JPH0558068B2 - - Google Patents

Info

Publication number
JPH0558068B2
JPH0558068B2 JP61147514A JP14751486A JPH0558068B2 JP H0558068 B2 JPH0558068 B2 JP H0558068B2 JP 61147514 A JP61147514 A JP 61147514A JP 14751486 A JP14751486 A JP 14751486A JP H0558068 B2 JPH0558068 B2 JP H0558068B2
Authority
JP
Japan
Prior art keywords
diamond
hydrogen
thermal conductivity
carbon
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61147514A
Other languages
Japanese (ja)
Other versions
JPS634068A (en
Inventor
Kazutaka Fujii
Nobuaki Shohata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP61147514A priority Critical patent/JPS634068A/en
Publication of JPS634068A publication Critical patent/JPS634068A/en
Publication of JPH0558068B2 publication Critical patent/JPH0558068B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気相から室温の基板上に析出させる
ことのできる高熱伝導性ダイヤモンド状カーボン
膜に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to highly thermally conductive diamond-like carbon films that can be deposited from the gas phase onto a substrate at room temperature.

(従来の技術と発明が解決しようとする問題点) 気相からのダイヤモンドないしはダイヤモンド
状カーボン膜の合成方法として、約2000℃に加熱
したフイラメントを触媒とする方法、放電(直
流、高周波、マイクロ波等)を利用した方法、イ
オンビーム法、スパツタ法等が知られている。こ
れらの方法の多くは、基板を約800℃に加熱しな
ければならない欠点を有している。また結晶ダイ
ヤモンド粒子の密集化により膜状にするには、長
時間かかり、その表面も荒い欠点を有している。
(Problems to be solved by the prior art and the invention) Methods for synthesizing diamond or diamond-like carbon films from the gas phase include methods using a filament heated to about 2000°C as a catalyst, electric discharge (direct current, high frequency, microwave etc.), ion beam method, sputter method, etc. are known. Many of these methods have the disadvantage that the substrate must be heated to about 800°C. Furthermore, due to the density of the crystalline diamond particles, it takes a long time to form a film, and the surface thereof also has the disadvantage of being rough.

室温付近でダイヤモンド状カーボン膜を合成し
た例として、1980年発行のジヤーナル・オブ・ノ
ンクリスタリン、ソリツズ誌(Journal of Non
−Crystalline Solids)第35&36巻第435ページ記
載の論文でガラスないしはモリブデンをガラス上
の蒸着したものを基板に用い、アセチレンを直流
グロー放電により分解し、硬質カーボン膜を合成
したことを報告している。しかしながら、熱伝導
性については延べられていない。また、従来の報
告では、水素含有率と熱伝導性の関係を明らかに
したものではなく、水素含有量は制御されていな
い。
An example of synthesizing a diamond-like carbon film near room temperature is given in the Journal of Noncrystallines, published in 1980.
-Crystalline Solids) Vol. 35 & 36, page 435, reports that a hard carbon film was synthesized by using glass or molybdenum vapor-deposited on glass as a substrate and decomposing acetylene by direct current glow discharge. . However, thermal conductivity is not discussed. In addition, conventional reports do not clarify the relationship between hydrogen content and thermal conductivity, and the hydrogen content is not controlled.

ところで近年のエレクトロニクス技術の進歩は
極めて著るしいものがあり、高硬度で高絶縁性か
つ高熱伝導性材料が種々の分野例えば磁気記録媒
体表面コーテイング、磁気ヘツドの表面コーテイ
ング、ICやLSIなどの電子デバイスの表面保護膜
や多層配線間絶縁膜などの用途のために、必要と
されている。従来の炭素膜は抵抗が低かつたり、
高抵抗であつても硬度が1000Kg/mm2以下と小さか
つたり、熱伝導度は100w/w・k以下と小さか
つたり、成膜温度が約500℃以下では性能の優れ
た膜が製作できないという種々の欠点を有してい
た。
By the way, the progress in electronics technology in recent years has been extremely remarkable, and materials with high hardness, high insulation properties, and high thermal conductivity are being used in various fields such as surface coatings for magnetic recording media, surface coatings for magnetic heads, and electronic devices such as ICs and LSIs. It is needed for applications such as device surface protection films and multilayer wiring insulating films. Conventional carbon films have low resistance and
Even if it has high resistance, the hardness is small at less than 1000Kg/ mm2 , the thermal conductivity is small at less than 100w/w・k, and it is not possible to produce a film with excellent performance at a film formation temperature of about 500℃ or less. It had various drawbacks.

本発明の目的は、このような従来の欠点を除去
せしめて、室温で合成できる高熱伝導性ダイヤモ
ンド状カーボン膜を提供することにある。
An object of the present invention is to eliminate such conventional drawbacks and provide a highly thermally conductive diamond-like carbon film that can be synthesized at room temperature.

(問題点を解決するための手段) 本発明によれば、水素含有量を20原子%〜30原
子%とすることによつて、高熱伝導性ダイヤモン
ド状カーボン膜が得られる。
(Means for Solving the Problems) According to the present invention, a highly thermally conductive diamond-like carbon film can be obtained by controlling the hydrogen content to 20 at % to 30 at %.

気相からのダイヤモンドないし非晶質のダイヤ
モンド状カーボンの合成過程では、熱力学的に準
安定な相を安定化せしめる人工的操作を要求され
る。特に室温付近での合成の場合、内部エネルギ
ーの高いプラズマを利用したり、イオンを加速し
て基板に衝突させる等の工夫が必要となる。更に
非晶質状態でダイヤモンドの特性を得ようとする
場合には、カーボン膜中に炭素と水素の結合を積
極的に利用する方法がとられる。本発明者らは、
よりダイヤモンドに近い性質を得るために製造条
件を種々検討した結果、水素含有量に最適の値が
存在することを見出し本発明に到つた。水素の役
割としては、ダイヤモンド状カーボンを安定化せ
しめるのではなく、存在するダングリングボンド
を補障することによつて、フオノンの散乱を防止
し、熱伝導率を増加するものと考えられる。
The process of synthesizing diamond or amorphous diamond-like carbon from the gas phase requires artificial manipulations to stabilize the thermodynamically metastable phase. In particular, in the case of synthesis near room temperature, it is necessary to take measures such as using plasma with high internal energy or accelerating ions to collide with the substrate. Furthermore, when attempting to obtain the characteristics of diamond in an amorphous state, a method is used that actively utilizes the bonds between carbon and hydrogen in the carbon film. The inventors
As a result of examining various manufacturing conditions in order to obtain properties closer to those of diamond, it was discovered that an optimum value exists for the hydrogen content, and the present invention was achieved. The role of hydrogen is not to stabilize diamond-like carbon, but to compensate for existing dangling bonds, thereby preventing phonon scattering and increasing thermal conductivity.

実施例 1 反応ガスとして、水素とメタンの混合ガスを用
い、第1図の直流グロー放電装置を用い、室温の
シリコン基板状に2ミクロンのダイヤモンド状カ
ーボン膜を合成した。第1図で1はアノード、2
はカソード、3は直流電源、4は基板である。水
素含有量は、圧力を変えることによつても制御で
きるが、この実験では、全圧を2トールと一定に
保ちメタンと水素の混合比を変えて水素含有量を
制御している。第2図に合成したダイヤモンド状
カーボン膜の熱伝導率の水素の含有量との関係を
示す。第2図より、水素含有量が20〜30原子パー
セントの時熱伝導率が大きく、最大で銅と同程度
まで上昇していることが判明した。この条件での
特性は、析出速度が毎分100オングストローム、
電気抵抗は、1013Ω・cmと高絶縁性で、酸・アル
カリに耐して不活性であり、硬度も約3000ビツカ
ース硬度と硬い膜である。更に膜表面は、非常に
平滑で鏡面状態でくもりのない良好なものであつ
た。
Example 1 A diamond-like carbon film of 2 microns was synthesized on a silicon substrate at room temperature using a mixed gas of hydrogen and methane as a reactive gas and using the direct current glow discharge apparatus shown in FIG. In Figure 1, 1 is the anode, 2
is a cathode, 3 is a DC power supply, and 4 is a substrate. The hydrogen content can also be controlled by changing the pressure, but in this experiment, the total pressure was kept constant at 2 Torr and the hydrogen content was controlled by changing the mixing ratio of methane and hydrogen. FIG. 2 shows the relationship between the thermal conductivity of the synthesized diamond-like carbon film and the hydrogen content. From Figure 2, it was found that when the hydrogen content was 20 to 30 atomic percent, the thermal conductivity was high, reaching a maximum of the same level as copper. The characteristics under this condition are that the deposition rate is 100 angstroms per minute,
It is highly insulating with an electrical resistance of 10 13 Ωcm, is resistant to acids and alkalis, is inert, and has a hardness of approximately 3000 Vickers hardness. Furthermore, the film surface was very smooth, mirror-like, and free of cloudiness.

実施例 2 第3図に示す直流グロー放電装置を用い、実施
例1と同じ条件でダイヤモンド状カーボン膜を合
成し、熱伝導率を評価した所、実施例1と同様な
傾向を得た。ただし、この膜の硬度は約10000ビ
ツカース硬度とほぼダイヤモンド相当の値を示す
ので、熱伝導率も最大で600w/m・kとダイヤ
モンドに近い値が得られた。
Example 2 A diamond-like carbon film was synthesized using the DC glow discharge device shown in FIG. 3 under the same conditions as in Example 1, and the thermal conductivity was evaluated, and the same trends as in Example 1 were obtained. However, the hardness of this film is about 10,000 Vickers hardness, which is almost equivalent to diamond, and the thermal conductivity was also close to that of diamond, at a maximum of 600 w/m·k.

なお実施例1、2において水素量の定量分析
は、カーボン原子数をラザフオード・バツクスキ
ヤツタリング法で、水素原子をプロトン・リコイ
ル・デイテクシヨン法で分析し、カーボン原子に
対する水素原子比で求めた。更に、赤外吸収スペ
クトルに現れる2900cm-1当りのC−H伸縮モード
によるピークの積分強度より、水素量を確認し
た。
In Examples 1 and 2, the amount of hydrogen was quantitatively analyzed by analyzing the number of carbon atoms using the Rutherford back scattering method and analyzing the hydrogen atoms using the proton recoil detection method, and determining the hydrogen atomic ratio to carbon atoms. Further, the amount of hydrogen was confirmed from the integrated intensity of the peak due to the C--H stretching mode per 2900 cm -1 appearing in the infrared absorption spectrum.

(発明の効果) 本発明により、高熱伝導性ダイヤモンド状カー
ボン膜を室温の基板に析出させることができる。
水素含有量が20原子パーセント以下かないしは30
原子パーセント以上のカーボン膜では非常に低い
熱伝導性を示し、本発明の効果は非常に大きい。
更に、水素を含有しないアモルフアスカーボン膜
に比べると2桁大きい。
(Effects of the Invention) According to the present invention, a highly thermally conductive diamond-like carbon film can be deposited on a substrate at room temperature.
Hydrogen content less than 20 atomic percent or 30 atomic percent
A carbon film of atomic percent or more exhibits very low thermal conductivity, and the effects of the present invention are very large.
Furthermore, it is two orders of magnitude larger than an amorphous carbon film that does not contain hydrogen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は、本発明の方法に直接使用
する装置の概略図。第2図は、ダイヤモンド状カ
ーボン膜の熱伝導率と水素の含有量の関係を示す
図。 図において、1はアノード、2はカソード、3
は直流電源、4はスクリーンメツシユである。
1 and 3 are schematic diagrams of equipment used directly in the method of the invention. FIG. 2 is a diagram showing the relationship between the thermal conductivity and hydrogen content of a diamond-like carbon film. In the figure, 1 is an anode, 2 is a cathode, 3
is a DC power supply, and 4 is a screen mesh.

Claims (1)

【特許請求の範囲】[Claims] 1 水素含有量が20原子パーセント以上30原子パ
ーセント以下であることを特徴とするダイヤモン
ド状カーボン膜。
1. A diamond-like carbon film characterized by having a hydrogen content of 20 atomic percent or more and 30 atomic percent or less.
JP61147514A 1986-06-23 1986-06-23 Diamondlike carbon film Granted JPS634068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61147514A JPS634068A (en) 1986-06-23 1986-06-23 Diamondlike carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61147514A JPS634068A (en) 1986-06-23 1986-06-23 Diamondlike carbon film

Publications (2)

Publication Number Publication Date
JPS634068A JPS634068A (en) 1988-01-09
JPH0558068B2 true JPH0558068B2 (en) 1993-08-25

Family

ID=15432060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61147514A Granted JPS634068A (en) 1986-06-23 1986-06-23 Diamondlike carbon film

Country Status (1)

Country Link
JP (1) JPS634068A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728918B2 (en) * 1988-11-30 1998-03-18 株式会社リコー Liquid jet recording head
EP1197581B1 (en) * 1999-05-19 2006-10-25 Mitsubishi Shoji Plastics Corporation Dlc film, dlc-coated plastic container, and method and apparatus for manufacturing dlc-coated plastic container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842473A (en) * 1981-09-07 1983-03-11 Semiconductor Energy Lab Co Ltd Manufacture of thermal head
JPS5842472A (en) * 1981-09-07 1983-03-11 Semiconductor Energy Lab Co Ltd Thermal head
JPS60157725A (en) * 1984-01-26 1985-08-19 Denki Kagaku Kogyo Kk Magnetic storage medium
JPS60195092A (en) * 1984-03-15 1985-10-03 Tdk Corp Method and apparatus for production of carbon thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842473A (en) * 1981-09-07 1983-03-11 Semiconductor Energy Lab Co Ltd Manufacture of thermal head
JPS5842472A (en) * 1981-09-07 1983-03-11 Semiconductor Energy Lab Co Ltd Thermal head
JPS60157725A (en) * 1984-01-26 1985-08-19 Denki Kagaku Kogyo Kk Magnetic storage medium
JPS60195092A (en) * 1984-03-15 1985-10-03 Tdk Corp Method and apparatus for production of carbon thin film

Also Published As

Publication number Publication date
JPS634068A (en) 1988-01-09

Similar Documents

Publication Publication Date Title
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
JP3136307B2 (en) Diamond mounting substrate for electronic applications
Ong et al. Effects of substrate temperature on the structure and properties of reactive pulsed laser deposited CNx films
Yara et al. Low temperature fabrication of diamond films with nanocrystal seeding
Bhattacharya et al. Effect of deposition temperature on the growth of nanocrystalline silicon network from helium diluted silane plasma
JPH0558068B2 (en)
Yara et al. Fabrication of diamond films at low pressure and low-temperature by magneto-active microwave plasma chemical vapor deposition
JP2794173B2 (en) Method of forming composite carbon coating
JP2623475B2 (en) Counter electrode type microwave plasma processing apparatus and processing method
JPH0568541B2 (en)
JPH04118884A (en) Solid discharge element
Kumar et al. High rate deposition of diamond like carbon films by very high frequency plasma enhanced chemical vapor deposition at 100 MHz
JPH08288172A (en) Capacitor with silicon addition shapeless hydrogenated carbon dielectric
DebRoy et al. Optical emissions during plasma assisted chemical vapor deposition of diamond-like carbon films
Amanullah et al. Characterization of isochronally and isothermally annealed indium tin oxide thin films
CN1045658A (en) A kind of preparation method of metallic oxide superconduction film
Droes et al. Plasma-enhanced chemical vapor deposition (PECVD)
JP3124422B2 (en) Method of forming highly oriented diamond thin film
JPH0448757B2 (en)
JP3276415B2 (en) Method and apparatus for forming ceramic film
JPH0665744A (en) Production of diamond-like carbon thin film
Baránková et al. Characterization of the linear arc discharge (LAD) source for film deposition
JP6944699B2 (en) Method for manufacturing hexagonal boron nitride film
Matsuoka et al. Diamond synthesis by sputtering
Lee et al. Effect of hydrogen content on characteristics of Cu/C: H films coated on polyethylene terephthalate substrate prepared by ECR-MOCVD coupled with a periodic DC bias