JPH055869B2 - - Google Patents

Info

Publication number
JPH055869B2
JPH055869B2 JP58179322A JP17932283A JPH055869B2 JP H055869 B2 JPH055869 B2 JP H055869B2 JP 58179322 A JP58179322 A JP 58179322A JP 17932283 A JP17932283 A JP 17932283A JP H055869 B2 JPH055869 B2 JP H055869B2
Authority
JP
Japan
Prior art keywords
water
resin
organic solvent
acrylic resin
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58179322A
Other languages
Japanese (ja)
Other versions
JPS6071639A (en
Inventor
Oko Naito
Atsuhiro Yamamoto
Shinichi Azuma
Tadashi Nakamura
Masanori Ueno
Shunichi Ueda
Yasunori Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP17932283A priority Critical patent/JPS6071639A/en
Publication of JPS6071639A publication Critical patent/JPS6071639A/en
Publication of JPH055869B2 publication Critical patent/JPH055869B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水性樹脂組成物の製造方法に関し、更
に詳しくは金属を対象とした焼付用被覆組成物と
して、特に缶内面用塗料として優れた皮膜を形成
することができる水性樹脂組成物の製造方法に関
する。 従来より、缶用塗料や防食塗料は省資源、省エ
ネルギー、低公害化、安全衛生性等の面から、水
系への移行が望まれており、種々の方法が提案さ
れているが、塗料の分散性、貯蔵安定性、塗装適
性および塗膜の化学的物理的性質等の実用物性に
特に優れたものとして近年自己乳化型エポキシ樹
脂が種々提案されてきている。 ひとつの方法としてはエポキシ樹脂を他の化合
物で変性して、乳化力のあるセグメントを分子中
に導入した自己乳化型のエポキシ樹脂分散体があ
る。 例えば、特開昭53−1228号公報には、エポキシ
樹脂の存在下にてベンゾイルパーオキサイドなど
のフリーラジカル発生剤を用いてカルボン酸モノ
マーを含むモノマー混合物を重合することにより
得られるグラフト化されたエポキシ樹脂が塩基を
含む水性媒体中に安定に分散され得ることが示さ
れている。 次に特開昭56−43362号公報には、エポキシ樹
脂とカルボキシル官能性重合体とを特定の第三級
アミンの存在下に反応せしめた水担持コーテイン
グ組成物が開示されている。 また、特開昭55−3481号公報、および特開昭55
−3482号公報には、カルボキシル基官能性ポリマ
ーをアミン系エステル化触媒の存在下でエポキシ
樹脂とエステル化し塩基によつて水中に自己乳化
し得る自己乳化性エポキシエステルコポリマーが
開示されている。 しかしながら、上記の自己乳化型エポキシ樹脂
はいずれの場合においても製造工程中に有機溶剤
を使用せざるを得ない。即ち、(1)エポキシ樹脂溶
解工程、(2)エポキシ樹脂反応工程、(3)グラフト工
程、(4)アクリル樹脂合成工程または(5)エステル化
工程等には有機溶剤が不可欠である。その結果最
終製品となる水性塗料等の水性樹脂組成物中にも
かなりの有機溶剤が残存しており、現在社会的に
強く要請されている省資源、低公害および安全衛
生性等に充分答えることができないという欠点を
有していた。 上記欠点を除くために、(1),(2)および(3)に対し
ては水溶性エポキシ樹脂を用いる。(3),(4)および
(5)に対してはエマルシヨン反応や懸濁反応を行う
ことが試みられているが、どちらの方法も、塗料
の分散性、貯蔵安定性および塗膜の耐水性等に欠
点があり実用となり得なかつた。 本発明者等は上記の問題点を克服すべく鋭意研
究を重ねた結果、工程途中において有機溶剤が多
量に含まれる中間物を用いた場合であつても、適
切な条件を選んで該有機溶剤を水と置換させるこ
とによつて、社会的要請にあつた省資源、省エネ
ルギー、低公害および安全衛生性に優れ、かつ自
己乳化型エポキシ樹脂が従来持つている物理的化
学的に優れた特性を持ち、かつ塗料の分散性、貯
蔵安定性、塗装性に優れた水分散体を得られるこ
とを見出し、この知見に基いて本発明をなすに至
つた。 すなわち、本発明は、少なくとも1種類の沸点
が水より高い有機溶剤を含む有機溶剤中で下記反
応物Cを形成し、次いで、反応物C溶液を水を含
む媒体のPHが4〜11となる量のアンモニアもしく
はアミンの存在下に分散せしめることにより固形
分が10〜50重量%である分散体Dを形成し、次い
で、分散体Dの分散状態を保つたまま上記沸点が
水より高い有機溶剤と水とを減圧下共沸蒸留によ
り留去しつつ水を媒体中に添加し上記媒体中の有
機溶剤を実質的に水と置換せしめ、かつブタノー
ル、ペンタノール、ヘキサノール、ヘキシルセロ
ソルブ、ブチルカルビトールから選ばれる少なく
とも1種の塗装性に有孔な有機溶剤を20phr以下
で残存せしめるか又は添加する水性樹脂分散体の
製造方法。 一塩基性カルボン酸モノマーを35〜70重量%を
含む共重合性モノマー混合物を共重合せしめたア
クリル系樹脂Aと、一分子中に平均1.1ないし2.0
個のエポキシ基を有する数平均分子量1400以上の
芳香族系エポキシ樹脂Bとを触媒の存在下もしく
は不存在下で反応せしめたアクリル系樹脂・エポ
キシ樹脂部分反応物Cである。 本発明において用いられるアクリル系樹脂Aは
アクリル酸もしくはメタクリル酸などの一塩基性
カルボン酸モノマーを35〜70重量%含む共重合性
モノマー混合物を溶剤中でアゾビスイソブチロニ
トリルあるいはベンゾイルパーオキサイドなどの
通常のラジカル重合開始剤を用いて80℃ないし
150℃の温度で共重合せしめることにより得るこ
とができる。反応溶剤は特に制限はないが、下記
(1)〜(3)の性質を満足するものが望ましい。(1)アク
リル系樹脂の良溶媒であること。(2)後続する工程
の反応の防げにならないこと。例えば、無触媒エ
ステル化が次工程の場合は120℃以上の沸点の溶
剤が望ましい。(3)溶剤置換工程に有利な、水と共
沸するかまたは比較的低沸点の溶剤であること。 上記アクリル系樹脂において一塩基性カルボン
酸モノマーを70重量%を超えて使用すると、反応
系の粘度が極端に大きくなり製造が困難となるば
かりでなく、このような組成物を用いて得られた
塗料は、塗膜の耐水性が劣り、特に缶用途に使用
される場合にはボイル後の塗膜の白化をもたら
す。逆に一塩基性カルボン酸モノマーが35重量%
より少なく使用すると、塗膜の耐溶剤性が劣り、
缶用途に使用される場合にはフレーバーが悪くな
る傾向が避けられず、更に12重量%より少なく使
用すると金属に対する密着性も悪くなる傾向があ
る。 発明に用いられる不飽和カルボン酸モノマー以
外の単量体としては、アクリル酸メチル、アクリ
ル酸エチル、アクリル酸イソプロピル、アクリル
酸n−ブチル、アクリル酸イソブチル、アクリル
酸n−アミル、アクリル酸イソアミル、アクリル
酸n−ヘキシル、アクリル酸2−エチルヘキシ
ル、アクリル酸n−オクチル、アクリル酸デシ
ル、アクリル酸ドデシルなどのアクリル酸エステ
ル類、メタクリル酸メチル、メタクリル酸プロピ
ル、メタクリル酸n−ブチル、メタクリル酸イソ
ブチル、メタクリル酸n−アミル、メタクリル酸
n−ヘキシル、メタクリル酸n−オクチル、メタ
クリル酸2−エチルヘキシル、メタクリル酸デシ
ル、メタクリル酸ドデシルなどのメタクリル酸エ
ステル類、スチレン、ビニルトルエン、2−メチ
ルスチレン、t−ブチルスチレン、クロルスチレ
ンなどのスチレン系モノマー、アクリル酸ヒドロ
キシエチル、アクリル酸ヒドロキシプロピル、メ
タクリル酸ヒドロキシエチル、メタクリル酸ヒド
ロキシプロピルなどのヒドロキシ基含有モノマ
ー、N−メチロール(メタ)アクリルアミド、N
−ブトキシメチル(メタ)アクリルアミドなどの
N−置換(メタ)アクリル系モノマー、アクリル
酸グリシジル、メタクリル酸グリシジルなどのエ
ポキシ基含有モノマー、並びにアクリロニトリル
などの1種又は2種以上から選択することができ
る。 上記アクリル系樹脂Aは重量平均分子量で3000
ないし80000好ましくは4000ないし40000の範囲の
ものが用いられる。また、酸価は固形分換算で
190ないし310のものが適当である。 上記重量平均分子量が3000より小さいと塗膜の
架橋密度が増大する結果、加工性に支障をきた
し、また、40000、特に80000より大きくなると芳
香族系エポキシ樹脂Bとの反応時ゲル化を生じや
すくなる傾向がある。 本発明において用いられる1分子中に平均1.1
個ないし2.0個のエポキシ基を有する数平均分子
量1400以上の芳香族系エポキシ樹脂としては、エ
ピクロルヒドリン/ビスフエノール型エポキシ樹
脂、例えばシエル化学(株)より市販されている商品
名でエピコート1004、エピコート1007、エピコー
ト1009、あるいは大日本インキ化学(株)より市販さ
れている商品名でエピクロン4050、エピクロン
7050などがある。 また上記芳香族系エポキシ樹脂のエポキシ基
に、脱水ヒマシ油、大豆油脂肪酸、ヤシ油脂肪酸
などの植物油脂肪酸もしくはビスフエノールAな
どの変性剤を反応せしめた変性エポキシ樹脂を使
用することもできる。 エポキシ樹脂を溶解する溶剤もアクリル樹脂合
成工程と同様であり、特に制限はないが以下(1)〜
(3)の性質を満足するものが望ましい。(1)エポキシ
樹脂の良溶媒であること。(2)後続する工程の反応
の防げにならないこと。例えば次工程で無触媒エ
ステル化を行う場合は120℃以上の沸点の溶剤が
望ましい。(3)溶剤置換工程に有利な水と共沸する
かまたは比較的低沸点の溶剤であること。 本発明において、前記アクリル系樹脂Aと前記
芳香族系エポキシ樹脂Bとを反応せしめたカルボ
キシル基過剰のエポキシ樹脂・アクリル系樹脂部
分反応物は、無触媒下では、ヘキシルセロソル
ブ、ブチルセロソルブ、メチルセロソルブアセテ
ート、エチルセロソルブアセテールなどの高沸点
の溶剤中でアクリル系樹脂と芳香族エポキシ樹脂
とを120℃以上好ましくは140℃程度の温度で反応
することにより得ることができる。120℃以下の
沸点を有する比較的低沸点の溶剤、例えばメチル
セロソルブ、酢酸エチル、n−ブタノール、sec
−ブタノール、ter−ブタノールなどは使用でき
ないことはないが、120℃以上の温度で反応させ
るためには系を加圧する必要がある。本発明にお
いてカルボキシル基とエポキシ基の反応触媒とし
て従来知られているアミンもしくはアンモニアを
共存させないで両者を反応させる場合には比較的
高温が必要であり、100℃以下の反応温度では実
用的な範囲の反応時間となり得ない。反応時間は
反応温度あるいは最終的に必要とされるエポキシ
樹脂・アクリル系樹脂部分反応物の残存オキシラ
ン濃度などによつて変わり得るが、通常は3ない
し12時間程度である。 上記アクリル系樹脂Aと上記芳香族系エポキシ
樹脂Bとの固形分比は、2対1ないし1対5の範
囲から選ばれる。アクリル系樹脂Aと芳香族系エ
ポキシ樹脂Bとの固形分比が2対1よりアクリル
系樹脂Aが多い場合は最終塗料の粘性に問題があ
り、スプレー塗装性、特にタレ性が悪くなる。ま
た逆にアクリル系樹脂Aと芳香族系エポキシ樹脂
Bとの固形分比が1対5より芳香族系エポキシ樹
脂Bが多い場合は樹脂中の疎水性部分が多くなり
すぎるために乳化剤を使用せずに安定した分散体
を得ることが困難となる。 本発明ではアクリル系樹脂Aと芳香族エポキシ
樹脂Bとを触媒下もしくは無触媒下で反応させ、
カルボキシル基過剰のエポキシ樹脂・アクリル樹
脂部分反応物Cを得る。このエポキシ樹脂・アク
リル樹脂部分反応物Cから、水とその少なくとも
1種類の沸点が水より高い1種類もしくは2種類
以上の有機溶剤とからなる媒体にそのPHが4〜
11となる量のアンモニアもしくはアミンの存在下
に分散している該反応物の樹脂固形分比が10〜50
重量%である分散体Dを得る。 分散体D中に含まれる有機溶剤は(1)水と共沸し
除去しうる成分、または(2)水より沸点が低く容易
に除去でき水に置換されうる成分、または(3)最終
分散体になるまで残り塗装性に有効である極少量
の成分の内どれか1つの条件を満たさなければな
らない。該有機溶剤は以下に制限されないが例示
すると(1)としてはトルエン、キシレン等の炭化水
素、トリクロロエタン等のハロゲン化炭化水素、
ブタノール、ペンタノール等のアルコール類、ジ
ブチルエーテル、ジブチルセロソルブ等のエーテ
ル類、メチルイソブチルケトン、ヘプタノン等の
ケトン類、酢酸プロピル、酢酸ブチル等のエステ
ル類、メチルセロソルブ、エチルセロソルブ等の
エーテルアルコール類、メチルセロソルブアセテ
ート、エチルセロソルブアセテート等のエーテル
エステル類等がある。(2)としてはヘキサン、ヘプ
タン、メタノール、エタノール、エチルエーテ
ル、アセトン、メチルエチルケトン、酢酸エチル
等がある。(3)としてはブタノール、ペンタノー
ル、ヘキサノール、ヘキシルセロソルブ、ブチル
カルビトール等がある。 エポキシ樹脂・アクリル樹脂部分反応物C中に
含まれる有機溶剤が分散体D中に含まれる有機溶
剤の条件を満たさない場合は条件を満たす有機溶
剤に置換する必要がある。 分散体D中のアミンとしては例えば、トリメチ
ルアミン、トリエチルアミン、ブチルアミン等の
アルキルアミン類、2−ジメチルアミノエタノー
ル、ジエタノールアミン、トリエタノールアミ
ン、アミノメチルプロパノール等のアルコールア
ミン類、モルホリン等が使用される。またエチレ
ンジアミン、ジエチレントリアミン等多価アミン
も使用できる。 分散体Dの樹脂固形分が50重量%より高い段階
ではW/O型エマルシヨンからO/W型エマルシ
ヨンへの転相が十分でない場合が多く安定なO/
W型エマルシヨンを得るためには50重量%以下が
望ましい。 本発明では分散体Dを任意の方法で攪拌しなが
ら常圧もしくは減圧下にて共沸蒸留し、共沸成分
を除去しつつ、水を連続的に滴下するか、所定量
の水を数度に分けて加え、分散体の固形分を常に
一定範囲内に制御し、分散体Dの分散状態を安定
化する。共沸蒸留中に固形分を30重量%より高く
すると系のエマルシヨンが破壊されたり、粘度が
高くなることにより反応容器への付着が著しくな
り不適切な度合が多い。一方固形分を10重量%よ
り低くすると系の粘度が低くなるために発泡が激
しくなり、共沸蒸留の操作が困難となる場合が多
いので特に制限はされないが、共沸蒸留中の固形
分は10ないし30重量%の範囲で制御することが望
ましい。また分散体Dは不安定な系であることが
多く、熱や圧力に対して弱い場合があるので注意
を要する。通常、分散体Dにかける加熱は120℃
以下にし、減圧下で行うことが望ましい。 本発明では、分散体Dから有機溶剤の少なくと
も1種類と水とを共沸蒸留せしめ、該有機溶剤を
実質的に置換せしめるが、ここで「実質的」と
は、(1)塗装性に有用な有機溶剤については有機溶
剤総量で20phr以下にすること、および(2)塗装性
に重要でないか逆に塗装性を悪くする有機溶剤は
すべて0.1phr以下にすることを意味する。ここで
「phr」とは樹脂固形分100重量部に対する対象物
質の重量部を示す(以下、同様の意味で「phr」
を使用する。)。 本発明に係わる水性樹脂組成物は、必要に応じ
て、例えば、ヘキサメトキシメチルメラミン、メ
チロール化ベンゾグアナミン樹脂、メチロール化
尿素樹脂などの水性のアミノプラスト樹脂、ある
いは塗工性を改良するための界面活性剤、消泡剤
などを添加して塗料として用いることができる。 適用される基材としては、未処理鋼板、処理鋼
板、亜鉛鉄板、ブリキ板などの金属板が適してお
り、塗装方法としては、エアスプレー、アエレス
スプレー、静電スプレーなどのスプレー塗装が好
ましいが浸漬塗装、ロールコーター塗装、電着塗
装なども可能である。また焼付条件は、温度150
℃ないし230℃、時間としては2ないし30分の範
囲から選ぶことができる。 本発明の水性樹脂組成物の特長を挙げると、第
1に有機溶剤量が20phr以下即ち、固形分20重量
%の有機溶剤量3重量%以下とすることができる
ために取り扱い作業の労働安全性を大幅に改善で
き更に引火点が無いために消防および保安の面で
も優れ、公害対策でも著しく有利になり、社会の
現実的要請に十分答え得ることである。第2に有
機溶剤をほとんど使用していないにもかかわら
ず、従来の多量の有機溶剤を含む水性塗料に対し
てはもちろん、有機溶剤のみを使用した塗料に対
しても十分同等以上の塗装性を持つていることで
ある。 第3に表面に油の層を有している金属板あるい
は油で汚染された金属板に対して、前処理を施す
ことなく塗装できることである。この作用がどの
ような機構に基づいているのかは論理的には十分
解明されていないが、樹脂組成物の組成上の相違
が、水性媒体中に分散した樹脂の微粒子に何らか
の界面化学的な影響を及ぼしているものと考えら
れる。 第4に、塗料のフロー、レベリング性が良く、
したがつてハイソリツド化が可能であることであ
る。触媒を使用したものでは、固形分がせいぜい
20重量%程度であるのに対し、本発明では固形分
が40重量%の水性分散体が可能である。 第5に、金属板に対する密着性がよく、塗膜硬
度、耐ボイル性、加工性および保存性のバランス
に優れている。 第6に、アクリル系樹脂のモノマー組成が適切
であるためフレーバー適性がある。 本発明の水性樹脂組成物は、用途に応じて、適
当な防錆剤、顔料、充填剤などを配合して防錆プ
ライマー、印刷インキ、防食性塗料などに使用す
ることもできる。 以下、本発明を実施例により説明する。次の様
な手順にてアクリル系樹脂A溶液、エポキシ樹
脂・アクリル系樹脂の部分反応物C溶液および水
性分散体Dの調整を行なつた。なお、例中「部」、
「%」はそれぞれ「重量部」、「重量%」を示す。 実施例 1 (i) アクリル系樹脂(a)の調製 番号 化合物 部 1 メチルセロソルブアセテート(以下MCAと
略す) 1000 2 モノマー スチレン 180.6 3 モノマー アクリル酸エチル 86 4 モノマー メタクリル酸 163 5 重合触媒 過酸化ベンゾイル 6.4 還流凝集器、モノマータンク、モノマー流量調
節器、温度計、攪拌機を装着した四ツ口フラスコ
を窒素置換し、(1)を仕込んだ。モノマータンクに
はモノマー混合物(2)〜(4)および重合触媒(5)を混合
しておき、その4分の1を上記フラスコに仕込ん
だ(1)に加えて徐々に加熱し105℃に保持した。残
りの混合モノマーを2時間に亘り添加し、滴下終
了後さらに2時間攪拌を続け室温に冷却した。得
られた溶液は、固形分30.1%、粘度U−V(ガー
ドナー気泡粘度形、25℃、以下の例についても粘
度は25℃の測定値を示す)酸価247mgKOH/g
(固形分換算、以下の例についても同じ)のアク
リル系樹脂(a)溶液であつた。 (ii) エポキシ樹脂・アクリル系樹脂部分反応物 (c) 溶液の調製 番号 成分 部 6 MCA 2100 7 エピコート1009
(シエル化学(株)製エポキシ樹脂)900 8 前記()のアクリル系 樹脂(a)溶液 1000 四ツ口フラスコに攪拌機、還流凝集器、温度計
および溶剤除去装置を装着して窒素置換した後、
(6)および(7)を仕込み110℃に加熱し攪拌を続ける。
エポキシ樹脂を完全に溶解した後、(8)を加えて
135℃まで昇温し、この温度を保持したまま8時
間に亘り攪拌を続けエポキシ樹脂・アクリル系樹
脂部分反応物cを得た。この間試料を定期的に取
り出して粘度のチエツクを行つた。反応終了時の
溶液の性状は固形分30.1%、粘度U−V、オキシ
ラン基の減少率は61%であつた。 (iii) 水性分散体dの調製 番号 成分 部 9 前記()のエポキシ樹脂・アクリル系樹脂
の部分反応物c 2800 10 アンモニア水 54.2 11 イオン交換水 487.8 12 イオン交換水 2236 攪拌機、還流凝縮器、温度計および溶剤除去装
置を装着した四ツ口フラスコを窒素置換した後、
(9)を仕込み内温80〜120℃、内圧60〜400mmHg程
度の条件でMCAを一部除去して固形分を58%に
した後冷却して内温70℃以下で(10)と(11)の混合物
を添加し、良くかきまぜてから更に(12)を加え
た。この時温度は50℃であつた。室温まで冷却し
た後濾過を行い取り出した。得られた分散体dは
固形分20.1%、水/有機溶剤比は82/18であつ
た。 (iv) 溶剤置換と最終水性樹脂組成物の調製 番号 成分 部 13 前記()の水性分散体d 4183 14 ヘキシルセロソルブ 168 15 イオン交換水(1) 1249 16 イオン交換水(2) 4900 四ツ口フラスコに攪拌機、還流凝集器、温度計
および溶剤除去装置を装着して窒素置換した後、
(13)を仕込み攪拌しながら(14)および(15)を添加
し、70℃に加熱後徐々に減圧し脱溶媒を開始し
た。内温50〜70℃、内圧60〜160mmHgの条件下で
脱溶媒しながら同時に脱溶媒量と同僚のイオン交
換水を(16)の中から加えて溶剤置換を行つた。溶
剤置換中の分散体の固形分は15〜20%に保持し
た。ガスクロマトグラフイーにより、分散体に残
留する有機溶剤量をチエツクし、MCAが0.1phr
以下になつた時点で溶剤置換を終了した。終了時
点でヘキシルセロソルブは5.2phrであつたので追
加して20phrとした。これに界面活性剤ナトリウ
ムジアルキルスルホサクシネートを0.2%添加し
た。以下の例においても特にことわらない限りヘ
キシルセロソルブ量は20phrとし、界面活性剤も
0.2%添加した。 得られた水性樹脂組成物の固形分は20.1%、粘
度37秒(フオードカツプNo.4以下の例についても
同じ)PH7.3、水/有機溶剤比95/5であつた。
この水性樹脂組成物を50℃で1ヶ月間保存試験を
行つたが異常は認められなかつた。 実施例2〜4および比較例1〜8 実施例1で得られた分散体dを溶剤置換するこ
とにより実施例2〜4の水性樹脂組成物および比
較例1〜4の水性樹脂組成物を得た。また溶剤の
みを使用して比較例5〜8の樹脂組成物を得た。 有機溶剤量と種類による引火点への及ぼす影響
をみるため実施例1〜4および比較例1〜8の樹
脂組成物の引火点を測定した。この結果を表1に
示す。 表1に見られる通り、エタノールやn−ブタノ
ールのように沸点や引火点の低い溶剤を使用した
場合でも水/有機溶剤比が95/5では、水性樹脂
組成物の沸点に達しても引火点は認められなかつ
た。一方、水/有機溶剤比が80/20の場合には引
火点の認められる場合があつた。 実施例5〜17および比較例9〜11 アクリル系樹脂Aの組成変化の効果をみるため
に、モノマーの種類、重合触媒の種類および量な
どを変えて実験を行つた(表2、表3、表4)。
反応溶媒はMCAを使用し、反応温度、反応操作
などその他の条件は実施例1と同様にした。また
比較例9〜11についても実施例1と同様にして調
製した。 実施例5〜17で得られたアクリル系樹脂A溶液
は、透明性にやや差異が認められるものが含まれ
ているが、樹脂と溶剤の分離や沈降などはなく、
安定なものであつた。 実施例1,6,7,10,11および14から得られ
た水性樹脂組成物をそれぞれブリキ板上に乾燥塗
膜が10〜15μとなるようにスプレー塗装した後、
170℃10分間の焼き付け処理をし、得られた塗膜
について被覆性、電気抵抗性、濡れ性、接着性、
耐煮沸性などの性質を調べ表5に示した。 つぎにこれらの水性樹脂組成物を40℃にて4ヶ
月貯蔵しその安定性を調べたところ、いずれの場
合においても分散液のPH変化、ゲル化、分離、沈
降などについては何ら異常は認められなかつた。
これらの保存後の試料についても上記と同じ塗膜
試験を行つた。 表5から明らかなように保存した試料の塗膜性
能は分散液調製直後のそれと比較してもほとんど
変らないものであつた。 試験方法および評価方法 (1) 折曲げ加工性 ブリキ板上に各実施例の塗料を塗膜厚が10〜
15μになる様にバーコーターにて塗布し200℃5
分間焼付乾燥を行い試験パネルを作成した。その
切片について4℃室温で折曲げ加工試験器を用い
て加工後、通電試験により塗膜の割れ、ハガレ等
を電流値で評価した。 (2) 漏れ性 塗料を塗布する前にブリキ板にヤシ油のトルエ
ン溶液(ヤシ油/トルエン=20/80)を0.1c.c.ず
つ置いて溶剤部を揮散させた後にこの表面上にそ
れぞれの塗料を(1)と同条件にて塗布し焼付を行つ
た。焼付塗膜表面のハジキ、ピンホール、ユズ肌
状の有無の評価を行つた。
The present invention relates to a method for producing an aqueous resin composition, and more particularly, to a method for producing an aqueous resin composition that can form an excellent film as a baking coating composition for metals, particularly as a paint for the inner surface of a can. . Traditionally, it has been desired to use water-based paints for can paints and anti-corrosion paints from the viewpoints of resource saving, energy saving, low pollution, safety and hygiene, etc., and various methods have been proposed. In recent years, various self-emulsifying epoxy resins have been proposed as having particularly excellent practical physical properties such as stability, storage stability, coating suitability, and chemical and physical properties of coating films. One method is to create a self-emulsifying epoxy resin dispersion in which an epoxy resin is modified with another compound and a segment with emulsifying power is introduced into the molecule. For example, JP-A-53-1228 discloses a grafted polymer obtained by polymerizing a monomer mixture containing a carboxylic acid monomer using a free radical generator such as benzoyl peroxide in the presence of an epoxy resin. It has been shown that epoxy resins can be stably dispersed in aqueous media containing bases. Next, JP-A-56-43362 discloses a water-borne coating composition in which an epoxy resin and a carboxyl-functional polymer are reacted in the presence of a specific tertiary amine. Also, JP-A-55-3481, and JP-A-55-3481,
Publication No. 3482 discloses a self-emulsifying epoxy ester copolymer that can be self-emulsified in water with a base by esterifying a carboxyl group-functional polymer with an epoxy resin in the presence of an amine-based esterification catalyst. However, in any case, the self-emulsifying epoxy resin described above requires the use of an organic solvent during the manufacturing process. That is, an organic solvent is essential for (1) epoxy resin dissolution step, (2) epoxy resin reaction step, (3) grafting step, (4) acrylic resin synthesis step, or (5) esterification step. As a result, a considerable amount of organic solvent remains in the water-based resin composition such as water-based paint that becomes the final product, and it is necessary to fully meet the current social demands for resource saving, low pollution, safety and hygiene, etc. It had the disadvantage that it was not possible. In order to eliminate the above drawbacks, water-soluble epoxy resins are used for (1), (2) and (3). (3), (4) and
For (5), attempts have been made to perform emulsion reactions and suspension reactions, but both methods have drawbacks such as the dispersibility of paints, storage stability, and water resistance of paint films, so they are not practical. Nakatsuta. As a result of intensive research to overcome the above-mentioned problems, the present inventors have found that even when intermediates containing a large amount of organic solvent are used during the process, the organic solvent can be removed by selecting appropriate conditions. By replacing epoxy resin with water, it achieves excellent resource saving, energy saving, low pollution, and safety and hygiene that meet social demands, and also maintains the excellent physical and chemical properties that self-emulsifying epoxy resins traditionally have. The inventors have discovered that it is possible to obtain an aqueous dispersion that has excellent paint dispersibility, storage stability, and paintability, and has accomplished the present invention based on this knowledge. That is, in the present invention, the following reactant C is formed in an organic solvent containing at least one type of organic solvent having a boiling point higher than water, and then the reactant C solution is added so that the pH of the medium containing water is 4 to 11. A dispersion D having a solids content of 10 to 50% by weight is formed by dispersing the dispersion D in the presence of an amount of ammonia or amine, and then an organic solvent having a boiling point higher than that of water while maintaining the dispersed state of the dispersion D. and water are distilled off by azeotropic distillation under reduced pressure, water is added to the medium to substantially replace the organic solvent in the medium with water, and butanol, pentanol, hexanol, hexyl cellosolve, butyl carbitol is added. A method for producing an aqueous resin dispersion, in which at least one paintable organic solvent selected from the following is left or added in an amount of 20 phr or less. Acrylic resin A copolymerized with a copolymerizable monomer mixture containing 35 to 70% by weight of a monobasic carboxylic acid monomer and an average of 1.1 to 2.0% monobasic carboxylic acid monomer per molecule.
This is an acrylic resin/epoxy resin partial reactant C obtained by reacting an aromatic epoxy resin B having a number average molecular weight of 1400 or more and having epoxy groups in the presence or absence of a catalyst. The acrylic resin A used in the present invention is a copolymerizable monomer mixture containing 35 to 70% by weight of a monobasic carboxylic acid monomer such as acrylic acid or methacrylic acid in a solvent such as azobisisobutyronitrile or benzoyl peroxide. 80℃ to 80℃ using a conventional radical polymerization initiator.
It can be obtained by copolymerization at a temperature of 150°C. There are no particular restrictions on the reaction solvent, but the following
It is desirable that the material satisfies the properties (1) to (3). (1) Must be a good solvent for acrylic resin. (2) It does not prevent reactions in subsequent steps. For example, if non-catalytic esterification is the next step, a solvent with a boiling point of 120°C or higher is desirable. (3) The solvent should be azeotropic with water or have a relatively low boiling point, which is advantageous in the solvent replacement process. If more than 70% by weight of the monobasic carboxylic acid monomer is used in the above acrylic resin, the viscosity of the reaction system will become extremely high, which will not only make production difficult, but also cause The paint film has poor water resistance, and especially when used for cans, the paint film becomes white after boiling. Conversely, 35% by weight of monobasic carboxylic acid monomer
If less is used, the solvent resistance of the coating film will be poor,
When used in cans, the flavor inevitably tends to deteriorate, and if less than 12% by weight is used, the adhesion to metals also tends to deteriorate. Monomers other than unsaturated carboxylic acid monomers used in the invention include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, isoamyl acrylate, and acrylic. Acrylic acid esters such as n-hexyl acid, 2-ethylhexyl acrylate, n-octyl acrylate, decyl acrylate, dodecyl acrylate, methyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, methacrylate Methacrylic acid esters such as n-amyl acid, n-hexyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, dodecyl methacrylate, styrene, vinyltoluene, 2-methylstyrene, t-butyl Styrenic monomers such as styrene and chlorostyrene, hydroxy group-containing monomers such as hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and hydroxypropyl methacrylate, N-methylol (meth)acrylamide, N
It can be selected from one or more of N-substituted (meth)acrylic monomers such as -butoxymethyl (meth)acrylamide, epoxy group-containing monomers such as glycidyl acrylate and glycidyl methacrylate, and acrylonitrile. The above acrylic resin A has a weight average molecular weight of 3000.
A range of 80,000 to 80,000, preferably 4,000 to 40,000 is used. In addition, the acid value is calculated in terms of solid content.
A value between 190 and 310 is suitable. If the weight average molecular weight is less than 3,000, the crosslinking density of the coating film will increase, which will impede processability, and if it is greater than 40,000, especially 80,000, gelation will likely occur during reaction with aromatic epoxy resin B. There is a tendency to An average of 1.1 per molecule used in the present invention
Examples of aromatic epoxy resins having a number average molecular weight of 1,400 or more and having 1 to 2.0 epoxy groups include epichlorohydrin/bisphenol type epoxy resins, such as Epicote 1004 and Epicote 1007, commercially available from Ciel Chemical Co., Ltd. , Epicort 1009, or Epiclon 4050, Epiclon 4050, commercially available from Dainippon Ink Chemical Co., Ltd.
7050 etc. It is also possible to use a modified epoxy resin in which the epoxy group of the aromatic epoxy resin is reacted with a vegetable oil fatty acid such as dehydrated castor oil, soybean oil fatty acid, coconut oil fatty acid, or a modifier such as bisphenol A. The solvent for dissolving the epoxy resin is the same as in the acrylic resin synthesis process, and there are no particular restrictions, but the following (1) to
It is desirable to have one that satisfies the property (3). (1) Must be a good solvent for epoxy resin. (2) It does not prevent reactions in subsequent steps. For example, when performing non-catalytic esterification in the next step, a solvent with a boiling point of 120°C or higher is desirable. (3) The solvent should be azeotropic with water or have a relatively low boiling point, which is advantageous in the solvent replacement step. In the present invention, the carboxyl group-excess epoxy resin/acrylic resin partial reactant obtained by reacting the acrylic resin A and the aromatic epoxy resin B is hexyl cellosolve, butyl cellosolve, methyl cellosolve acetate in the absence of a catalyst. It can be obtained by reacting an acrylic resin and an aromatic epoxy resin in a high boiling point solvent such as ethyl cellosolve acetate at a temperature of 120°C or higher, preferably about 140°C. Relatively low-boiling solvents with a boiling point below 120°C, such as methyl cellosolve, ethyl acetate, n-butanol, sec
Although it is not impossible to use -butanol, ter-butanol, etc., it is necessary to pressurize the system in order to carry out the reaction at a temperature of 120°C or higher. In the present invention, when reacting carboxyl groups and epoxy groups without coexisting amine or ammonia, which are conventionally known as reaction catalysts, a relatively high temperature is required, and a reaction temperature of 100°C or less is within the practical range. reaction time cannot be achieved. The reaction time may vary depending on the reaction temperature or the concentration of residual oxirane in the epoxy resin/acrylic resin partial reactant ultimately required, but is usually about 3 to 12 hours. The solid content ratio of the acrylic resin A and the aromatic epoxy resin B is selected from the range of 2:1 to 1:5. When the solid content ratio of acrylic resin A to aromatic epoxy resin B is more than 2:1, there is a problem in the viscosity of the final paint, resulting in poor spray coating properties, especially sagging properties. On the other hand, if the solid content ratio of acrylic resin A and aromatic epoxy resin B is more than 1:5, it is necessary to use an emulsifier because the hydrophobic parts in the resin will be too large. It becomes difficult to obtain a stable dispersion. In the present invention, acrylic resin A and aromatic epoxy resin B are reacted with a catalyst or without a catalyst,
An epoxy resin/acrylic resin partial reactant C having an excess of carboxyl groups is obtained. From this epoxy resin/acrylic resin partial reactant C, a medium consisting of water and one or more organic solvents, at least one of which has a higher boiling point than water, is added to a medium with a pH of 4 to 4.
The resin solid content ratio of the reactant dispersed in the presence of ammonia or amine in an amount of 11 to 50
A dispersion D is obtained which is % by weight. The organic solvent contained in Dispersion D is (1) a component that can be removed by azeotroping with water, or (2) a component that has a boiling point lower than water and can be easily removed and replaced by water, or (3) the final dispersion. One of the conditions must be satisfied among the extremely small amount of components that remain and are effective for paintability. The organic solvent is not limited to the following, but examples (1) include hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as trichloroethane,
Alcohols such as butanol and pentanol, ethers such as dibutyl ether and dibutyl cellosolve, ketones such as methyl isobutyl ketone and heptanone, esters such as propyl acetate and butyl acetate, ether alcohols such as methyl cellosolve and ethyl cellosolve, There are ether esters such as methyl cellosolve acetate and ethyl cellosolve acetate. Examples of (2) include hexane, heptane, methanol, ethanol, ethyl ether, acetone, methyl ethyl ketone, and ethyl acetate. Examples of (3) include butanol, pentanol, hexanol, hexyl cellosolve, butyl carbitol, and the like. If the organic solvent contained in the epoxy resin/acrylic resin partial reactant C does not satisfy the conditions for the organic solvent contained in the dispersion D, it is necessary to replace it with an organic solvent that satisfies the conditions. As the amine in dispersion D, for example, alkylamines such as trimethylamine, triethylamine, and butylamine, alcohol amines such as 2-dimethylaminoethanol, diethanolamine, triethanolamine, and aminomethylpropanol, and morpholine are used. Polyvalent amines such as ethylenediamine and diethylenetriamine can also be used. When the resin solid content of Dispersion D is higher than 50% by weight, the phase inversion from W/O type emulsion to O/W type emulsion is often insufficient.
In order to obtain a W-type emulsion, the content is preferably 50% by weight or less. In the present invention, dispersion D is azeotropically distilled under normal pressure or reduced pressure while stirring by any method, and water is continuously added dropwise while removing azeotropic components, or a predetermined amount of water is added several times. The solid content of the dispersion is always controlled within a certain range, and the dispersion state of the dispersion D is stabilized. If the solid content is increased to more than 30% by weight during azeotropic distillation, the emulsion of the system may be destroyed or the viscosity may increase, resulting in significant adhesion to the reaction vessel, which is often inappropriate. On the other hand, if the solid content is lower than 10% by weight, the viscosity of the system will be low and foaming will become intense, making azeotropic distillation difficult in many cases, so there is no particular restriction, but the solid content during azeotropic distillation is It is desirable to control it within the range of 10 to 30% by weight. Further, dispersion D is often an unstable system and may be sensitive to heat and pressure, so care must be taken. Usually, the heating applied to dispersion D is 120℃
It is preferable to do the following and under reduced pressure. In the present invention, at least one type of organic solvent and water are azeotropically distilled from dispersion D to substantially replace the organic solvent. Here, "substantially" means (1) useful for coating properties; This means that the total amount of organic solvents must be kept at 20 phr or less, and (2) all organic solvents that are not important for paintability or that adversely affect paintability must be kept at 0.1 phr or less. Here, "phr" refers to parts by weight of the target substance based on 100 parts by weight of resin solid content (hereinafter "phr" means the same meaning).
use. ). The aqueous resin composition according to the present invention may optionally contain an aqueous aminoplast resin such as hexamethoxymethylmelamine, methylolated benzoguanamine resin, methylolated urea resin, or a surfactant to improve coating properties. It can be used as a paint by adding agents, antifoaming agents, etc. Suitable substrates are metal plates such as untreated steel plates, treated steel plates, galvanized iron plates, and tin plates. As for the coating method, spray coatings such as air spray, Aeres spray, and electrostatic spray are preferred. Dip coating, roll coater coating, electrodeposition coating, etc. are also possible. Also, the baking conditions are temperature 150
You can choose from ℃ to 230℃ and time from 2 to 30 minutes. Listing the features of the aqueous resin composition of the present invention, firstly, the amount of organic solvent can be 20 phr or less, that is, the amount of organic solvent with a solid content of 20 wt% can be 3 wt. Furthermore, since it has no flash point, it is excellent in terms of fire protection and security, and is extremely advantageous in terms of pollution control, and can fully meet the practical needs of society. Second, although it uses almost no organic solvents, it has coating properties that are equivalent or better than conventional water-based paints that contain large amounts of organic solvents, as well as paints that use only organic solvents. It is what you have. Thirdly, metal plates having an oil layer on their surfaces or metal plates contaminated with oil can be coated without pretreatment. The mechanism underlying this effect has not been fully elucidated logically, but it is possible that the compositional differences in the resin compositions have some kind of surface chemical effect on the resin particles dispersed in the aqueous medium. It is thought that this is causing the Fourth, the paint flow and leveling properties are good.
Therefore, high solidity is possible. In products using catalysts, the solid content is at most
The present invention allows for aqueous dispersions with a solids content of 40% by weight, as opposed to about 20% by weight. Fifth, it has good adhesion to metal plates and has an excellent balance of coating film hardness, boiling resistance, workability, and storage stability. Sixthly, since the monomer composition of the acrylic resin is appropriate, it is suitable for flavor. The aqueous resin composition of the present invention can also be used in rust-preventing primers, printing inks, anti-corrosion paints, etc. by adding appropriate rust preventive agents, pigments, fillers, etc., depending on the intended use. The present invention will be explained below using examples. Acrylic resin A solution, epoxy resin/acrylic resin partial reactant C solution, and aqueous dispersion D were prepared in the following manner. In addition, in the example "part",
"%" indicates "part by weight" and "% by weight", respectively. Example 1 (i) Preparation number of acrylic resin (a) Compound Part 1 Methyl cellosolve acetate (hereinafter abbreviated as MCA) 1000 2 Monomer Styrene 180.6 3 Monomer Ethyl acrylate 86 4 Monomer Methacrylic acid 163 5 Polymerization catalyst Benzoyl peroxide 6.4 A four-necked flask equipped with a reflux condenser, a monomer tank, a monomer flow rate regulator, a thermometer, and a stirrer was purged with nitrogen, and (1) was charged therein. Monomer mixtures (2) to (4) and polymerization catalyst (5) were mixed in the monomer tank, and a quarter of the mixture was added to (1) in the above flask and gradually heated and maintained at 105°C. did. The remaining mixed monomers were added over 2 hours, and after the dropwise addition was completed, stirring was continued for another 2 hours and the mixture was cooled to room temperature. The obtained solution had a solid content of 30.1%, a viscosity of UV (Gardner bubble viscosity type, 25°C, the following examples also show the viscosity measured at 25°C), and an acid value of 247 mgKOH/g.
(in terms of solid content, the same applies to the following examples) was an acrylic resin (a) solution. (ii) Epoxy resin/acrylic resin partial reactant (c) Solution preparation number Component Part 6 MCA 2100 7 Epicote 1009
(Epoxy resin manufactured by Ciel Kagaku Co., Ltd.) 900 8 Acrylic resin (a) solution of () 1000 A four-necked flask was equipped with a stirrer, a reflux condenser, a thermometer, and a solvent removal device, and after purging with nitrogen,
Add (6) and (7), heat to 110°C, and continue stirring.
After completely dissolving the epoxy resin, add (8) and
The temperature was raised to 135°C, and stirring was continued for 8 hours while maintaining this temperature to obtain an epoxy resin/acrylic resin partial reaction product c. During this period, samples were taken out periodically to check their viscosity. At the end of the reaction, the solution had a solid content of 30.1%, a viscosity of UV, and a reduction rate of oxirane groups of 61%. (iii) Preparation number of aqueous dispersion d Ingredients Part 9 Partial reactant of epoxy resin/acrylic resin in () above c 2800 10 Ammonia water 54.2 11 Ion exchange water 487.8 12 Ion exchange water 2236 Stirrer, reflux condenser, temperature After purging the four-necked flask equipped with a meter and solvent removal device with nitrogen,
(9) was prepared and the internal temperature was 80 to 120℃ and the internal pressure was about 60 to 400mmHg. After removing part of the MCA to reduce the solid content to 58%, it was cooled and the internal temperature was 70℃ or less. (10) and (11) ) was added, stirred well, and then (12) was added. At this time, the temperature was 50°C. After cooling to room temperature, it was filtered and taken out. The resulting dispersion d had a solid content of 20.1% and a water/organic solvent ratio of 82/18. (iv) Solvent replacement and preparation number of final aqueous resin composition Ingredients Part 13 Aqueous dispersion d of the above () 4183 14 Hexyl cellosolve 168 15 Ion exchange water (1) 1249 16 Ion exchange water (2) 4900 Four-necked flask After installing a stirrer, reflux condenser, thermometer and solvent removal device and purging with nitrogen,
(13) was charged and (14) and (15) were added while stirring, and after heating to 70°C, the pressure was gradually reduced to start desolvation. While removing the solvent under conditions of an internal temperature of 50 to 70°C and an internal pressure of 60 to 160 mmHg, solvent replacement was performed by simultaneously adding the desolvated amount and co-worker's ion-exchanged water from (16). The solids content of the dispersion during solvent displacement was maintained at 15-20%. The amount of organic solvent remaining in the dispersion was checked by gas chromatography, and the MCA was 0.1phr.
Solvent replacement was completed when the following conditions were reached. At the time of completion, the hexyl cellosolve was 5.2 phr, so I added it to make it 20 phr. To this was added 0.2% of the surfactant sodium dialkyl sulfosuccinate. In the following examples, unless otherwise specified, the amount of hexyl cellosolve is 20 phr, and the surfactant is also
Added 0.2%. The resulting aqueous resin composition had a solid content of 20.1%, a viscosity of 37 seconds (the same applies to the examples below food cup No. 4), a pH of 7.3, and a water/organic solvent ratio of 95/5.
This aqueous resin composition was subjected to a storage test at 50°C for one month, but no abnormalities were observed. Examples 2 to 4 and Comparative Examples 1 to 8 The aqueous resin compositions of Examples 2 to 4 and the aqueous resin compositions of Comparative Examples 1 to 4 were obtained by replacing the dispersion d obtained in Example 1 with the solvent. Ta. Further, resin compositions of Comparative Examples 5 to 8 were obtained using only a solvent. In order to examine the influence of the amount and type of organic solvent on the flash point, the flash points of the resin compositions of Examples 1 to 4 and Comparative Examples 1 to 8 were measured. The results are shown in Table 1. As seen in Table 1, even when using a solvent with a low boiling point or flash point such as ethanol or n-butanol, if the water/organic solvent ratio is 95/5, the flash point will reach the boiling point of the aqueous resin composition. was not recognized. On the other hand, when the water/organic solvent ratio was 80/20, flash points were observed in some cases. Examples 5 to 17 and Comparative Examples 9 to 11 In order to examine the effect of changing the composition of acrylic resin A, experiments were conducted by changing the type of monomer, the type and amount of polymerization catalyst, etc. (Tables 2, 3, Table 4).
MCA was used as the reaction solvent, and other conditions such as reaction temperature and reaction operation were the same as in Example 1. Moreover, Comparative Examples 9 to 11 were also prepared in the same manner as in Example 1. The acrylic resin A solutions obtained in Examples 5 to 17 contained some with slight differences in transparency, but there was no separation or sedimentation of the resin and solvent.
It was stable. The aqueous resin compositions obtained in Examples 1, 6, 7, 10, 11, and 14 were spray-painted onto a tin plate so that the dry coating thickness was 10 to 15μ, and then
After baking at 170℃ for 10 minutes, the resulting coating film was evaluated for coating properties, electrical resistance, wettability, adhesion,
Properties such as boiling resistance were investigated and shown in Table 5. Next, these aqueous resin compositions were stored at 40°C for 4 months and their stability was investigated. In all cases, no abnormalities were observed in the dispersion liquid, such as PH change, gelation, separation, or sedimentation. Nakatsuta.
The same coating test as above was conducted on these preserved samples as well. As is clear from Table 5, the coating performance of the stored samples was almost unchanged compared to that immediately after the dispersion was prepared. Test method and evaluation method (1) Bending workability The coating film thickness of each example was applied to a tin plate with a film thickness of 10~
Apply with a bar coater to a thickness of 15μ and heat at 200℃5
A test panel was prepared by baking and drying for a minute. The section was processed using a bending processing tester at room temperature of 4° C., and then subjected to a current test to evaluate cracking, peeling, etc. of the coating film based on the current value. (2) Leakage Before applying the paint, place 0.1 cc of a solution of coconut oil in toluene (coconut oil/toluene = 20/80) on a tin plate, evaporate the solvent, and then apply each paint on the surface. Coating and baking were performed under the same conditions as (1). The presence or absence of repellency, pinholes, and yuzu skin on the surface of the baked coating film was evaluated.

【表】 上記以外の試験については以下実施例に付記す
る。 実施例 18〜20 実施例1においてアクリル系樹脂aおよびエポ
キシ樹脂・アクリル系樹脂部分反応物cの溶剤と
して使用したMCAに代えてブチロセロソルブ
(実施例18)、ヘキシルセロソルブ(実施例19)、
MCA/酢酸ブチル(70/30)(実施例20)をそれ
ぞれ使用した他は実施例1と同じ手順で水性樹脂
組成物を調製した。 実施例1および実施例18〜20で得られた水性樹
脂組成物の性状および折曲げ加工性の試験結果を
表6に示す。
[Table] Tests other than those mentioned above are added to the examples below. Examples 18-20 In place of MCA used as a solvent for acrylic resin a and epoxy resin/acrylic resin partial reactant c in Example 1, butyro cellosolve (Example 18), hexyl cellosolve (Example 19),
Aqueous resin compositions were prepared in the same manner as in Example 1, except that MCA/butyl acetate (70/30) (Example 20) was used. Table 6 shows the properties and bending processability test results of the aqueous resin compositions obtained in Example 1 and Examples 18 to 20.

【表】 実施例5〜8で得られた水性樹脂組成物につい
て漏れ性と基材への接着性を試験した結果を表7
に示す。濡れ性はヤシ油とヒマシ油のそれぞれの
20%トルエン溶液をバーコーター#14で塗布して
トルエンを揮発させたブリキ板を使用した。接着
性はエポキシフエノール塗料およびエポキシ尿素
塗料の5〜10μm厚の塗膜が形成されている塗装
板を使用した。
[Table] Table 7 shows the results of testing the leakage properties and adhesion to substrates for the aqueous resin compositions obtained in Examples 5 to 8.
Shown below. The wettability of coconut oil and castor oil is
A tin plate was used that had been coated with a 20% toluene solution using a #14 bar coater and the toluene was volatilized. For adhesion, a coated plate with a 5-10 μm thick coating of epoxy phenol paint and epoxy urea paint was used.

【表】 実施例 21〜24 実施例1において溶剤置換の終了後、追加した
ヘキシルセロソルブの代わりに下記表8の有機溶
剤を添加して、ヘキシルセロソルブとの合計を
20phrとなるようにし、その他は実施例1と同様
にして水性樹脂組生物を調製した。得られた水性
樹脂組生物の濡れ性の試験結果を表8に示した。
[Table] Examples 21 to 24 After completing the solvent replacement in Example 1, the organic solvents shown in Table 8 below were added in place of the added hexyl cellosolve, and the total with hexyl cellosolve was
An aqueous resin composition was prepared in the same manner as in Example 1 except that the amount of water was adjusted to 20 phr. Table 8 shows the wettability test results of the obtained aqueous resin composition.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 少なくとも1種類の沸点が水より高い有機溶
剤を含む有機溶剤中で下記反応物Cを形成し、次
いで、反応物C溶液を水を含む媒体のPHが4〜11
となる量のアンモニアもしくはアミンの存在下に
分散せしめることにより固形分が10〜50重量%で
ある分散体Dを形成し、次いで、分散体Dの分散
状態を保つたまま上記沸点が水より高い有機溶剤
と水とを減圧下共沸蒸留により留去しつつ水を媒
体中に添加し上記媒体中の有機溶剤を実質的に水
と置換せしめ、かつブタノール、ペンタノール、
ヘキサノール、ヘキシルセロソルブ、ブチルカル
ビトールから選ばれる少なくとも1種の塗装性に
有孔な有機溶剤を20phr以下で残存せしめるか又
は添加する水性樹脂分散体の製造方法。 一塩基性カルボン酸モノマーを35〜70重量%を
含む共重合性モノマー混合物を共重合せしめたア
クリル系樹脂Aと、一分子中に平均1.1ないし2.0
個のエポキシ基を有する数平均分子量1400以上の
芳香族系エポキシ樹脂Bとを触媒の存在下もしく
は不存在下で反応せしめたアクリル系樹脂・エポ
キシ樹脂部分反応物C。 2 アクリル系樹脂Aと芳香族系エポキシ樹脂B
を触媒の不存在下で反応せしめる特許請求の範囲
第1項記載の水性樹脂分散体の製造方法。 3 アクリル系樹脂Aの重量平均分子量が3000な
いし80000である特許請求の範囲第1項または第
2項記載の水性樹脂分散体の製造方法。 4 アクリル系樹脂Aと芳香族系エポキシ樹脂B
との固型分比を2対1〜1対5とする特許請求の
範囲第1項ないし第3項いずれか1項記載の水性
樹脂分散体の製造方法。
[Scope of Claims] 1. Form the following reactant C in an organic solvent containing at least one type of organic solvent having a boiling point higher than that of water, and then add a solution of reactant C to a water-containing medium with a pH of 4 to 11.
Dispersion D having a solid content of 10 to 50% by weight is formed by dispersing in the presence of an amount of ammonia or amine such that the boiling point is higher than that of water while maintaining the dispersed state of Dispersion D. While the organic solvent and water are distilled off by azeotropic distillation under reduced pressure, water is added to the medium to substantially replace the organic solvent in the medium with water, and butanol, pentanol,
A method for producing an aqueous resin dispersion in which at least one paintable organic solvent selected from hexanol, hexyl cellosolve, and butyl carbitol is allowed to remain or is added in an amount of 20 phr or less. Acrylic resin A copolymerized with a copolymerizable monomer mixture containing 35 to 70% by weight of a monobasic carboxylic acid monomer and an average of 1.1 to 2.0% monobasic carboxylic acid monomer per molecule.
An acrylic resin/epoxy resin partial reactant C obtained by reacting an aromatic epoxy resin B having a number average molecular weight of 1,400 or more and having epoxy groups in the presence or absence of a catalyst. 2 Acrylic resin A and aromatic epoxy resin B
The method for producing an aqueous resin dispersion according to claim 1, wherein the reaction is carried out in the absence of a catalyst. 3. The method for producing an aqueous resin dispersion according to claim 1 or 2, wherein the acrylic resin A has a weight average molecular weight of 3,000 to 80,000. 4 Acrylic resin A and aromatic epoxy resin B
3. The method for producing an aqueous resin dispersion according to any one of claims 1 to 3, wherein the solid content ratio is 2:1 to 1:5.
JP17932283A 1983-09-29 1983-09-29 Aqueous resin dispersion Granted JPS6071639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17932283A JPS6071639A (en) 1983-09-29 1983-09-29 Aqueous resin dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17932283A JPS6071639A (en) 1983-09-29 1983-09-29 Aqueous resin dispersion

Publications (2)

Publication Number Publication Date
JPS6071639A JPS6071639A (en) 1985-04-23
JPH055869B2 true JPH055869B2 (en) 1993-01-25

Family

ID=16063806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17932283A Granted JPS6071639A (en) 1983-09-29 1983-09-29 Aqueous resin dispersion

Country Status (1)

Country Link
JP (1) JPS6071639A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272765A (en) * 1985-09-27 1987-04-03 Toyo Ink Mfg Co Ltd Aqueous coating composition for exterior surface of can

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575460A (en) * 1978-12-05 1980-06-06 Toyo Ink Mfg Co Ltd Aqueous coating resin composition
JPS5643362A (en) * 1979-09-14 1981-04-22 Du Pont Waterrcontaining coating composition
JPS59126469A (en) * 1983-01-10 1984-07-21 Toyo Seikan Kaisha Ltd Water-based paint having low solvent content

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575460A (en) * 1978-12-05 1980-06-06 Toyo Ink Mfg Co Ltd Aqueous coating resin composition
JPS5643362A (en) * 1979-09-14 1981-04-22 Du Pont Waterrcontaining coating composition
JPS59126469A (en) * 1983-01-10 1984-07-21 Toyo Seikan Kaisha Ltd Water-based paint having low solvent content

Also Published As

Publication number Publication date
JPS6071639A (en) 1985-04-23

Similar Documents

Publication Publication Date Title
US4329266A (en) Water-dispersed coating composition comprising an acrylic graft polymer containing carboxyl groups, hydroxyl and/or amide groups
JPH09512578A (en) Production of aqueous polymer composition
KR19990087121A (en) Water dispersible polymer and coating composition comprising the same
EP0078169B1 (en) Polymerisable monomers, polymer dispersions and derived paints
US4461870A (en) High solid coating composition containing novel microparticles of crosslinked copolymer including amphoionic groups
EP0005649B1 (en) Water-based coating compositions and coating processes using them
JP2552767B2 (en) Emulsion polymer and coating composition prepared therefrom
JPH0672216B2 (en) Aqueous coating resin composition and method for producing the same
JPS6244578B2 (en)
JPH055869B2 (en)
JPH06248161A (en) Aqueous resin composition and coating material
JPH0373592B2 (en)
JPH06329974A (en) Water-base coating composition
JPH06248235A (en) Aqueous resin composition and coating
JPH0533253B2 (en)
JP2605095B2 (en) Acrylic resin-coated metal pigments for water-based paints
JPH021169B2 (en)
JP3189572B2 (en) Aqueous paint composition
JP3982021B2 (en) Aqueous resin composition
JP3052730B2 (en) Method for producing aqueous dispersion of resin composition
JP3158863B2 (en) Aqueous resin dispersion and method for producing the same
JPS63309516A (en) Aqueous resin dispersion
JP2848088B2 (en) Aqueous resin dispersion for roll coating, method for producing the same, and coated metal plate
JPS59149913A (en) Oxidatively polymerizable aqueous emulsion and its production
JPH0459330B2 (en)