JPH0557588A - Sphere grinding attachment - Google Patents

Sphere grinding attachment

Info

Publication number
JPH0557588A
JPH0557588A JP24445591A JP24445591A JPH0557588A JP H0557588 A JPH0557588 A JP H0557588A JP 24445591 A JP24445591 A JP 24445591A JP 24445591 A JP24445591 A JP 24445591A JP H0557588 A JPH0557588 A JP H0557588A
Authority
JP
Japan
Prior art keywords
groove
shape
sphere
spherical
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24445591A
Other languages
Japanese (ja)
Other versions
JP3225548B2 (en
Inventor
Yuichi Sumida
雄一 隅田
Kunio Kawashima
邦雄 河島
Hiroyuki Nojima
弘之 野嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP24445591A priority Critical patent/JP3225548B2/en
Publication of JPH0557588A publication Critical patent/JPH0557588A/en
Application granted granted Critical
Publication of JP3225548B2 publication Critical patent/JP3225548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To minimize the loss by making a sphere so as to be ground in adding machining pressure to it between a pair of plate bodies made up of forming plural concentrical sphere rolling groove and forming a sectional form of the one part groove in differing from the sectional form of the other grooves, in a grinding attachment for a rolling bearing steel ball. CONSTITUTION:No groove is formed in a rotary plate body 1, but a V-groove 6 and a circular groove 8 are concentrically formed in another rotary plate body 2 in an alternate manner. Then, work spheres 3a, 3b are held between the fixed plate body 2 and a movable plate body 1 under pressure, and they are rolled in grooves 6, 8 and ground. With this constitution, since the sphere 3a entered in the V-groove 6 is ground in a state of three point contacts, accuracy in circularity and sphericity of the triangular form or odd angular form sphere is improved in partitular. On the other hand, the sphere enters the circular groove 8, it comes to approximate two-point contact so that accuracy in biangular form, even angular form is improved. Thus, both effects are repeatedly added, therefore their accuracies are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は球体研磨装置に関し、特
にころがり軸受等に使用される鋼球を回転盤体と固定盤
体との間に挟圧し、該盤体に形成した同芯状の溝に沿っ
て転走させつつ研磨加工する球体研磨装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sphere polishing apparatus, and in particular, a steel ball used for a rolling bearing or the like is pinched between a rotating disk body and a stationary disk body to form a concentric shape on the disk body. The present invention relates to a spherical polishing device that performs polishing while rolling along a groove.

【0002】[0002]

【従来の技術】この種の球体研磨加工装置においては、
図5に例示するように、回転砥石盤体1と固定盤体2の
間に多数の球体を加圧挟持し、一方向に回転するストレ
ージコンベヤ7から連続的に被加工球体3を、固定盤体
2に形成した給排出口4を介して両盤体1,2間に供給
し、連続的に研磨処理を受けて給排出口4から出てくる
被加工球体3を再びストレージコンベヤ7に戻し、この
ような動作を数10回から数100回繰り返して徐々に
球体の径寸法や真円真球度を向上させていく。なお本装
置は、個々の球体の径寸法相互差をなくするように、回
転しているストレージコンベヤ7内で被加工球体3がラ
ンダムにあるいは或る狙いをもって互いに混合されるよ
う工夫がなされている。
2. Description of the Related Art In this type of spherical polishing apparatus,
As illustrated in FIG. 5, a large number of spheres are pressed and sandwiched between the rotary grindstone body 1 and the fixed board body 2, and the processed spheres 3 are continuously fixed from the storage conveyor 7 rotating in one direction. The spheres 3 to be processed, which are supplied between the two disc bodies 1 and 2 through the supply / discharge port 4 formed in the body 2 and are continuously subjected to the polishing process and come out from the supply / discharge port 4, are returned to the storage conveyor 7 again. By repeating such an operation several tens to several hundreds of times, the diametrical dimension and the perfect circularity of the sphere are gradually improved. In addition, this device is devised so that the spheres 3 to be processed are mixed with each other randomly or with a certain aim in the rotating storage conveyor 7 so as to eliminate the difference in diameter between the individual spheres. ..

【0003】回転砥石盤体1あるいは固定盤体2には複
数本の同芯状の球体転走溝5が形成され、これらの溝5
に沿って複数の被加工球体3が転動する。従来、この球
体転走溝の溝断面形状としては図6(a),(b)ある
いは図7(a),(b)に示される形状のものが知られ
ており、いずれも1つの盤体について複数の球体転走溝
は同じ断面形状となっている。図6(a)は、回転砥石
盤体1側には溝がなく固定盤体2に一様なV形溝6が形
成された場合である。図6(b)は両盤体1,2に球体
転走溝を設けた例であり、固定盤体2のV形溝6の位置
に対応して同芯状に回転砥石盤体1に円弧溝8が形成さ
れている。図6(a),(b)の場合には、被加工球体
は両盤体1,2間に3点支持または近似3点支持によっ
て加圧挟持され、被加工球体3は、特に3角形状および
奇数角形状のものに対して真円真球度の向上が著しい。
一方、図7(a)では固定盤体2に円弧状の溝断面形状
をもつ円弧溝8が形成され、回転砥石盤体1側は溝無し
となっている。図7(b)は回転砥石盤体1,固定盤体
2とも円弧溝8が形成された例である。図7(a),
(b)の場合には、被加工球体3は両盤体1,2に2点
支持または近似2点支持によって加圧挟持され、被加工
球体3は特に2角形状および偶数角形状のものに対して
真円真球度の向上が著しい。なお図6(a),(b),
図7(a)における溝形状を各盤体について左右逆にし
てもよく、またこれらの従来例で回転側の盤体1のみを
砥石盤体としたが、これを逆にして固定盤体2のみを砥
石盤体とするか、あるいは両盤体とも砥石盤体としても
よい。
A plurality of concentric spherical rolling grooves 5 are formed in the rotary grindstone 1 or the fixed platen 2, and these grooves 5 are formed.
A plurality of spheres 3 to be processed roll along with. Conventionally, as the groove cross-sectional shape of this spherical rolling groove, one having a shape shown in FIG. 6 (a), (b) or FIG. 7 (a), (b) is known, and each of them has only one board. Regarding, the plurality of spherical rolling grooves have the same sectional shape. FIG. 6A shows a case where there is no groove on the rotary grindstone body 1 side and a uniform V-shaped groove 6 is formed on the fixed platen 2. FIG. 6 (b) shows an example in which spherical rolling grooves are provided on both the discs 1 and 2, and the rotary grindstone 1 is concentrically arc-shaped corresponding to the position of the V-shaped groove 6 of the fixed disc 2. The groove 8 is formed. In the case of FIGS. 6 (a) and 6 (b), the sphere to be processed is pressed and sandwiched between the two disc bodies 1 and 2 by three-point support or approximate three-point support, and the sphere 3 to be machined has a particularly triangular shape. And the roundness of sphericity is remarkably improved in comparison with those of odd-angled shape.
On the other hand, in FIG. 7 (a), an arcuate groove 8 having an arcuate groove cross-sectional shape is formed on the fixed platen 2, and the rotary grindstone platen 1 side has no groove. FIG. 7B shows an example in which the arcuate groove 8 is formed in both the rotary grindstone disk body 1 and the fixed disk body 2. 7 (a),
In the case of (b), the sphere 3 to be machined is pressed and sandwiched between the two disc bodies 1 and 2 by two-point support or approximate two-point support, and the sphere 3 to be machined is particularly a diagonal shape or an even-angled shape. On the other hand, the roundness is improved significantly. 6 (a), (b),
The groove shape in FIG. 7A may be reversed left and right for each plate, and only the plate 1 on the rotating side is a grindstone plate in these conventional examples. Only one may be a grinding stone body, or both boards may be a grinding stone body.

【0004】[0004]

【発明が解決しようとする課題】従来の球体研磨装置
は、上述したように球体を加圧挟持する盤体にV形溝か
円弧溝のいずれかが形成され、この溝形状に応じて奇数
角形状または偶数角形状の球体の真円真球度の向上がな
される。しかしストレージコンベヤ内には通常奇数角形
状,偶数角形状の球体が混在しており、同じ研磨装置で
奇数角形状,偶数角形状の両方の精度を向上させること
は困難である。従来のもので最も精度向上によいとされ
る図7(b)の場合でも最近の高精度球体の要求に対し
て満足すべき精度が得られず、特に3角形状に対する真
円真球度の修正が困難である。それ故、被加工球体を高
精度に研磨加工するためには図6の盤体による研磨装置
で研磨加工した後、さらに図7のような盤体をもつ別の
球体研磨装置で研磨加工する等、多くの研磨工程と多大
のロスを強いられていた。
In the conventional sphere polishing apparatus, either a V-shaped groove or a circular arc groove is formed in the disk body for pressing and holding the sphere as described above, and an odd angle is formed depending on the groove shape. The roundness of the spherical shape or the even-angled shape is improved. However, the storage conveyor usually contains spheres of odd-angled shape and even-angled shape, and it is difficult to improve the accuracy of both odd-angled shape and even-angled shape with the same polishing apparatus. Even in the case of FIG. 7 (b), which is considered to be the best for improving accuracy in the conventional one, it is not possible to obtain sufficient accuracy for the recent demand for high-precision spheres. It is difficult to fix. Therefore, in order to polish the sphere to be processed with high accuracy, after polishing with the polishing device with the plate of FIG. 6, further polishing with another sphere polishing device having a plate as shown in FIG. However, many polishing processes and a great loss were forced.

【0005】本発明は、生産工程上のロスを最小限に抑
えて唯一の研磨工程で奇数角形状も偶数角形状も共に高
精度の球体に研磨加工できる球体研磨装置を提供するこ
とにある。
An object of the present invention is to provide a sphere polishing apparatus capable of polishing highly accurate spheres in both odd-angled shapes and even-angled shapes in a single polishing step while minimizing the loss in the production process.

【0006】[0006]

【課題を解決するための手段】本発明は、ストレージに
収容された被加工球体を、互いに所定間隔を有して対向
している回転盤体と固定盤体との間に複数列で供給しか
つこの両盤体により加工圧を加えて研磨加工し、前記両
盤体から排出された被加工球体を前記ストレージに戻し
て再び前記両盤体間に供給し、この動作を繰り返すよう
に構成した球体研磨装置において、前記両盤体の少なく
とも一方の盤体に複数本の同芯状の球体転走溝を形成
し、その一部の前記球体転走溝の溝断面形状を他の部分
の球体転走溝の溝断面形状とは異なる形状にしたもので
ある。
According to the present invention, the spheres to be processed accommodated in the storage are supplied in a plurality of rows between a rotating disk body and a stationary disk body which are opposed to each other with a predetermined interval. Moreover, the processing pressure is applied by the two plates to perform polishing, the processed spheres discharged from the both plates are returned to the storage and supplied again between the two plates, and this operation is repeated. In the sphere polishing device, a plurality of concentric spherical rolling grooves are formed on at least one of the two discs, and a part of the spherical rolling grooves has a groove cross-sectional shape of another portion. The rolling groove has a shape different from the cross-sectional shape of the groove.

【0007】[0007]

【作用】本発明においては、盤体に形成した複数本の球
体転走溝が同一の溝断面形状でなく、1つの盤体に2点
あるいは近似2点支持の溝と3点あるいは近似3点支持
の溝とが併設されているので、ストレージコンベヤ内で
ランダムに混合された奇数角形状および偶数角形状の被
加工球体は、ある時は3点あるいは近似3点支持の溝に
入って研磨加工され、またある時は2点あるいは近似2
点支持の溝に入って研磨加工され、この動作が多数回繰
り返し行われることになり、これによって奇数角形状の
ものも偶数角形状のものも共に高精度な球体に研磨され
る。1つの球体転走溝を該溝の途中で例えばV形溝から
円弧溝へ形状変化させたものにあっては、1つの球体転
走溝を被加工球体が1周分通過するごとにV形溝と円弧
溝の両方の加圧挟持作用を受けることになり、繰り返し
の回数が少なくても奇数角形状,偶数角形状共に高精度
の研磨加工がなされる。
In the present invention, the plurality of spherical rolling grooves formed on the board have the same groove cross-sectional shape, and one board has two or two approximate points and three or three approximate points. Since supporting grooves are provided side by side, odd-angled and even-angled spheres that are randomly mixed in the storage conveyor are sometimes processed into three points or approximately three points of supporting grooves for polishing. And at other times 2 points or approx. 2
The operation is repeated by entering the point-supporting groove into a groove, and this operation is repeated many times. As a result, both the odd-angled shape and the even-angled shape are polished into highly accurate spheres. In the case where one spherical rolling groove has its shape changed from a V-shaped groove to an arc-shaped groove in the middle of the groove, for example, a V-shaped groove is formed every time the processed spherical body passes through one spherical rolling groove. Since both the groove and the arcuate groove are subjected to the pressing and sandwiching action, even if the number of repetitions is small, highly accurate polishing is performed on both the odd-angled shape and the even-angled shape.

【0008】[0008]

【実施例】次に本発明を実施例について図面を参照して
説明する。本発明の球体研磨装置は図5で説明したよう
な回転盤体と固定盤体との間にストレージコンベヤから
被加工球体を送り込み、回転盤体の回転で盤体内の球体
転走溝を転走させて前記ストレージコンベヤに該球体を
排出し、再び盤体間に供給し、これを多数回繰り返すよ
うに構成されたものであるが、必ずしも図5のように盤
体の軸線が水平なもの(横軸型)に限定されず、盤体の
軸線が垂直となったもの(縦軸型)でもよい。図1〜図
4は本発明の各種実施例による両盤体間の球体転走溝の
溝断面形状を示した部分的な縦断面図である。まず図1
の第1の実施例では、回転砥石盤体1に溝は形成され
ず、固定盤体2にV形溝6と円弧溝8とが交互に、か
つ、同芯状に形成され、両盤体1,2間に供給された被
加工球体3a,3bは両盤体1,2に加圧挟持されつつ
これらの溝6,8を転走して研磨加工される。ここでV
形溝6に入った被加工球体3aは両盤体1,2に対して
3点接触で研磨加工されるため、特に3角形状および奇
数角形状の球体の真円真球精度が向上する。一方円弧溝
8に入る被加工球体3bは両盤体1,2と近似2点接触
で研磨加工されるため、特に2角形状および偶数角形状
の精度が向上する。前述したように多数の被加工球体は
ストレージコンベヤ内でランダムに混合され、繰り返し
数10回から数100回も両盤体間へ送り込まれ、しか
もV形溝6,円弧溝8は交互に配列されているので、個
々の被加工球体はこの繰返し中に特定の溝にのみ集中し
て入ることはなく、したがって3角形状、奇数角形状お
よび2角形状,偶数角形状の真円真球度が向上し、溝形
状の異なる別の盤体による研磨工程にかけなくても従来
にない高精度球体を得ることができる。図2は図1の実
施例の変形例を示したものであり、この場合は図1にお
けるV形溝6に代えて溝底部中央に凹状の逃げ部9をも
つ逃げ溝付き円弧溝10としてある。逃げ部9は前記溝
10の周方向全周にのびて形成されている。このような
逃げ部9が形成された逃げ溝付き円弧溝10と平坦な回
転砥石盤体1とにより被加工球体3aは近似3点接触に
より加圧挟持され、被加工球体3bは図1の実施例と同
様に近似2点接触で研磨加工され、したがって円弧溝8
と逃げ溝付き円弧溝10とを交互に配置することによ
り、図1の円弧溝8とV形溝6の交互配置と同様な作
用,効果を発揮する。
Embodiments of the present invention will now be described with reference to the drawings. The sphere polishing apparatus of the present invention sends a sphere to be processed from a storage conveyor between a rotary disc and a fixed disc as described with reference to FIG. 5, and rolls the sphere rolling groove in the disc by rotation of the rotary disc. Then, the spheres are discharged to the storage conveyor, supplied again between the boards, and this is repeated many times, but the axis of the board is not always horizontal as shown in FIG. The type is not limited to the horizontal axis type, and may be one in which the axis of the board is vertical (vertical type). 1 to 4 are partial vertical cross-sectional views showing the groove cross-sectional shape of a spherical rolling groove between two disc bodies according to various embodiments of the present invention. Figure 1
In the first embodiment, no groove is formed on the rotary grindstone body 1, and V-shaped grooves 6 and arc grooves 8 are formed alternately and concentrically on the fixed disk body 2. The spheres 3a and 3b to be processed supplied between the first and second rollers are pressed and sandwiched between the two disc bodies 1 and 2 while rolling along these grooves 6 and 8 to be polished. Where V
Since the sphere 3a to be processed that has entered the shaped groove 6 is ground by three-point contact with both the disc bodies 1 and 2, the roundness and sphere accuracy of a sphere having a triangular shape and an odd-angled shape is particularly improved. On the other hand, since the sphere 3b to be processed which enters the circular arc groove 8 is polished by contacting the two disc bodies 1 and 2 at approximately two points, the accuracy of the dihedral shape and the even-angled shape is particularly improved. As described above, a large number of spheres to be processed are randomly mixed in the storage conveyor and repeatedly sent between the plates for several tens to several hundreds of times, and the V-shaped groove 6 and the arc groove 8 are alternately arranged. As a result, the individual spheres to be processed do not concentrate only in specific grooves during this repetition, and therefore the roundness of the roundness of the triangular, odd-angled, and even-angled circles is It is possible to obtain a highly accurate sphere that has not been heretofore improved without subjecting it to a polishing process using another disc having different groove shapes. FIG. 2 shows a modification of the embodiment shown in FIG. 1. In this case, instead of the V-shaped groove 6 shown in FIG. 1, a circular arc groove 10 with a clearance groove having a concave clearance 9 at the center of the groove bottom is provided. .. The escape portion 9 is formed to extend over the entire circumference of the groove 10 in the circumferential direction. By the circular arc groove 10 with the escape groove formed with such an escape portion 9 and the flat rotary grindstone body 1, the workpiece sphere 3a is pressed and sandwiched by approximately three-point contact, and the workpiece sphere 3b is formed as shown in FIG. Similar to the example, it is ground by approximately two-point contact, and therefore the circular arc groove 8
By alternately arranging and the circular arc groove 10 with the escape groove, the same operation and effect as the circular arc groove 8 and the V-shaped groove 6 in FIG.

【0009】図3の第2の実施例は、回転砥石盤体1に
被加工球体3の球半径に相当する円弧溝8を形成した例
であり、回転砥石盤体1が摩耗して被加工球体3に馴染
む状態を予め該砥石盤体1に付与して高精度,高能率化
を実現したものである。固定盤体2の溝形状は図1の第
1の実施例と同様である。図4に示す第3の実施例は固
定盤体2側にV形溝6と角形溝11を交互に形成した例
である。回転砥石盤体1側は溝無しとし、角形溝11の
部分では回転砥石盤体1と協働して2点接触の研磨加工
がなされる。この第3実施例の変形例として角形溝11
またはV形溝6に代えて、あるいはこれらに付加する形
で台形溝を形成してもよい。
The second embodiment shown in FIG. 3 is an example in which an arc groove 8 corresponding to the spherical radius of the sphere 3 to be processed is formed in the rotary grindstone 1 and the rotary grindstone 1 is worn to be processed. A state in which the sphere 3 is adapted to the grindstone body 1 is given in advance to realize high precision and high efficiency. The groove shape of the fixed platen 2 is the same as that of the first embodiment shown in FIG. The third embodiment shown in FIG. 4 is an example in which V-shaped grooves 6 and rectangular grooves 11 are alternately formed on the fixed platen 2 side. No groove is provided on the rotary grindstone body 1 side, and two-point contact polishing is performed in cooperation with the rotary grindstone body 1 at the rectangular groove 11. As a modification of the third embodiment, the rectangular groove 11 is used.
Alternatively, a trapezoidal groove may be formed instead of the V-shaped groove 6 or in addition to these.

【0010】図8は本発明の第4の実施例による固定盤
体2の球体転走溝形成面の平面図である。図示のように
同芯状の各球体転走溝の円周方向長さのほぼ1/2をV
形溝6とし、残りを円弧溝8としてある。これにより両
盤体間に入るすべての被加工球体は両盤体内を一周して
出てくる間にV形溝6による3点接触の研磨加工と円弧
溝8による近似2点接触の研磨加工(回転側盤体が溝無
しの場合)を受けることになり、3角形状,奇数角形状
および2角形状,偶数角形状をともに高精度の真円真球
度にすることができる。なお円弧溝8に代えて角形溝と
V形溝の組み合せとしてもよく、また回転砥石盤体にも
円弧溝や角形溝を付与することも可能である。さらに、
球体転走溝の円周方向長さの約1/2を前記V形溝6に
代えて溝底に円周方向にのびる凹状の逃げ部をもつ逃げ
溝付き円弧溝とし、残りの円周方向約1/2の長さの部
分を逃げ部のない円弧溝8としてもよい。この場合は溝
加工が容易でありかつ球体はスムーズに近似3点接触か
ら近似2点接触へと移行する。図9の実施例は固定盤体
2の各球体転走溝を円周方向長さで1/4づつ変化させ
た例であり、それぞれ中心角のほぼ1/4の範囲で非対
称V形溝12から対称V形溝13へ、さらに角形溝1
1,円弧溝8へと順に断面形状を変化させてある。被加
工球体はそれだけ多種の形状の溝による研磨加工を受
け、循環繰返し回数を減らしても高精度球体を得ること
ができる。図10は本発明に適用されるV形溝の各種の
断面形状を示した図である。同図(a)は左右対称90
゜V溝、(b)はV溝中心線が盤体面の法線に対し8゜
傾斜した90゜V溝、(c)は同様に15゜傾斜した9
0゜V溝、(d),(e)は各々のV溝が被加工球体で
馴染んだ時の溝形状を予め付与した例である。同図
(f)は左右対称120゜V溝の溝断面を示したもので
ある。
FIG. 8 is a plan view of the spherical rolling groove forming surface of the stationary platen 2 according to the fourth embodiment of the present invention. As shown, approximately 1/2 of the circumferential length of each concentric ball rolling groove is V
The groove 6 is formed and the rest is formed as an arc groove 8. As a result, all the spheres to be machined that enter between the two discs make a round around the both discs and come out, and the V-shaped groove 6 performs the three-point contact polishing and the arc-shaped groove 8 approximates the two-point contact polishing ( When the rotating side body has no groove), the triangular shape, the odd-numbered shape, the digonal shape, and the even-angled shape can be made to have a highly accurate perfect circular sphericity. The arcuate groove 8 may be replaced by a combination of a square groove and a V-shaped groove, and the rotary grindstone body may be provided with an arcuate groove or a square groove. further,
Approximately 1/2 of the circumferential length of the spherical rolling groove is replaced with the V-shaped groove 6 to form an arc groove with a clearance groove having a concave clearance portion extending in the circumferential direction at the groove bottom, and the remaining circumferential direction. The arcuate groove 8 having no clearance may be formed in a portion having a length of about ½. In this case, grooving is easy and the sphere smoothly transitions from the approximate three-point contact to the approximate two-point contact. The embodiment of FIG. 9 is an example in which each spherical rolling groove of the fixed platen 2 is changed by 1/4 in the circumferential length, and each asymmetric V-shaped groove 12 is in the range of approximately 1/4 of the central angle. To symmetrical V-shaped groove 13, then square groove 1
The cross-sectional shape is sequentially changed to the circular arc groove 1. The sphere to be processed is subjected to polishing by the grooves of various shapes, and a high-precision sphere can be obtained even if the number of circulation repetitions is reduced. FIG. 10 is a view showing various sectional shapes of the V-shaped groove applied to the present invention. The left side of FIG.
V groove, (b) is a 90 ° V groove in which the center line of the V groove is inclined 8 ° with respect to the normal to the surface of the board, and (c) is similarly inclined 15 ° 9
The 0 ° V-grooves, (d), and (e) are examples in which the respective V-grooves are provided in advance with groove shapes when they are fitted to the sphere to be processed. FIG. 6F shows the groove cross section of the symmetrical 120 ° V groove.

【0011】本発明においては、上述の実施例で示した
各盤体の溝形状を回転砥石盤体1と固定盤体2について
逆にしても同様の効果が得られることは勿論である。ま
た実施例では回転側の盤体1を砥石盤体としたが、固定
盤体を砥石盤体とすることも可能である。さらに両盤体
共に砥粒のない鋳物等の金属盤とし、これら両盤体間に
遊離砥粒を供給するようにしてもよく、本発明における
球体転走溝構造はこのような盤体にも有効に適用され
る。
In the present invention, it is needless to say that the same effect can be obtained by reversing the groove shape of each disc body shown in the above-mentioned embodiment for the rotary grindstone disc body 1 and the fixed disc body 2. Further, in the embodiment, the rotating-side disc body 1 is a grindstone disc body, but the fixed disc body may be a grindstone disc body. Furthermore, both discs may be metal discs such as castings without abrasive grains, and free abrasive grains may be supplied between these disc bodies. The spherical rolling groove structure of the present invention can be applied to such disc bodies as well. Effectively applied.

【0012】[0012]

【発明の効果】以上説明したように本発明によれば、回
転盤体と固定盤体の間で被加工球体を加圧挟持して研磨
加工する際に、一対の盤体の或る部分では被加工球体を
3点で挟持し或る部分では2点で挟持するような球体転
走溝を盤体に配設したので、3点で挟持する部分では3
角形状,奇数角形状の被加工球体を、2点で挟持する部
分では2角形状,偶数角形状の被加工球体を修正向上さ
せることができ、被加工球体を盤体間とストレージとの
間で多数回循環させることにより、同じ盤体による1工
程の研磨加工ですべての形状精度を飛躍的に向上させる
ことが可能となる。したがって従来のように異なる盤体
をもつ2種の研磨装置による2工程の研磨処理あるいは
途中で盤体を交換する球体研磨処理が不要となり、精度
向上に加えて工程削減,能率向上,コスト低減等の効果
がもたらされる。
As described above, according to the present invention, when a sphere to be machined is pressed and sandwiched between a rotary disk body and a fixed disk body for polishing, a certain portion of a pair of disk bodies is Since the ball rolling groove that sandwiches the sphere to be processed at three points and sandwiches it at two points at a certain portion is arranged on the board, it becomes three at the portion sandwiched at three points.
It is possible to correct and improve the work sphere of the square shape and the even shape in the area where the work piece of the square shape and the odd shape is sandwiched between two points. It is possible to dramatically improve the accuracy of all shapes in one-step polishing process using the same board by circulating the same a number of times. Therefore, it is not necessary to perform a two-step polishing process using two types of polishing devices with different plates, or a sphere polishing process to replace the plate in the middle, which improves accuracy and reduces processes, efficiency, and cost. The effect of is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による盤体構造の部分的
な縦断面図である。
FIG. 1 is a partial longitudinal sectional view of a board structure according to a first embodiment of the present invention.

【図2】図1に示す実施例の変形例による盤体構造の部
分的な縦断面図である。
FIG. 2 is a partial vertical sectional view of a board structure according to a modification of the embodiment shown in FIG.

【図3】本発明の第2の実施例による盤体構造の部分的
な縦断面図である。
FIG. 3 is a partial vertical sectional view of a board structure according to a second embodiment of the present invention.

【図4】本発明の第3の実施例による盤体構造の部分的
な縦断面図である。
FIG. 4 is a partial vertical sectional view of a board structure according to a third embodiment of the present invention.

【図5】回転盤体と固定盤体を有し両盤体間に被加工球
体を循環供給する球体研磨装置の概略的な斜視図であ
る。
FIG. 5 is a schematic perspective view of a sphere polishing apparatus that has a rotating disk body and a fixed disk body and circulates a sphere to be processed between both disk bodies.

【図6】従来の球体研磨装置における盤体構造の各種例
を示す縦断面図である。
FIG. 6 is a vertical sectional view showing various examples of a board structure in a conventional spherical polishing apparatus.

【図7】従来の盤体構造の他の例を示す縦断面図であ
る。
FIG. 7 is a vertical cross-sectional view showing another example of a conventional board structure.

【図8】本発明の第4の実施例に係る固定盤体の概略的
な平面図である。
FIG. 8 is a schematic plan view of a fixed plate member according to a fourth embodiment of the present invention.

【図9】本発明の第5の実施例に係る固定盤体の概略的
な平面図である。
FIG. 9 is a schematic plan view of a fixed plate body according to a fifth embodiment of the present invention.

【図10】本発明に適用される各種のV形溝の溝断面形
状を示す図である。
FIG. 10 is a view showing groove sectional shapes of various V-shaped grooves applied to the present invention.

【符号の説明】[Explanation of symbols]

1 回転砥石盤体 2 固定盤体 3,3a,3b 被加工球体 4 球体給排出口 6 V形溝 7 ストレージコンベヤ 8 円弧溝 9 逃げ部 10 逃げ溝付き円弧溝 11 角形溝 1 rotary grindstone 2 fixed platen 3, 3a, 3b sphere to be processed 4 sphere feed / discharge port 6 V-shaped groove 7 storage conveyor 8 arc groove 9 escape section 10 arc groove with escape groove 11 square groove

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ストレージに収容された被加工球体を、互
いに所定間隔を有して対向している回転盤体と固定盤体
との間に複数列で供給しかつこの両盤体により加工圧を
加えて研磨加工し、前記両盤体から排出された被加工球
体を前記ストレージに戻して再び前記両盤体間に供給
し、この動作を繰り返すように構成した球体研磨装置に
おいて、前記両盤体の少なくとも一方の盤体に複数本の
同芯状の球体転走溝を形成し、その一部の前記球体転走
溝の溝断面形状を他の部分の球体転走溝の溝断面形状と
は異なる形状にしたことを特徴とする球体研磨装置。
1. A sphere to be machined stored in a storage is supplied in a plurality of rows between a rotary disk body and a stationary disk body which are opposed to each other with a predetermined distance therebetween, and a processing pressure is applied by the both disk bodies. In the sphere polishing apparatus configured to repeat the above-mentioned operation, the spheres to be processed discharged from the both discs are returned to the storage and supplied again between the both discs. A plurality of concentric spherical rolling grooves are formed on at least one board of the body, and the groove cross-sectional shape of the spherical rolling groove of a part thereof is changed to the groove cross-sectional shape of the spherical rolling groove of the other portion. Is a spherical polishing device having different shapes.
【請求項2】前記球体転走溝の溝断面形状を隣接する溝
1本づづ交互に円弧溝形状とV形溝形状にすることを特
徴とする請求項第1項記載の球体研磨装置。
2. The ball polishing apparatus according to claim 1, wherein the spherical cross section of the ball rolling groove is formed into an arc groove shape and a V groove shape alternately for each adjacent groove.
【請求項3】前記球体転走溝の溝断面形状を円弧溝形
状,V形溝形状および角形溝形状の混在形とすることを
特徴とする請求項第1項記載の球体研磨装置。
3. The spherical polishing apparatus according to claim 1, wherein the groove cross-sectional shape of the spherical rolling groove is a mixed shape of a circular arc groove shape, a V-shaped groove shape and a rectangular groove shape.
【請求項4】前記球体転走溝の溝断面形状を、隣接する
溝1本づつ交互に円弧溝形状と、円弧溝形状の溝底に円
周方向にのびる凹状の逃げをもつ溝形状にすることを特
徴とする請求項第1項記載の球体研磨装置。
4. The groove cross-sectional shape of the spherical rolling groove is an arc groove shape in which each adjacent groove is alternately arranged, and a groove shape having a concave relief extending in the circumferential direction at the groove bottom of the arc groove shape. The sphere polishing apparatus according to claim 1, characterized in that.
【請求項5】前記球体転走溝の溝断面形状を該溝の円周
方向長さの一部分について異なる形状とすることを特徴
とする請求項第1項または第3項記載の球体研磨装置。
5. The ball polishing apparatus according to claim 1 or 3, wherein the groove cross-sectional shape of the ball rolling groove is different for a part of the circumferential length of the groove.
【請求項6】前記球体転走溝の溝断面形状を、該溝の円
周方向長さの約1/2を円弧溝形状とし、残りをV形溝
形状とすることを特徴とする請求項第5項記載の球体研
磨装置。
6. A groove cross-sectional shape of the spherical rolling groove is such that about 1/2 of the circumferential length of the groove is an arc groove shape, and the rest is a V-shaped groove shape. The spherical polishing device according to the fifth aspect.
【請求項7】前記球体転走溝の溝断面形状を、該溝の円
周方向長さの約1/2を円弧溝形状とし、残りの円周方
向約1/2を円弧溝形状の溝底に円周方向にのびる凹状
の逃げをもつ溝形状とすることを特徴とする請求項第5
項記載の球体研磨装置。
7. The groove cross-section of the spherical rolling groove has an arc groove shape having about ½ of the circumferential length of the groove, and an arc groove shape having the remaining about 1/2 of the circumferential direction. 6. A groove shape having a concave relief extending in the circumferential direction at the bottom.
The spherical polishing apparatus according to the item.
JP24445591A 1991-08-29 1991-08-29 Spherical polishing device Expired - Fee Related JP3225548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24445591A JP3225548B2 (en) 1991-08-29 1991-08-29 Spherical polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24445591A JP3225548B2 (en) 1991-08-29 1991-08-29 Spherical polishing device

Publications (2)

Publication Number Publication Date
JPH0557588A true JPH0557588A (en) 1993-03-09
JP3225548B2 JP3225548B2 (en) 2001-11-05

Family

ID=17118911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24445591A Expired - Fee Related JP3225548B2 (en) 1991-08-29 1991-08-29 Spherical polishing device

Country Status (1)

Country Link
JP (1) JP3225548B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103567856A (en) * 2013-10-10 2014-02-12 浙江工业大学 High-precision sphere processing method based on variable curvature groove grinding
CN103567855A (en) * 2013-10-10 2014-02-12 浙江工业大学 Variable camber groove grinding-based high-precision ceramic ball machining equipment
CN103991025A (en) * 2014-05-21 2014-08-20 浙江工业大学 High-accuracy ball body machining method through eccentric type curvature-variable groove
EP3162493A1 (en) * 2015-10-30 2017-05-03 Aktiebolaget SKF Method of imparting compressive residual stress to balls
EP3162494A1 (en) * 2015-10-30 2017-05-03 Aktiebolaget SKF Apparatus for producing compressive residual stress in balls
JP2019069495A (en) * 2017-10-11 2019-05-09 株式会社ジェイテクト Polishing disk, spherical body polishing device, and spherical body polishing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103567856A (en) * 2013-10-10 2014-02-12 浙江工业大学 High-precision sphere processing method based on variable curvature groove grinding
CN103567855A (en) * 2013-10-10 2014-02-12 浙江工业大学 Variable camber groove grinding-based high-precision ceramic ball machining equipment
CN103991025A (en) * 2014-05-21 2014-08-20 浙江工业大学 High-accuracy ball body machining method through eccentric type curvature-variable groove
EP3162493A1 (en) * 2015-10-30 2017-05-03 Aktiebolaget SKF Method of imparting compressive residual stress to balls
EP3162494A1 (en) * 2015-10-30 2017-05-03 Aktiebolaget SKF Apparatus for producing compressive residual stress in balls
US10118274B2 (en) 2015-10-30 2018-11-06 Aktiebolaget Skf Apparatus for producing compressive residual stress in balls
US10480578B2 (en) 2015-10-30 2019-11-19 Aktiebolaget Skf Method of imparting compressive residual stress to balls
JP2019069495A (en) * 2017-10-11 2019-05-09 株式会社ジェイテクト Polishing disk, spherical body polishing device, and spherical body polishing method

Also Published As

Publication number Publication date
JP3225548B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
CN101198441B (en) Burnishing roller for crankshaft
US4644825A (en) Indexing and positioning device
US20040264825A1 (en) Superfinishing machine, superfinishing method, rolling element and rolling bearing
JPH0557588A (en) Sphere grinding attachment
US7837535B2 (en) Superfinishing stone and superfinishing process using the same
CN108673331B (en) Grinding disc, equipment and method for finish machining of rolling surface of convex conical roller
US3827270A (en) Deburring devices
CN108908094B (en) Grinding disc, equipment and method for finishing rolling surface of cylindrical roller
US6261702B1 (en) Embossed rolled steel and embossing roll and method for making the same
JP3799555B2 (en) Ball rolling element
JP2005342815A (en) Sphere polishing device
JPS6348666B2 (en)
JPH0428488B2 (en)
CN108890403B (en) Magnetic grinding disc, equipment and method for finishing rolling surface of cylindrical roller
JPH11300605A (en) Spherical body grinding board
CN108705444B (en) Magnetic grinding disc, equipment and method for finishing rolling surface of convex cylindrical roller
JP6517105B2 (en) Superfinishing method of roller bearing rolling surface
JPS60104645A (en) Sphere machining device
JP2006035336A (en) Processing device for brittle material using elastic tool and processing method
RU2213652C2 (en) Apparatus for abrasive free lapping of tracks of bearing races
US3430392A (en) Centerless grinding machine with an automatic feed through the machine
SU1115855A1 (en) Rotary centre
JPH065079Y2 (en) Polishing equipment
RU2033915C1 (en) Honing head
JPS60207757A (en) Spherical-body working apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080831

LAPS Cancellation because of no payment of annual fees