溶液が
挙げられる。本発明で用いる還元能を有する液体の中で
は、還元能を有する有機溶剤が反応性の高さおよび取り
扱い易さから好ましく、更に好ましくはアルコール類ま
たは多価アルコール類である。また、本発明で用いる還
元物質を溶解した液体の中では、還元性を有する糖類の
水溶液が反応性の高さおよび取り扱い易さから好まし
く、更に好ましくブドウ糖の水溶液である。
Further, as the liquid in which the reducing substance is dissolved,
Examples thereof include aqueous solutions of formic acid, oxalic acid, sugars and the like, or organic solvent solutions. Among the liquids having a reducing ability used in the present invention, an organic solvent having a reducing ability is preferable because of its high reactivity and easy handling, and alcohols or polyhydric alcohols are more preferable. Further, among the liquids in which the reducing substance used in the present invention is dissolved, an aqueous solution of a reducing saccharide is preferable because of its high reactivity and easy handling, and a glucose aqueous solution is more preferable.

【0010】本発明では、前記液体中に、金属の化合物
またはイオン(以下「金属成分」と称する。)を添加
し、マイクロ波を照射することを特徴とする。マイクロ
波は分子レベルで局部的な加熱を起こさせるため、マイ
クロ波の照射された前記液体中の還元性を有する基また
は還元物質は部分的に反応を開始する。アルコールを例
に採ると、アルコール性水酸基にマイクロ波が照射され
ると、該基はアルデヒド基あるいはカルボキシル基に酸
化される。
The present invention is characterized in that a metal compound or ion (hereinafter referred to as "metal component") is added to the liquid and microwave is irradiated. Since the microwave causes localized heating at the molecular level, the reducing group or reducing substance in the liquid irradiated with the microwave partially starts the reaction. Taking alcohol as an example, when the alcoholic hydroxyl group is irradiated with microwaves, the group is oxidized to an aldehyde group or a carboxyl group.

【0011】この時、系内に金属成分が存在している
と、アルコールが還元剤として働き、当該金属成分が金
属に還元される。その時、金属は非常に細かい微粒子と
して生成する。
At this time, if a metal component is present in the system, the alcohol acts as a reducing agent and the metal component is reduced to a metal. At that time, the metal is generated as very fine particles.

【0012】またその系に、カーボンの粒子または粉体
等の担体となる固体物質を添加しておくと、還元によっ
て生成した金属微粒子が当該固体物質表面に析出し、結
果として金属微粒子を表面に付着させた担体が製造でき
る。
When a solid substance such as carbon particles or powder that serves as a carrier is added to the system, fine metal particles produced by reduction are deposited on the surface of the solid substance, and as a result, fine metal particles are formed on the surface. An attached carrier can be produced.

【0013】担体となる固体物質は、マイクロ波を照射
する系に最初から存在させなくとも、金属成分を含有す
る液体にマイクロ波を照射させることにより液体中に金
属微粒子を生成させた後に、そこに担体となる固体物質
を存在させ、表面に金属微粒子を付着させてもよい。し
かし生成した金属微粒子の付着性や金属微粒子同士の凝
集の防止を考えると、担体となる固体物質は最初から同
じ系に存在させた方が好ましい。
The solid substance serving as a carrier does not need to be present in the microwave irradiation system from the beginning, but after the liquid containing the metal component is irradiated with microwaves to form the metal fine particles in the liquid, the solid substance may be present there. It is also possible to allow a solid substance to be a carrier to exist and to attach the fine metal particles to the surface. However, considering the adhesion of the generated metal fine particles and the prevention of aggregation of the metal fine particles, it is preferable that the solid substance serving as the carrier be present in the same system from the beginning.

【0014】○担体となる固体物質 金属微粒子を表面に付着させる担体としては、固体物質
であれば特に種類は問わないが、マイクロ波を反射させ
ない非金属物質が好ましい。また、形状としては、表面
積が大きくて金属微粒子を付着し易い粒子または粉体が
好ましく、更に好ましくは、カーボンまたはアルミナの
粒子または粉体である。
The solid substance serving as a carrier The carrier to which the metal fine particles are attached on the surface is not particularly limited as long as it is a solid substance, but a non-metallic substance that does not reflect microwaves is preferable. Further, the shape is preferably particles or powder having a large surface area to which metal fine particles are easily attached, and more preferably carbon or alumina particles or powder.

【0015】○金属成分 微粒子化させる金属は、例えば、Fe、Ni、Cu、A
g、Pt、Ru等が挙げられるが、空気の存在下におい
て安定なものであれば、どの金属であっても使用でき、
目的とする用途に応じて選択すれば良い。系内に投入す
る微粒子金属源としては、イオンだけでなく、酸化物ま
たは水酸化物等の化合物の形体でも使用できる。金属成
分は、イオンの形態で存在していると還元し易く好まし
い。金属の化合物の中でも、金属酸化物または水酸化物
も同様に好ましい。一部の金属酸化物または水酸化物
は、使用する還元能を有する液体または還元物質を溶解
した液体に不溶な場合もあるが、当該液体に分散させて
使用することができる。
The metal to be made into fine particles is, for example, Fe, Ni, Cu or A.
g, Pt, Ru, etc., but any metal that is stable in the presence of air can be used,
It may be selected according to the intended use. As the particulate metal source to be charged into the system, not only ions but also compounds in the form of oxides or hydroxides can be used. It is preferable that the metal component is present in the form of an ion because it can be easily reduced. Among the metal compounds, metal oxides or hydroxides are also preferable. Some metal oxides or hydroxides may be insoluble in the liquid having the reducing ability or the liquid in which the reducing substance is dissolved, but can be used by dispersing in the liquid.

【0016】微粒子化を目的とする金属がAgや白金族
元素以外の場合には、系内に、反応開始剤となるAgま
たは白金族元素のイオンを微量添加すると、反応が速や
かに進行するので好ましい。これら元素の中でもPtが
特に効果が大きく好ましい。また、開始剤の添加量は、
微粒子化を目的とする金属成分に対して1モル%以下が
その性能を発揮し易く好ましい。
When the metal for atomization is other than Ag or a platinum group element, the reaction proceeds rapidly when a small amount of Ag or a platinum group element ion as a reaction initiator is added to the system. preferable. Among these elements, Pt is particularly preferable because it has a large effect. The amount of initiator added is
It is preferable that the amount is 1 mol% or less with respect to the metal component for the purpose of forming fine particles, because the performance is easily exhibited.

【0017】微粒子化を目的とする金属に対する還元能
を有する液体または還元物質を溶解した液体の配合量は
特に規定はなく、金属成分のモル数以上の量を適宜選択
すれば良い。照射するマイクロ波の強さと時間は、還元
能を有する液体または還元物質を溶解した液体により適
宜選択するが、0.01〜0.5W/cm3の強度のも
のを数秒〜数十分照射すれば良い。反応の温度は、還元
能を有する液体または還元物質を溶解した液体の沸点以
下であれば良い。
There is no particular limitation on the amount of the liquid having the ability to reduce the metal to be made into fine particles or the liquid in which the reducing substance is dissolved, and the amount may be appropriately selected in an amount of at least the number of moles of the metal component. The intensity and time of the microwave to be irradiated are appropriately selected depending on the liquid having a reducing ability or the liquid in which the reducing substance is dissolved, but the one having an intensity of 0.01 to 0.5 W / cm 3 is irradiated for several seconds to several tens of minutes. Good. The reaction temperature may be equal to or lower than the boiling point of the liquid having reducing ability or the liquid in which the reducing substance is dissolved.

【0018】[0018]

【作用】金属成分を含有した、還元能を有する液体また
は還元物質を溶解した液体にマイクロ波を照射させた場
合に、その系に固体物質が存在していると、金属微粒子
が表面に付着した担体が製造できる理由は定かでない
が、当該固体物質の表面が局部的に加熱されて、そこが
反応場になり、還元によって生成した金属微粒子が担体
となる固体物質表面に析出するためと推測される。
[Function] When a liquid containing a metal component and having a reducing ability or a liquid in which a reducing substance is dissolved is irradiated with microwaves and a solid substance is present in the system, fine metal particles adhere to the surface. The reason why the carrier can be produced is not clear, but it is presumed that the surface of the solid substance is locally heated to serve as a reaction field, and the metal fine particles generated by the reduction are deposited on the surface of the solid substance to be the carrier. It

【0019】[0019]

【実施例】以下、実施例を挙げて更に詳しく本発明を説
明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0020】実施例1 塩化白金酸溶液7ml(Pt含有量0.14g)に粉砕
したカーボンブラック(電気化学工業(株)製AB−1
2)0.14gを添加し、スターラーで10分攪拌、混
合した。試薬特級エチレングリコールで全量を150m
lにし、冷却管を取り付けたガラス製の反応器に全量を
注ぎ、マイクロ波テスト装置(四国計測工業(株)製)
にて0.022W/cm3の出力でマイクロ波を6分間照
射した。液温が室温になった後に、全量を吸引ろ過し、
得られた固形物を包埋用常温硬化型エポキシ樹脂に添加
して混ぜて包埋をおこなった後に、ウルトラミクロトー
ムにて厚さ70nmの超薄切片を作成して、透過型電子
顕微鏡観察した。その結果、カーボンブラックの表面に
は5〜10nmの大きさのPt粒子が生成しているのが
確認できた。
Example 1 Carbon black pulverized into 7 ml of chloroplatinic acid solution (Pt content 0.14 g) (AB-1 manufactured by Denki Kagaku Kogyo KK)
2) 0.14 g was added, and stirred and mixed for 10 minutes with a stirrer. Reagent grade ethylene glycol with a total volume of 150 m
1, and the whole amount was poured into a glass reactor equipped with a cooling tube, and a microwave test device (manufactured by Shikoku Instrument Co., Ltd.)
At a power of 0.022 W / cm 3 for 6 minutes. After the liquid temperature reaches room temperature, the whole amount is suction filtered,
The obtained solid matter was added to a room temperature curing type epoxy resin for embedding and mixed for embedding, and then an ultrathin section having a thickness of 70 nm was prepared with an ultramicrotome and observed with a transmission electron microscope. As a result, it was confirmed that Pt particles having a size of 5 to 10 nm were generated on the surface of carbon black.

【0021】実施例2 白金0.0001mmolを溶解した硝酸銀溶液7ml
(Ag含有量0.14g)に、粉砕したカーボンブラッ
ク(電気化学工業(株)製AB−12)0.14gを添
加し、スターラーで10分攪拌し、カーボンブラックと
白金を混合した。試薬特級エチレングリコールで全量を
150mlにし、実施例1に示した装置にて、同様の操
作を行い生成した銀粒子を透過型電子顕微鏡で観察し
た。その結果、カーボンブラックの表面には5〜20n
mの大きさのAg粒子が生成しているのが確認できた。
Example 2 7 ml of a silver nitrate solution in which 0.0001 mmol of platinum was dissolved
0.14 g of pulverized carbon black (AB-12 manufactured by Denki Kagaku Kogyo KK) was added to (Ag content 0.14 g), and the mixture was stirred with a stirrer for 10 minutes to mix carbon black and platinum. The total amount of the reagent grade ethylene glycol was adjusted to 150 ml, and the silver particles produced by the same operation as in Example 1 were observed with a transmission electron microscope. As a result, the surface of carbon black is 5-20n
It was confirmed that Ag particles having a size of m were generated.

【0022】実施例3 白金0.0001mmolを溶解した水酸化ニッケル分
散液7ml(Ni含有量0.14g)に、実施例2に示
す操作を施した後に、透過型電子顕微鏡で観察したとこ
ろ、カーボンブラックの表面には5〜20nmの大きさ
のNi粒子が生成しているのが確認できた。
Example 3 7 ml of a nickel hydroxide dispersion liquid (Ni content 0.14 g) in which 0.0001 mmol of platinum was dissolved was subjected to the procedure shown in Example 2 and then observed with a transmission electron microscope. It was confirmed that Ni particles having a size of 5 to 20 nm were generated on the surface of the black.

【0023】比較例1 塩化白金酸を溶解したブタノール30ml(Pt含有量
0.14g)に粉砕したカーボンブラック(電気化学工
業(株)製AB−12)0.14gを添加し、スターラ
ーで10分攪拌、混合した。カーボンブラックをブタノ
ールから濾別し、得られたカーボンブラックを200℃
で1時間酸化分解した後に、200℃の水素気流下で2時
間還元し、カーボンブラックの表面に白金を析出させ
た。透過型電子顕微鏡で観察したところ、カーボンブラ
ックの表面に析出しているPtの粒径は大きく、20〜
200nm程あった。中には10nm程度の細かい粒子
も存在したが、その多くは二次凝集しており、全体とし
て大きな粒径の固まりとなっていた。
Comparative Example 1 0.14 g of pulverized carbon black (AB-12 manufactured by Denki Kagaku Kogyo KK) was added to 30 ml of butanol (Pt content 0.14 g) in which chloroplatinic acid was dissolved, and the mixture was stirred for 10 minutes with a stirrer. Stir and mix. The carbon black is filtered off from butanol and the carbon black obtained is heated to 200 ° C.
After oxidative decomposition for 1 hour, the mixture was reduced for 2 hours under a hydrogen stream at 200 ° C. to deposit platinum on the surface of carbon black. Observation with a transmission electron microscope revealed that the particle size of Pt deposited on the surface of the carbon black was large and was 20 to 20.
It was about 200 nm. Although there were fine particles of about 10 nm, most of them were secondary agglomerated, and became a lump with a large particle size as a whole.

【0024】[0024]

【発明の効果】本発明によれば、簡単な操作で、安価に
金属の微粒子を生成させ、更にこれを表面に担持させた
金属微粒子付着担体を製造することができ、得られた金
属微粒子付着担体は各種反応の触媒、センサー用電極或
いは電子材料として有用である。
EFFECTS OF THE INVENTION According to the present invention, it is possible to produce metal fine particles at low cost by a simple operation and to produce a metal fine particle-adhered carrier having the metal particles supported on the surface thereof. The carrier is useful as a catalyst for various reactions, a sensor electrode, or an electronic material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22F 9/24 B22F 9/24 B C E Fターム(参考) 4G069 AA01 AA03 AA08 BA01A BA08A BA08B BB02A BB02B BC32B BC68B BC75B DA05 EA01X EA01Y EA02X EA02Y EB19 FA01 FA02 FB14 FB18 FB46 FB58 4K017 AA03 BB02 BB05 BB06 CA08 DA01 DA09 EJ01 FB04 FB11 4K018 BA01 BA02 BA04 BA13 BC26 BC32 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B22F 9/24 B22F 9/24 B C EF term (reference) 4G069 AA01 AA03 AA08 BA01A BA08A BA08B BB02A BB02B BC32B BC68B BC75B DA05 EA01X EA01Y EA02X EA02Y EB19 FA01 FA02 FB14 FB18 FB46 FB58 4K017 AA03 BB02 BB05 BB06 CA08 DA01 DA09 EJ01 FB04 FB11 4K018 BA01 BA02 BA04 BA13 BC26 BC32 BC32

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 担体となる固体物質の存在下、金属の化
合物またはイオンを含有した、還元能を有する液体また
は還元物質を溶解した液体に、マイクロ波を照射させる
か、或いは、金属の化合物またはイオンを含有した、還
元能を有する液体または還元物質を溶解した液体に、マ
イクロ波を照射させた後に、担体となる固体物質を存在
させることを特徴とする、金属微粒子を表面に付着させ
た金属微粒子付着担体の製造方法。
1. In the presence of a solid substance serving as a carrier, a liquid containing a metal compound or ions and having a reducing ability or a liquid in which a reducing substance is dissolved is irradiated with microwaves, or a metal compound or A metal having metal fine particles adhered to the surface, characterized in that a solid substance serving as a carrier is present after microwave irradiation to a liquid containing an ion or having a reducing ability dissolved therein A method for producing a fine particle-attached carrier.
【請求項2】 担体となる固体物質が非金属物質である
請求項1の金属微粒子付着担体の製造方法。
2. The method for producing a carrier having metal fine particles adhered thereto according to claim 1, wherein the solid substance serving as a carrier is a non-metal substance.
【請求項3】 担体となる固体物質がカーボンまたはア
ルミナからなる請求項2の金属微粒子付着担体の製造方
法。
3. The method for producing a fine metal particle-attached carrier according to claim 2, wherein the solid substance serving as a carrier is carbon or alumina.
【請求項4】 担体となる固体物質が粒子または粉体で
あり、かつ還元能を有する液体または還元物質を溶解し
た液体に分散させることを特徴とする請求項1乃至3の
金属微粒子付着担体の製造方法。
4. The carrier according to claim 1, wherein the solid substance serving as a carrier is particles or powder, and a liquid having reducing ability or a liquid in which the reducing substance is dissolved is dispersed. Production method.
JP2001199727A 2001-06-29 2001-06-29 Method for manufacturing carrier with metal fine particles Pending JP2003013105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001199727A JP2003013105A (en) 2001-06-29 2001-06-29 Method for manufacturing carrier with metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001199727A JP2003013105A (en) 2001-06-29 2001-06-29 Method for manufacturing carrier with metal fine particles

Publications (1)

Publication Number Publication Date
JP2003013105A true JP2003013105A (en) 2003-01-15

Family

ID=19036980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001199727A Pending JP2003013105A (en) 2001-06-29 2001-06-29 Method for manufacturing carrier with metal fine particles

Country Status (1)

Country Link
JP (1) JP2003013105A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517260A (en) * 2003-01-31 2006-07-20 ブルース,ラルフ,ダブリュー. Microwave-assisted continuous synthesis of nanocrystalline powders and coatings using the polyol process
JP2007179785A (en) * 2005-12-27 2007-07-12 Sanyo Chem Ind Ltd Method of manufacturing conductive fine particles
JP2007179781A (en) * 2005-12-27 2007-07-12 Sanyo Chem Ind Ltd Method of manufacturing conductive fine particles
WO2008032797A1 (en) 2006-09-15 2008-03-20 Nippon Shokubai Co., Ltd. Catalyst for production of alkylene oxides, process for production of the catalyst, and process for production of alkylene oxides with the catalyst
JP2008075181A (en) * 2006-09-21 2008-04-03 Samsung Electro Mech Co Ltd Method for manufacturing copper nanoparticle using microwave
JP2009525841A (en) * 2005-06-10 2009-07-16 ミシガン ステイト ユニバーシティー Method for producing a composition of nanoparticles on a solid surface
JP2011056428A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Apparatus for manufacturing metal-supported material and method of manufacturing metal-supported material
JP2012245461A (en) * 2011-05-27 2012-12-13 Univ Of Miyazaki Method for producing catalyst fine particle, and method for producing carbon-supported catalyst fine particle
US8563463B1 (en) 2012-06-29 2013-10-22 Nissan North America, Inc. Rapid synthesis of fuel cell catalyst using controlled microwave heating
JP2014118588A (en) * 2012-12-14 2014-06-30 Denso Corp Method for manufacturing particulates
JP2016198725A (en) * 2015-04-10 2016-12-01 新日本電工株式会社 Method for producing noble metal-supported catalyst for exhaust gas purification

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517260A (en) * 2003-01-31 2006-07-20 ブルース,ラルフ,ダブリュー. Microwave-assisted continuous synthesis of nanocrystalline powders and coatings using the polyol process
JP2009525841A (en) * 2005-06-10 2009-07-16 ミシガン ステイト ユニバーシティー Method for producing a composition of nanoparticles on a solid surface
US9545670B2 (en) 2005-06-10 2017-01-17 Board Of Trustees Of Michigan State University Compositions of nanoparticles on solid surfaces
JP2007179785A (en) * 2005-12-27 2007-07-12 Sanyo Chem Ind Ltd Method of manufacturing conductive fine particles
JP2007179781A (en) * 2005-12-27 2007-07-12 Sanyo Chem Ind Ltd Method of manufacturing conductive fine particles
WO2008032797A1 (en) 2006-09-15 2008-03-20 Nippon Shokubai Co., Ltd. Catalyst for production of alkylene oxides, process for production of the catalyst, and process for production of alkylene oxides with the catalyst
US8017546B2 (en) 2006-09-15 2011-09-13 Nippon Shokubai Co., Ltd. Catalyst for producing alkylene oxide, method for producing the same, and method for producing alkylene oxide using said catalyst
US8864871B2 (en) 2006-09-21 2014-10-21 Samsung Electro-Mechanics Co., Ltd. Method for manufacturing copper nanoparticles using microwaves
JP2008075181A (en) * 2006-09-21 2008-04-03 Samsung Electro Mech Co Ltd Method for manufacturing copper nanoparticle using microwave
JP2011056428A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Apparatus for manufacturing metal-supported material and method of manufacturing metal-supported material
JP2012245461A (en) * 2011-05-27 2012-12-13 Univ Of Miyazaki Method for producing catalyst fine particle, and method for producing carbon-supported catalyst fine particle
US8563463B1 (en) 2012-06-29 2013-10-22 Nissan North America, Inc. Rapid synthesis of fuel cell catalyst using controlled microwave heating
US9504999B2 (en) 2012-06-29 2016-11-29 Nissan North America, Inc. Rapid synthesis of fuel cell catalyst using controlled microwave heating
JP2014118588A (en) * 2012-12-14 2014-06-30 Denso Corp Method for manufacturing particulates
JP2016198725A (en) * 2015-04-10 2016-12-01 新日本電工株式会社 Method for producing noble metal-supported catalyst for exhaust gas purification

Similar Documents

Publication Publication Date Title
Xu et al. Microbial synthesis of Pd–Pt alloy nanoparticles using Shewanella oneidensis MR-1 with enhanced catalytic activity for nitrophenol and azo dyes reduction
Murugadoss et al. Chitosan-stabilized gold, gold–palladium, and gold–platinum nanoclusters as efficient catalysts for aerobic oxidation of alcohols
CN100494076C (en) Transition metal-magnetic ferric oxide nano-composite material, its production and uses
Chandler et al. Dendrimer-encapsulated bimetallic nanoparticles: synthesis, characterization, and applications to homogeneous and heterogeneous catalysis
CN105163884A (en) Synthesis of bimetallic nanoparticle catalysts by using microwave irradiation
JP2003013105A (en) Method for manufacturing carrier with metal fine particles
CN107537517B (en) Alloy colloid and preparation method and application thereof
CN110201680B (en) Catalyst for selective hydrogenation of alpha, beta-unsaturated aldehyde/ketone, preparation method and catalysis method
US20060182997A1 (en) Noble metal-magnetic metal oxide composite particle and method for producing same
JPWO2014038504A1 (en) Catalyst carrier comprising gold nanoparticles and method for producing the same
CN110997198B (en) Silver particles and method for producing same
CN106323935B (en) Magnetic composite SERS substrate with core-shell-satellite three-dimensional structure and preparation method thereof
Lu et al. Synthesis of chain-like Ru nanoparticle arrays and its catalytic activity for hydrogenation of phenol in aqueous media
Felix et al. Template-based synthesis of metallic Pd nanotubes by electroless deposition and their use as catalysts in the 4-nitrophenol model reaction
Zhao et al. New core–shell hybrid material IR-MOF3@ COF-LZU1 for highly efficient visible-light photocatalyst degrading nitroaromatic explosives
JP2010065265A (en) Metal nanoparticle and method for producing the composite powder
JP4979492B2 (en) Noble metal / magnetic metal oxide composite fine particles and production method thereof
CN100391664C (en) Method for preparing single dispersion metal nanometer particles
JP2020063487A (en) AgPd CORE-SHELL PARTICLE AND USE THEREOF
CN103476524A (en) Method for manufacturing metal nanoparticles having a core-shell structure with good oxidation stability
CN102330149A (en) Preparation method of dendritic gold nano single crystal
EP4257269A1 (en) Gold-supported carbon catalyst and method for manufacturing same
CN107552053B (en) Preparation method of P25 loaded molecular cobalt/nickel and other active site materials
Asharani et al. Synthesis of dendrimer‐encapsulated silver nanoparticles and its catalytic activity on the reduction of 4‐nitrophenol
RU2446009C1 (en) Method of preparing platinum-ruthenium electrocatalysts