JPH05580Y2 - - Google Patents

Info

Publication number
JPH05580Y2
JPH05580Y2 JP1987128948U JP12894887U JPH05580Y2 JP H05580 Y2 JPH05580 Y2 JP H05580Y2 JP 1987128948 U JP1987128948 U JP 1987128948U JP 12894887 U JP12894887 U JP 12894887U JP H05580 Y2 JPH05580 Y2 JP H05580Y2
Authority
JP
Japan
Prior art keywords
input shaft
disks
disk
driven
shortened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987128948U
Other languages
Japanese (ja)
Other versions
JPS6432935U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987128948U priority Critical patent/JPH05580Y2/ja
Publication of JPS6432935U publication Critical patent/JPS6432935U/ja
Application granted granted Critical
Publication of JPH05580Y2 publication Critical patent/JPH05580Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)
  • Mechanical Operated Clutches (AREA)

Description

【考案の詳細な説明】 イ 産業上の利用分野 本考案は、作動流体の粘性を利用して回転トル
クを伝達可能に構成し、天井走行クレーン、旋回
装置、台車駆動装置等に使用される流体継手であ
り、詳しくは、被駆動デイスク、駆動デイスクを
夫々軸方向へ摺動可能に設け、各デイスク間の間
〓を縮めることにより伝達トルク低下の防止を図
る流体継手の改良に関する。
[Detailed description of the invention] A. Industrial application field The present invention utilizes the viscosity of a working fluid to transmit rotational torque, and is a fluid used in overhead traveling cranes, swing devices, trolley drive devices, etc. The present invention relates to a joint, and more particularly, to an improvement in a fluid joint in which a driven disk and a driving disk are provided so as to be slidable in the axial direction, and a decrease in transmission torque is prevented by reducing the distance between the respective disks.

ロ 従来技術 粘性を有する流体を使用した流体継手として
は、例えば特開昭58−152941号「流体継手」の如
く、駆動動力源に接続される入力軸と、その入力
軸を相対回転可能に包囲し且つ内部に粘性流体を
充填した密閉状態の回転ケーシングと、そのケー
シングの出力側に前記入力軸の同軸上に設けられ
た出力軸連結部とからなり、前記入力軸の外周面
に複数枚の駆動デイスクを適宜間隔を保つて軸方
向へ摺動可能に設けると共に、前記ケーシングの
内周面に、前記複数枚の駆動デイスクと僅かな間
隔を保つて交互に重なり合うドーナツ状の被駆動
デイスクを軸方向に摺動可能に設け、更に前記ケ
ーシングの出力側にはスチールボールを利用して
軸方向の押圧力を発生するためのテーパ面が設け
られ、回転時の遠心力によりスチールボールが外
周方向へ移動してテーパ面に沿つて被駆動デイス
クに押圧力を与え、デイスク間の距離を縮めるこ
とにより伝達トルクの低下を防止するものが知ら
れている。
(b) Prior art As a fluid coupling using a viscous fluid, for example, as in JP-A No. 58-152941 "Fluid coupling", an input shaft connected to a drive power source and the input shaft are surrounded so as to be relatively rotatable. It consists of a rotary casing in a sealed state filled with viscous fluid inside, and an output shaft connecting part provided coaxially with the input shaft on the output side of the casing, and a plurality of sheets are arranged on the outer circumferential surface of the input shaft. Driving disks are provided so as to be slidable in the axial direction at appropriate intervals, and donut-shaped driven disks are provided on the inner circumferential surface of the casing and alternately overlap the plurality of driving disks with slight intervals between them. Furthermore, a tapered surface is provided on the output side of the casing to generate a pressing force in the axial direction using steel balls, and the centrifugal force during rotation causes the steel balls to move toward the outer circumference. There is a known device that moves to apply a pressing force to the driven disk along a tapered surface to reduce the distance between the disks, thereby preventing a decrease in transmitted torque.

又本願考案者は、昭和62年7月17日提出の「流
体継手」を先願しており、これは被駆動デイスク
と駆動デイスクとを夫々軸方向へ摺動可能とし、
更に回転時の遠心力で放射方向へ移動する押圧部
材によつて前記駆動デイスクを各デイスク間の間
〓を縮める方向へ摺動可能として、前記押圧部材
を、その押圧力を増加させる方向、即ち各デイス
ク間の間〓を縮める方向へ押し付ける加圧手段を
設けたことにより、加圧手段によつて流体継手停
止時に、起動時の伝達トルクと停止時のブレーキ
力の調整を可能としたものである(第5図示)。
In addition, the inventor of the present application has previously filed a "fluid coupling" filed on July 17, 1988, which allows the driven disk and the driving disk to slide in the axial direction,
Furthermore, the driving disk is made slidable in a direction that reduces the distance between the disks by a pressing member that moves in a radial direction due to centrifugal force during rotation, and the pressing member is moved in a direction that increases the pressing force, i.e. By providing a pressurizing means that presses in the direction of reducing the distance between each disc, when the fluid coupling is stopped, the pressurizing means can adjust the transmitted torque at startup and the braking force at stop. Yes (as shown in Figure 5).

このような流体継手においては、出力軸に伝え
られる伝達トルクTbは、入力軸に加えられるト
ルクをTa、入力軸と出力軸の回転数を夫々na,
nb、駆動デイスクと被駆動デイスクとの間の間
〓をδ、流体の粘性係数をμとすると、 Tb=C・μ/δ(na−nb)……(第1式) で表される。(尚ここでCは上記以外の設計的要
素から定まる定数である。) 上記第1式から解るように、出力軸に伝えられ
るトルクTbは入力軸の回転数naと出力軸の回転
数nbの差に比例する。このことから、伝達トル
クTbが入力軸の回転数naの二乗に比例する遠心
力による流体継手と比較すると、始動時の衝撃が
少なく、駆動動力源の出力軸が停止している時で
もトルク伝達が可能であるため停止までの被駆動
物体の惰走が短く、又ブレーキモータなどを駆動
動力源に用いたときはブレーキ力も伝達が可能と
なつていた。
In such a fluid coupling, the transmission torque Tb transmitted to the output shaft is determined by the torque applied to the input shaft being Ta, the rotational speed of the input shaft and output shaft being na, respectively.
nb, the distance between the driving disk and the driven disk is δ, and the viscosity coefficient of the fluid is μ, then Tb=C・μ/δ(na−nb) (first equation). (Here, C is a constant determined from design factors other than those mentioned above.) As can be seen from the first equation above, the torque Tb transmitted to the output shaft is the rotation speed na of the input shaft and the rotation speed nb of the output shaft. proportional to the difference. From this, compared to a fluid coupling that uses centrifugal force, where the transmitted torque Tb is proportional to the square of the input shaft rotation speed na, there is less shock at startup, and torque is transmitted even when the output shaft of the drive power source is stopped. This allows the driven object to coast for a short time until it comes to a stop, and when a brake motor or the like is used as the drive power source, it is also possible to transmit braking force.

ハ 考案が解決しようとする問題点 粘性流体の粘性係数μは一般にその温度上昇と
共に小さくなるにもかかわらず、その間〓δは一
定であるので出力軸への伝達トルクTbは流体温
度上昇とともに減少してしまう。この減少量は、
例えば25℃における伝達トルクTbを1とすると
80℃では約0.7まで低下し、エネルギー効率上に
おいても、又惰走距離が変化するなどの運転感覚
上の点からも無視できない問題であつた。
C. Problem to be solved by the invention Although the viscosity coefficient μ of a viscous fluid generally decreases as its temperature rises, since 〓δ remains constant during that time, the torque Tb transmitted to the output shaft decreases as the fluid temperature increases. It ends up. This decrease amount is
For example, if the transmission torque Tb at 25℃ is 1, then
At 80°C, it decreased to about 0.7, which was a problem that could not be ignored from both energy efficiency and driving sensation points such as changes in coasting distance.

又上記問題点を改良すべく開発した先願の「流
体継手」にあつては、流体継手停止時に、起動時
の伝達トルクと制動時のブレーキ力調整は可能で
あるものの、流体の温度により被駆動デイスクと
押圧部材との間に〓間が生じ、流体継手駆動時
に、その都度微調整が必要となる。
In addition, in the case of the "fluid coupling" of the previous application, which was developed to improve the above-mentioned problems, when the fluid coupling is stopped, it is possible to adjust the transmission torque at startup and the braking force at braking; A gap occurs between the drive disk and the pressing member, and fine adjustment is required each time the fluid coupling is driven.

更に押圧部材を介して各加圧手段の圧力が全く
同一に被駆動デイスクに作用していなければ被駆
動デイスクが軸方向にスムーズに摺動せず、デイ
スク間の間〓が縮められなくなる虞れが生ずる。
Furthermore, if the pressure of each pressurizing means is not applied to the driven disk in exactly the same way through the pressing member, the driven disk will not slide smoothly in the axial direction, and there is a risk that the gap between the disks will not be reduced. occurs.

ニ 問題を解決するための手段 本考案の流体継手は先願の「流体継手」を更に
改良したものであり、その構成は、隣接する各被
駆動デイスク相互間に、所望温度にて硬化しコイ
ル長が短縮するコイルバネ状に形状記憶熱処理さ
れた形状記憶効果を有する短縮金属部材と、前記
被駆動デイスク間の間〓を確保するスペーサとを
配置すると共に、前記所望温度にて硬化し前記短
縮金属部材の総短縮寸法と同寸法伸長するコイル
バネ状に形状記憶熱処理された形状記憶効果を有
する伸長金属部材により、前記押圧部材を、その
押圧力増加方向へ押し付けることにある。
D. Means for solving the problem The fluid coupling of the present invention is a further improvement of the "fluid coupling" of the earlier application, and its structure consists of a coil that is hardened at a desired temperature between each adjacent driven disk. A shortened metal member having a shape memory effect that has been subjected to shape memory heat treatment in the shape of a coil spring whose length is shortened, and a spacer that secures a gap between the driven disks are disposed, and the shortened metal member is hardened at the desired temperature and has a shape memory effect. The pressing member is pressed in the direction of increasing the pressing force by an elongated metal member having a shape memory effect and subjected to shape memory heat treatment in the shape of a coil spring that extends by the same dimension as the total shortened dimension of the member.

ホ 作用 流体継手を駆動させ、次第にその回転数が増す
とその回転数に応じた遠心力で押圧部材が各デイ
スク間の間〓を縮める。
E. Effect When the fluid coupling is driven and its rotational speed gradually increases, the pressing member uses a centrifugal force corresponding to the rotational speed to shorten the distance between each disk.

更に流体の温度が所望温度以上に上昇すると、
被駆動デイスク相互間に挿入したコイルバネ状に
形状記憶熱処理された短縮金属部材のコイル長が
スペーサの寸法にまで縮まると同時に押圧部材を
押し付けているコイルバネ状に記憶熱処理された
伸長金属部材のコイル長が前記金属部材の総短縮
分だけ伸長し、各被駆動デイスク間の間〓をスペ
ーサの寸法にまで縮めて、流体の粘度低下による
伝達トルクの低下を防止する。又スペーサが挿入
されていることにより、各被駆動デイスクの間〓
はそのスペーサの寸法以下にまでは縮まらず、駆
動デイスクと被駆動デイスクとが接触して摩耗し
たり、流体が異常発熱することを防止している。
Furthermore, when the temperature of the fluid rises above the desired temperature,
The coil length of the shortened metal member inserted between the driven disks and shaped like a coil spring and subjected to memory heat treatment is reduced to the dimensions of the spacer, and at the same time the coil length of the elongated metal member that is heat treated to form a coil spring shape that presses the pressing member. is expanded by the total shortening of the metal member, and the space between the driven disks is reduced to the size of the spacer, thereby preventing a decrease in the transmitted torque due to a decrease in the viscosity of the fluid. Also, by inserting a spacer, there is a gap between each driven disk.
The spacer does not shrink below the size of the spacer, which prevents the driving disk and driven disk from coming into contact with each other and causing wear, and from causing abnormal heat generation of the fluid.

又流体継手停止後、流体の温度が所望温度以上
であるうちに再駆動しても、金属部材のコイル長
は停止直後と変らず、押圧部材と被駆動デイスク
とに〓間ができることもない。
Further, even if the fluid coupling is restarted after the fluid coupling is stopped while the temperature of the fluid is higher than the desired temperature, the coil length of the metal member remains the same as immediately after stopping, and there is no gap between the pressing member and the driven disk.

更に被駆動デイスク間の間〓も縮められたまま
なので、流体継手の回転数が少ないときでも、伝
達トルクの低下を防止している。
Furthermore, since the distance between the driven disks remains short, the transmission torque is prevented from decreasing even when the rotational speed of the fluid coupling is low.

ヘ 実施例 本考案の流体継手を図面に基いて説明する。Example The fluid coupling of the present invention will be explained based on the drawings.

図面は本考案の実施例を示したもので、円筒状
の胴部1とその両側面に配置された側板2、及び
3、出力軸連結部4とからなるケーシング及び入
力軸5とその入力軸5に取り付けられた4枚の駆
動デイスク6、ケーシング内周面に取り付けられ
た5枚の被駆動デイスク7及び4個のスチールボ
ール8で構成されている。
The drawing shows an embodiment of the present invention, which includes a casing consisting of a cylindrical body part 1, side plates 2 and 3 disposed on both sides of the body part, an output shaft connecting part 4, an input shaft 5, and its input shaft. It is composed of four drive disks 6 attached to the inner peripheral surface of the casing, five driven disks 7 attached to the inner peripheral surface of the casing, and four steel balls 8.

胴部1の両側には、その放射方向に等間隔で8
箇所にボルト孔9が穿設され、内周円筒面にはス
プライン10が全周に亘つて刻設されている。
On both sides of the body 1, there are 8 at equal intervals in the radial direction.
Bolt holes 9 are drilled at the locations, and splines 10 are carved all around the inner cylindrical surface.

入力軸側には、円盤状を呈した側板2と、中心
部分は前記入力軸5を挿通する段付孔11が形成
されており、段付孔11の段部にはオイルシール
12が嵌合されている。又側板2の外周部分には
前記胴部1のボルト孔9に対応する位置にボルト
孔13が穿設されている。
On the input shaft side, a side plate 2 having a disk shape and a stepped hole 11 through which the input shaft 5 is inserted are formed in the center part, and an oil seal 12 is fitted into the stepped portion of the stepped hole 11. has been done. Further, bolt holes 13 are bored in the outer peripheral portion of the side plate 2 at positions corresponding to the bolt holes 9 of the body 1.

側板3は円盤状を呈し、その中央部分には出力
軸連結部4が突出し、更にその外周には、前記胴
部1のボルト孔9に対応する位置にボルト孔14
が穿設されている。
The side plate 3 has a disk shape, and an output shaft connecting portion 4 protrudes from the center thereof, and furthermore, bolt holes 14 are provided on the outer periphery at positions corresponding to the bolt holes 9 of the body portion 1.
is drilled.

側板3の外周際の内側には、後述する押圧部材
としてのスチールボール8を遠心力利用により軸
方向に押圧力を発生させるために側板3に対し45
度の傾斜角を有したテーパ面15が設けられ、回
転時には遠心力によりこのスチールボール8が外
周方向へ移動して、テーパ面15に沿つて被駆動
デイスク7に押圧力を付与し、被駆動デイスク間
全体の距離を縮めて、トルク伝達効率を高めるよ
うに構成されている。側板3の内面には放射方向
の4箇所に三方をリブで取り囲まれたスチールボ
ール収納部16が前記テーパ面15にリブ開放側
を対向して設けられている。
Inside the outer periphery of the side plate 3, a steel ball 8 as a pressing member, which will be described later, is mounted at 45° to the side plate 3 in order to generate a pressing force in the axial direction by utilizing centrifugal force.
A tapered surface 15 is provided with an inclination angle of 1.5 degrees, and during rotation, this steel ball 8 moves toward the outer circumference due to centrifugal force, applies a pressing force to the driven disk 7 along the tapered surface 15, and It is configured to shorten the overall distance between the disks and increase torque transmission efficiency. On the inner surface of the side plate 3, steel ball storage portions 16 surrounded by ribs on three sides are provided at four locations in the radial direction, with the rib open side facing the tapered surface 15.

又側板3のスチールボール収納部16内には、
流体の温度が18℃以下ではバネ筒40と同寸であ
り、18℃以上になるとコイル長が4.0mm伸長する
コイルバネ状に形状記憶熱処理された形状記憶効
果を有する金属部材である伸長コイルバネ41を
同軸上に備えたバネ筒40が固定されている。
Also, inside the steel ball storage section 16 of the side plate 3,
When the temperature of the fluid is below 18°C, the length is the same as that of the spring tube 40, and when the temperature is above 18°C, the coil length is extended by 4.0mm. A spring tube 40 provided coaxially is fixed.

更に側板3の外周2箇所にはオイルプラグ孔2
3が穿設され、オイルプラグが螺合されている。
又出力軸連結部4は被駆動物体の連結軸を挿入す
る取付孔24とキー溝25が設けられており、更
に取付孔24に対して、被駆動物体の連結軸に対
する軸方向の位置を保るための止めネジ孔26が
形成されており、ここに止めネジが螺合される。
取付孔24の奥底部には、ケーシング内に封入す
るシリコンオイル流出防止のための止め板27が
嵌合されている。前記胴部1、側板2及び側板3
とは、図のようにボルト孔9,13,14におい
て8本の締め付けボルトと締め付けナツトとによ
り一体に結合されている。
Furthermore, there are oil plug holes 2 at two locations on the outer periphery of the side plate 3.
3 is drilled and an oil plug is screwed into it.
The output shaft connecting portion 4 is provided with a mounting hole 24 into which the connecting shaft of the driven object is inserted, and a keyway 25, and furthermore, the output shaft connecting portion 4 is provided with a mounting hole 24 into which the connecting shaft of the driven object is inserted, and a key groove 25. A set screw hole 26 is formed therein, into which a set screw is screwed.
A stop plate 27 is fitted into the bottom of the mounting hole 24 to prevent silicone oil sealed in the casing from leaking out. The body part 1, side plate 2 and side plate 3
are integrally connected by eight tightening bolts and tightening nuts in bolt holes 9, 13, and 14 as shown in the figure.

被駆動デイスクはドーナツ形状で、その外周部
にはスプライン28が刻設されており、ケーシン
グにおける胴部1に形成されているスプライン1
0と嵌合して軸方向には移動が可能となつてお
り、各被駆動デイスク7間にはストツパーとなる
筒状のバネ筒29が各被駆動デイスク間の数即ち
4個づつ略等間隔で夫々外周際の4箇所に固定さ
れており、このバネ筒29内には、各駆動デイス
ク7間を押し広げるように、18℃で硬化しそのコ
イル長を短縮する記憶熱処理された形状記憶効果
を有する金属部材である短縮コイルバネ30が配
置されている。この短縮コイルバネ30は、起動
時に前記スチールボール8の押圧力に抗し軸方向
外方の押圧力が働いて、各被駆動デイスク7間の
距離を調節するように構成されている。
The driven disk has a donut shape, and a spline 28 is carved on the outer circumference of the driven disk.
0 and can be moved in the axial direction, and cylindrical spring tubes 29 serving as stoppers are arranged between each driven disk 7 at approximately equal intervals of four, i.e., the number of spring tubes 29 between each driven disk. These spring tubes 29 are fixed at four locations near the outer periphery, and inside this spring cylinder 29 is a shape memory effect that is hardened at 18°C and heat-treated to shorten the coil length so as to spread out the space between each drive disk 7. A shortened coil spring 30, which is a metal member, is arranged. The shortening coil spring 30 is configured to apply an axially outward pressing force against the pressing force of the steel ball 8 at the time of activation, thereby adjusting the distance between each driven disk 7.

又この短縮コイルバネ30は、18℃以下では自
然長3.6mmであるが18℃以上では、自然長2.8mmと
なるものを2.5mmに圧縮して装着され、それによ
り被駆動デイスク7間が始動時には4.1mmである
ものが、バネ筒29の軸長である3.1mmまで1.0mm
収縮し、駆動デイスク6との距離は0.5mmに短縮
される。従つて、流体の温度は18℃に達したと
き、伸長コイルバネ41が4.0mm伸長し、短縮コ
イルバネ30の収縮量の合計が4.0mmであるので、
スチールボール8と伸長コイルバネ41或はスチ
ールボール8と被駆動デイスク7とに〓間が生ず
る虞れはない。
In addition, this shortened coil spring 30 has a natural length of 3.6 mm at temperatures below 18 degrees Celsius, but is compressed to 2.5 mm at temperatures above 18 degrees Celsius, and is compressed to 2.5 mm. 4.1mm is 1.0mm up to 3.1mm, which is the axial length of the spring tube 29.
It contracts, and the distance from the drive disk 6 is shortened to 0.5 mm. Therefore, when the temperature of the fluid reaches 18°C, the extension coil spring 41 extends by 4.0 mm, and the total amount of contraction of the shortening coil spring 30 is 4.0 mm.
There is no possibility that a gap will occur between the steel ball 8 and the extension coil spring 41 or between the steel ball 8 and the driven disk 7.

又第1式に示す如く、出力軸に伝達されるトル
クは駆動デイスク6と被駆動デイスク7との間〓
δに反比例するので、温度上昇によつてシリコン
オイルの粘性係数が減少しても間〓δの短縮によ
つて、トルクの減少が抑えられトルク伝達効率が
低下することを防止している。
Also, as shown in the first equation, the torque transmitted to the output shaft is between the driving disk 6 and the driven disk 7.
Since it is inversely proportional to δ, even if the viscosity coefficient of silicone oil decreases due to temperature rise, the decrease in torque is suppressed by shortening Δ δ, thereby preventing a decrease in torque transmission efficiency.

入力軸5は、内部にスプラインが刻設された駆
動動力源の出力軸(図示せず)を取り付ける取付
孔31を持つ円筒状であり、取付孔31の奥には
前記出力軸のスプラインに嵌合するスプライン3
2が刻設されている。又入力軸5の外表面には、
スプライン33が刻設されており、端面には止め
板34が結合されている。スプライン33の両端
近傍には、全周に亘つて一定幅の止め輪溝35が
夫々刻設されており、後述のように駆動デイスク
6を嵌め込んだ後に止め輪を嵌合して駆動デイス
クの抜け止め防止が図られている。
The input shaft 5 has a cylindrical shape with a mounting hole 31 for attaching an output shaft (not shown) of a driving power source having a spline cut inside. Matching spline 3
2 is engraved. Moreover, on the outer surface of the input shaft 5,
A spline 33 is carved, and a stop plate 34 is connected to the end face. Near both ends of the spline 33, retaining ring grooves 35 of a constant width are formed around the entire circumference, and as will be described later, after the drive disk 6 is fitted, the retaining ring is fitted to remove the drive disk. It is designed to prevent it from coming off.

駆動デイスク6は、入力軸5のスプライン33
と嵌合するスプライン36が刻設されており、そ
の外側には同一円周上の複数箇所においてシリコ
ンオイルを流通させるための通油孔37が穿設さ
れている。
The drive disk 6 is connected to the spline 33 of the input shaft 5.
A spline 36 is formed to fit into the spline 36, and oil passage holes 37 for flowing silicone oil are bored at a plurality of locations on the same circumference on the outside of the spline 36.

押圧部材としてのスチールボール8は通常の鋼
球であり、側板3の内面に設けたスチールボール
収納部16と被駆動デイスク7とで区画された空
間内に収納されている。
The steel ball 8 as a pressing member is a normal steel ball, and is stored in a space defined by a steel ball storage portion 16 provided on the inner surface of the side plate 3 and a driven disk 7.

尚本実施例では流体の温度が18℃に達した時点
での伸長コイルバネ41のコイル長の伸長寸法と
短縮コイルバネ30,30……のコイル長の短縮
寸法の合計とが同じ数値となつており、流体の温
度が18℃に達しておらず、而も流体継手停止時
に、伸長コイルバネ41とスチールボール8と左
端の被駆動デイスク7とは密着するように設計さ
れている(第3a図示)。
In this embodiment, when the fluid temperature reaches 18° C., the length of the extended coil spring 41 and the sum of the shortened coil lengths of the shortened coil springs 30, 30, . . . are the same value. The design is such that when the temperature of the fluid has not reached 18° C. and the fluid coupling is stopped, the extension coil spring 41, the steel ball 8, and the driven disk 7 at the left end are in close contact (as shown in Figure 3a).

上記の構成部品を組み立てるには、先ず、側板
2をその内面を上にして台上に載置し、これに対
して同心にボルト孔9,13を合せて胴部1を載
せる。更に中心に止め板34側の止め輪を嵌めた
入力軸5を設置し、スチールボール収納部16に
バネ筒40を固定して伸長コイルバネ41を収容
し、更にその上から各々1個のスチールボール8
を入れる。その後、被駆動デイスク7のスプライ
ン28と駆動デイスク6のスプライン36とを、
夫々胴部1のスプライン10と入力軸5のスプラ
イン33に嵌合させて、交互に嵌め込み、同時に
各被駆動デイスク7間にバネ筒29を接着剤で固
着すると共にバネ筒29内に短縮コイルバネ30
を収容する。最後の被駆動デイスク7を嵌め込ん
だ後、入力軸5に止め輪を取り付け、側板2を合
せて締め付けナツトにより全体を一体に結合す
る。この後オイルプラグ孔23からシリコンオイ
ルを所定量注入して、オイルプラグをねじ込む。
To assemble the above components, first, the side plate 2 is placed on a table with its inner surface facing up, and the body 1 is placed thereon with the bolt holes 9 and 13 aligned concentrically. Furthermore, an input shaft 5 fitted with a retaining ring on the retaining plate 34 side is installed in the center, a spring tube 40 is fixed to the steel ball storage portion 16 to accommodate an extension coil spring 41, and one steel ball is inserted from above. 8
Put in. After that, the splines 28 of the driven disk 7 and the splines 36 of the driving disk 6 are connected.
The splines 10 of the body 1 and the splines 33 of the input shaft 5 are fitted into the splines 10 of the body 1 and the splines 33 of the input shaft 5, respectively, and the spring cylinders 29 are fixed with adhesive between each driven disk 7 at the same time, and the shortened coil springs 30 are inserted into the spring cylinders 29.
to accommodate. After fitting the last driven disk 7, a retaining ring is attached to the input shaft 5, the side plates 2 are aligned, and the whole is joined together with a tightening nut. After this, a predetermined amount of silicone oil is injected from the oil plug hole 23, and the oil plug is screwed in.

このようにして組み立てた流体継手に、駆動動
力源であるモータの軸を入力軸の取付孔に取り付
け、出力軸連結部4に例えばクレーンの走行車輪
を取り付ける。
To the fluid coupling thus assembled, the shaft of the motor serving as the drive power source is attached to the attachment hole of the input shaft, and the traveling wheels of a crane, for example, are attached to the output shaft connecting portion 4.

流体継手を起動させると、その回転数が上が
り、その回転数に応じた押圧力でスチールボール
8が左端の被駆動デイスク7を押圧すると共にシ
リコンオイルの温度は徐々に上昇する。こうして
シリコンオイルの温度が18℃に達すると、伸長コ
イルバネ41のコイル長がバネ筒40と同寸であ
つたものがそれより4.0mm伸長すると共に各短縮
コイルバネ30,30……のコイル長が夫々1.0
mm、合計4.0mm即ちバネ筒29の寸法にまで短縮
し、伝達トルクの低下を防止する(第3図b図
示)。
When the fluid coupling is activated, its rotational speed increases, and the steel ball 8 presses the leftmost driven disk 7 with a pressing force corresponding to the rotational speed, and the temperature of the silicone oil gradually rises. In this way, when the temperature of the silicone oil reaches 18°C, the coil length of the extension coil spring 41, which was the same size as the spring tube 40, is extended by 4.0 mm, and the coil length of each shortening coil spring 30, 30... is increased. 1.0
mm, a total of 4.0 mm, ie, the size of the spring tube 29, to prevent a decrease in the transmitted torque (as shown in FIG. 3b).

駆動を終了し、流体継手を停止させた後も、シ
リコンオイルの温度は急激には下降せず、以前と
して18℃を上まわつたままなので、各被駆動デイ
スク7間の間〓はバネ筒29の寸法にまで短縮し
たままである。更に伸長コイルバネ41も伸長し
たままであるので、スチールボール8がスチール
ボール収納部に戻つても短縮コイルバネ30とス
チールボール8及び左端の被駆動デイスク7の間
に〓間が生ずることはない。次に、シリコンオイ
ルの温度が未だ18℃以上にある時点で流体継手を
再駆動しても、被駆動デイスク7間の間〓は縮め
られたままであるので、シリコンオイルの粘度が
低下していても、伝達トルクの低下は防止でき
る。
Even after the drive is finished and the fluid coupling is stopped, the temperature of the silicone oil does not drop rapidly and remains above 18°C, so the temperature between each driven disk 7 is the same as that of the spring cylinder 29. It remains shortened to the dimensions of Further, since the extension coil spring 41 also remains extended, even when the steel ball 8 returns to the steel ball storage section, no gap is created between the shortening coil spring 30, the steel ball 8, and the driven disk 7 at the left end. Next, even if the fluid coupling is driven again when the temperature of the silicone oil is still above 18℃, the distance between the driven discs 7 remains shortened, so the viscosity of the silicone oil has decreased. However, a decrease in transmitted torque can also be prevented.

こうして流体継手を停止させ、シリコンオイル
の温度が低下すると、短縮コイルバネ30のコイ
ル長がそのバネ筒29の筒長まで縮むと共に伸長
コイルバネ41のコイル長が伸長し、元の位置に
復帰するが、この場合もスチールボール8とバネ
筒40及び、左端の被駆動デイスク7とに〓間が
生ずることもない。
When the fluid coupling is thus stopped and the temperature of the silicone oil is lowered, the coil length of the shortened coil spring 30 is shortened to the length of its spring tube 29, and the length of the extended coil spring 41 is expanded, returning to its original position. In this case as well, there is no gap between the steel ball 8, the spring tube 40, and the driven disk 7 at the left end.

又本実施例では4個のスチールボールを4個の
伸長コイルバネ41で加圧しているので、各コイ
ルバネの規格が同一であれば、スチールボール8
を介して同様に被駆動デイスク7を加圧でき、被
駆動デイスク7の摺動がスムーズに行なわれる。
In addition, in this embodiment, four steel balls are pressurized by four extension coil springs 41, so if the specifications of each coil spring are the same, the steel balls 8
Similarly, the driven disk 7 can be pressurized via the holder, and the driven disk 7 can be smoothly slid.

更にここでスチールボール8と、伸長コイルバ
ネ41とを入力側にも設け、両側から被駆動デイ
スク7を押圧するようにしてもよいし、その場合
伸長コイルバネ41の伸長量は、片側2.0mmとし、
両側の伸長コイルバネ41の伸長量の合計を4.0
mmとすればよい。このように両側に押圧部材と金
属部材とを用いることにより、各押圧部材や金属
部材にかかる圧力が半減し、部品の耐久性の向上
につながり、而も確実にその押圧力が被駆動デイ
スクに伝達される。
Further, the steel ball 8 and the extension coil spring 41 may be provided on the input side so as to press the driven disk 7 from both sides. In this case, the extension amount of the extension coil spring 41 is 2.0 mm on one side.
The total amount of extension of the extension coil springs 41 on both sides is 4.0.
It should be mm. By using a pressing member and a metal member on both sides in this way, the pressure applied to each pressing member and metal member is halved, leading to improved durability of the parts, and also ensuring that the pressing force is applied to the driven disk. communicated.

尚、各部品の摩耗による伸長コイルバネ41と
スチールボール8、或はスチールボール8と被駆
動デイスク7間の〓間をなくすために、伸長コイ
ルバネ41とそのバネ筒40とを、カム42の作
動によつて、進退可能に構成することもできる
(第4図示)。
In addition, in order to eliminate the gap between the extension coil spring 41 and the steel ball 8 or between the steel ball 8 and the driven disk 7 due to wear of each part, the extension coil spring 41 and its spring tube 40 are connected to the cam 42. Therefore, it can also be configured to be movable forward and backward (as shown in the fourth diagram).

ト 効果 本考案の流体継手は、所望温度に達した時点で
の、被駆動デイスク間に挿入した短縮金属部材の
コイル長変化量と、押圧部材を加圧する伸長金属
部材のコイル長変化量とを同量としたことによ
り、温度上昇による流体の粘度低下時に各デイス
ク間の距離が縮まり、トルク伝達の低下を防止す
るだけでなく、押圧部材と金属部材及び、押圧部
材と側端に位置した被駆動デイスクとに〓間が生
ずることは皆無であり、流体継手駆動時にスチー
ルボールが側板や被駆動デイスクに衝突すること
による駆動時の騒音発生や、被駆動デイスクの損
傷を防止できる。
G. Effect The fluid coupling of the present invention can calculate the amount of change in the coil length of the shortened metal member inserted between the driven disks and the amount of change in the coil length of the elongated metal member that presses the pressing member when the desired temperature is reached. Having the same amount reduces the distance between each disk when the viscosity of the fluid decreases due to a rise in temperature, which not only prevents a decrease in torque transmission, but also prevents the pressing member and the metal member, and the pressing member and the discs located at the side ends. There is no gap between the drive disk and the drive disk, and it is possible to prevent the steel balls from colliding with the side plate or the driven disk during driving of the fluid coupling, thereby preventing noise generation during driving and damage to the driven disk.

又各金属部材の変化量は先に決定しているので
押圧部材を介して被駆動デイスクを均等な圧力で
加圧でき、各デイスクをスムーズに摺動させるこ
とが可能である。
Further, since the amount of change in each metal member is determined in advance, the driven disk can be pressurized with uniform pressure via the pressing member, and each disk can be slid smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案に係る流体継手の1実施例を示し
たもので、第1図は流体継手のA−A断面図、第
2図は同左側面図、第3図a及び第3図bは同金
属部材の作動説明図、第4図は同変更例説明図、
第5図は従来例説明図である。 1……胴部、2,3……側板、4……出力軸連
結部、5……入力軸、6……駆動デイスク、7…
…被駆動デイスク、8……スチールボール、9…
…ボルト孔、10……スプライン、11……段付
孔、12……オイルシール、13……ボルト孔、
14……ボルト孔、15……テーパ面、16……
スチールボール収納部、23……オイルプラグ
孔、24……取付孔、25……キー溝、26……
止めネジ孔、27……止め板、28……スプライ
ン、29……バネ筒、30……短縮コイルバネ、
31……取付孔、32……スプライン、33……
スプライン、34……止め板、35……止め輪
溝、36……スプライン、37……通油孔、40
……バネ筒、41……伸長コイルバネ、42……
カム。
The drawings show one embodiment of the fluid coupling according to the present invention, and FIG. 1 is a sectional view taken along line A-A of the fluid coupling, FIG. 2 is a left side view of the same, and FIGS. 3a and 3b are the same. An explanatory diagram of the operation of the metal member, FIG. 4 is an explanatory diagram of a modified example of the same,
FIG. 5 is an explanatory diagram of a conventional example. DESCRIPTION OF SYMBOLS 1... Body part, 2, 3... Side plate, 4... Output shaft connection part, 5... Input shaft, 6... Drive disk, 7...
...Driven disk, 8... Steel ball, 9...
... Bolt hole, 10 ... Spline, 11 ... Stepped hole, 12 ... Oil seal, 13 ... Bolt hole,
14... Bolt hole, 15... Tapered surface, 16...
Steel ball storage section, 23...Oil plug hole, 24...Mounting hole, 25...Keyway, 26...
Set screw hole, 27... Stop plate, 28... Spline, 29... Spring tube, 30... Shortened coil spring,
31...Mounting hole, 32...Spline, 33...
Spline, 34... Retaining plate, 35... Retaining ring groove, 36... Spline, 37... Oil hole, 40
... Spring tube, 41 ... Extension coil spring, 42 ...
cam.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 駆動動力源に接続される入力軸と、その入力軸
を相対回転可能に包囲し且つ内部に粘性流体を充
填した密閉状態の回転ケーシングと、そのケーシ
ングの出力側に前記入力軸と同軸上に設けられた
出力軸とからなり、前記入力軸の外周面に複数枚
の駆動デイスクを適宜間隔を保つて軸方向へ摺動
可能に設けると共に、前記ケーシングの内周面
に、前記複数枚の駆動デイスクと僅かな間隔を保
つて交互に重なり合うドーナツ状の被駆動デイス
クを軸方向に摺動可能に設け、更に回転時の遠心
力で放射方向へ移動する押圧部材によつて前記駆
動デイスク及び被駆動デイスクを各デイスク間の
間〓を縮める方向へ摺動可能とする押圧手段を設
けた流体継手において、隣接する各被駆動デイス
ク相互間に、所望温度にて硬化しコイル長が短縮
するコイルバネ状に形状記憶熱処理された形状記
憶効果を有する短縮金属部材と、前記被駆動デイ
スク間の間〓を確保するスペーサとを配置すると
共に、前記所望温度にて硬化し前記短縮金属部材
の総短縮寸法と同寸法伸長するコイルバネ状に形
状記憶熱処理された形状記憶効果を有する伸長金
属部材により、前記押圧部材をその押圧部材の押
圧力増加方向へ押し付けることを特徴とする流体
継手。
An input shaft connected to a driving power source, a sealed rotary casing that surrounds the input shaft so as to be relatively rotatable and is filled with a viscous fluid, and a rotary casing provided coaxially with the input shaft on the output side of the casing. A plurality of drive disks are provided on the outer peripheral surface of the input shaft so as to be slidable in the axial direction at appropriate intervals, and the plurality of drive disks are provided on the inner peripheral surface of the casing. Donut-shaped driven disks are provided so as to be able to slide in the axial direction and are alternately overlapped with each other with a slight spacing between them, and the driving disks and the driven disks are moved by a pressing member that moves in the radial direction due to centrifugal force during rotation. In a fluid coupling equipped with a pressing means that can slide in a direction that reduces the distance between each disk, a coil spring-like shape that hardens at a desired temperature and shortens the coil length is applied between each adjacent driven disk. A shortened metal member having a shape memory effect that has been subjected to memory heat treatment and a spacer that secures a gap between the driven disks are arranged, and the shortened metal member is hardened at the desired temperature and has the same size as the total shortened dimension of the shortened metal member. A fluid coupling characterized in that an elongated metal member having a shape memory effect that has been subjected to shape memory heat treatment in the shape of an elongated coil spring presses the pressing member in a direction of increasing the pressing force of the pressing member.
JP1987128948U 1987-08-25 1987-08-25 Expired - Lifetime JPH05580Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987128948U JPH05580Y2 (en) 1987-08-25 1987-08-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987128948U JPH05580Y2 (en) 1987-08-25 1987-08-25

Publications (2)

Publication Number Publication Date
JPS6432935U JPS6432935U (en) 1989-03-01
JPH05580Y2 true JPH05580Y2 (en) 1993-01-08

Family

ID=31382759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987128948U Expired - Lifetime JPH05580Y2 (en) 1987-08-25 1987-08-25

Country Status (1)

Country Link
JP (1) JPH05580Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114063A (en) * 2003-10-08 2005-04-28 Viscodrive Japan Ltd Viscous coupling and clearance adjusting mechanism for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204320A (en) * 1981-06-10 1982-12-15 Honda Motor Co Ltd Clutch with viscous coupling
JPS629033A (en) * 1985-07-02 1987-01-17 シユタイル−ダイムレル−プ−フ・アクチエンゲゼルシヤフト Liquid friction clutch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204320A (en) * 1981-06-10 1982-12-15 Honda Motor Co Ltd Clutch with viscous coupling
JPS629033A (en) * 1985-07-02 1987-01-17 シユタイル−ダイムレル−プ−フ・アクチエンゲゼルシヤフト Liquid friction clutch

Also Published As

Publication number Publication date
JPS6432935U (en) 1989-03-01

Similar Documents

Publication Publication Date Title
US4552544A (en) Drive line slip joint assembly
US5056640A (en) Torque transmission device for a four-wheel drive vehicle
US3265172A (en) Cushioned torque-limiting centrifugal clutch
US5765673A (en) Engaging apparatus
KR20060054011A (en) Clutch with adjustable pack clearance
KR930004064B1 (en) Pressure actuator
JPH05580Y2 (en)
EP0096553B1 (en) Disc assemblies for brakes
CN113811697B (en) clutch device
USRE33322E (en) Drive line slip joint assembly
US5794751A (en) Piston for torque transmitting systems
JPH0527707Y2 (en)
JPH0532669Y2 (en)
JPH0532668Y2 (en)
JPS58152941A (en) Fluid coupling
CN107387590B (en) Clutch device capable of maintaining state
CN217422094U (en) Differential assembly and drive axle
JPH05170064A (en) Disc brake device
CN218063170U (en) EMB brake
RU2785447C2 (en) Actuator for multidisc brake
JPH0342261Y2 (en)
SU759772A1 (en) Braking coupling
JPH0736187Y2 (en) Driving force transmission device
JPS6337497Y2 (en)
JPS6327167Y2 (en)