JP3225548B2 - Spherical polishing device - Google Patents

Spherical polishing device

Info

Publication number
JP3225548B2
JP3225548B2 JP24445591A JP24445591A JP3225548B2 JP 3225548 B2 JP3225548 B2 JP 3225548B2 JP 24445591 A JP24445591 A JP 24445591A JP 24445591 A JP24445591 A JP 24445591A JP 3225548 B2 JP3225548 B2 JP 3225548B2
Authority
JP
Japan
Prior art keywords
groove
sphere
spherical
cross
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24445591A
Other languages
Japanese (ja)
Other versions
JPH0557588A (en
Inventor
雄一 隅田
邦雄 河島
弘之 野嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP24445591A priority Critical patent/JP3225548B2/en
Publication of JPH0557588A publication Critical patent/JPH0557588A/en
Application granted granted Critical
Publication of JP3225548B2 publication Critical patent/JP3225548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は球体研磨装置に関し、特
にころがり軸受等に使用される鋼球を回転盤体と固定盤
体との間に挟圧し、該盤体に形成した同芯状の溝に沿っ
て転走させつつ研磨加工する球体研磨装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ball polishing apparatus, and more particularly, to a concentric ball formed on a rotating body and a fixed body by pressing a steel ball used for a rolling bearing or the like. The present invention relates to a sphere polishing apparatus that performs polishing while rolling along a groove.

【0002】[0002]

【従来の技術】この種の球体研磨加工装置においては、
図5に例示するように、回転砥石盤体1と固定盤体2の
間に多数の球体を加圧挟持し、一方向に回転するストレ
ージコンベヤ7から連続的に被加工球体3を、固定盤体
2に形成した給排出口4を介して両盤体1,2間に供給
し、連続的に研磨処理を受けて給排出口4から出てくる
被加工球体3を再びストレージコンベヤ7に戻し、この
ような動作を数10回から数100回繰り返して徐々に
球体の径寸法や真円真球度を向上させていく。なお本装
置は、個々の球体の径寸法相互差をなくするように、回
転しているストレージコンベヤ7内で被加工球体3がラ
ンダムにあるいは或る狙いをもって互いに混合されるよ
う工夫がなされている。
2. Description of the Related Art In this type of spherical polishing apparatus,
As illustrated in FIG. 5, a large number of spheres are pressed and held between the rotary grinding wheel body 1 and the fixed board body 2, and the workpiece spheres 3 are continuously transferred from the storage conveyor 7 rotating in one direction to the fixed board. The workpiece 3 is supplied between the two plates 1 and 2 through the supply / discharge port 4 formed in the body 2, continuously subjected to the polishing process, and returned to the storage conveyor 7 again from the supply / discharge port 4. Such an operation is repeated several tens to several hundred times to gradually improve the diameter of the sphere and the perfect circularity. The present device is designed so that the processed spheres 3 are mixed with each other randomly or with a certain aim in the rotating storage conveyor 7 so as to eliminate the difference between the diameters of the individual spheres. .

【0003】回転砥石盤体1あるいは固定盤体2には複
数本の同芯状の球体転走溝5が形成され、これらの溝5
に沿って複数の被加工球体3が転動する。従来、この球
体転走溝の溝断面形状としては図6(a),(b)ある
いは図7(a),(b)に示される形状のものが知られ
ており、いずれも1つの盤体について複数の球体転走溝
は同じ断面形状となっている。図6(a)は、回転砥石
盤体1側には溝がなく固定盤体2に一様なV形溝6が形
成された場合である。図6(b)は両盤体1,2に球体
転走溝を設けた例であり、固定盤体2のV形溝6の位置
に対応して同芯状に回転砥石盤体1に円弧溝8が形成さ
れている。図6(a),(b)の場合には、被加工球体
は両盤体1,2間に3点支持または近似3点支持によっ
て加圧挟持される。一方、図7(a)では固定盤体2に
円弧状の溝断面形状をもつ円弧溝8が形成され、回転砥
石盤体1側は溝無しとなっている。図7(b)は回転砥
石盤体1,固定盤体2とも円弧溝8が形成された例であ
る。図7(a),(b)の場合には、被加工球体3は両
盤体1,2に2点支持または近似2点支持によって加圧
挟持される。なお図6(a),(b),図7(a)にお
ける溝形状を各盤体について左右逆にしてもよく、また
これらの従来例で回転側の盤体1のみを砥石盤体とした
が、これを逆にして固定盤体2のみを砥石盤体とする
か、あるいは両盤体とも砥石盤体としてもよい。
[0003] A plurality of concentric spherical rolling grooves 5 are formed in the rotary grindstone body 1 or the fixed disk body 2.
The plurality of workpiece spheres 3 roll along. Conventionally, as the groove cross-sectional shape of the spherical rolling groove, those having the shapes shown in FIGS. 6A and 6B or FIGS. 7A and 7B are known. , The plurality of spherical rolling grooves have the same cross-sectional shape. FIG. 6A shows a case in which there is no groove on the side of the rotary grinding wheel body 1 and a uniform V-shaped groove 6 is formed on the fixed board body 2. FIG. 6B shows an example in which spherical rolling grooves are provided on both the disk bodies 1 and 2, and a circular arc is formed on the rotary grinding wheel disk 1 concentrically corresponding to the position of the V-shaped groove 6 of the fixed disk 2. A groove 8 is formed. In the case of FIGS. 6A and 6B, the sphere to be processed is pressed and clamped between the two disk bodies 1 and 2 by three-point support or approximate three-point support . On the other hand , in FIG. 7A, an arc groove 8 having an arc-shaped groove cross-sectional shape is formed in the fixed disk body 2, and the rotary grindstone disk body 1 side has no groove. FIG. 7B is an example in which the rotary grindstone disk body 1 and the fixed disk body 2 are each formed with an arc groove 8. In the case of FIGS. 7A and 7B, the sphere 3 to be processed is pressed and held between the two plates 1 and 2 by two-point support or approximate two-point support . Note Figure 6 (a), (b) , may be a groove shape in FIGS. 7 (a) in the left-right reversed for each panel member, also only board body 1 on the rotating side and the grinding wheel plate body in these prior art examples However, the procedure may be reversed, and only the fixed disk 2 may be used as a grinding disk, or both disks may be used as grinding disks.

【0004】[0004]

【発明が解決しようとする課題】従来の球体研磨装置
は、上述したように球体を加圧挟持する盤体にV形溝か
円弧溝のいずれかが形成されている。しかしストレージ
コンベヤ内には通常奇数角形状,偶数角形状の球体が混
在しており、同じ研磨装置で奇数角形状,偶数角形状の
両方の精度を向上させることは困難である。従来のもの
で最も精度向上によいとされる図7(b)の場合でも最
近の高精度球体の要求に対して満足すべき精度が得られ
ず、特に3角形状に対する真円真球度の修正が困難であ
る。それ故、被加工球体を高精度に研磨加工するために
は図6の盤体による研磨装置で研磨加工した後、さらに
図7のような、図6の溝形状とは異なる溝形状の盤体に
よる球体研磨装置で研磨加工する等、多くの研磨工程と
多大のロスを強いられていた。
In the conventional ball polishing apparatus, either a V-shaped groove or an arc-shaped groove is formed on the disk body for pressing and holding the ball as described above . However , spheres of odd-numbered and even-numbered shapes are usually mixed in the storage conveyor, and it is difficult to improve the accuracy of both odd-numbered and even-numbered shapes with the same polishing apparatus. Even in the case of FIG. 7 (b), which is considered to be the best for improving accuracy in the conventional art, satisfactory accuracy cannot be obtained with respect to recent demands for high-precision spheres. It is difficult to fix. Therefore, in order to grind the sphere to be processed with high precision, the sphere is polished by the polisher with the disc shown in FIG. 6, and then a disc having a groove shape different from the groove shown in FIG. To
Etc. to polishing spheres polishing apparatus according, it had been forced to great losses and many polishing step.

【0005】ここで、偶数角形状あるいは奇数角形状の
球体とは、球体の中心を通る任意の拡大断面でみた場合
に現れる平面形状が大略偶数角形状あるいは大略奇数角
形状となっているものを指し、粗研削した状態の多数の
球体にはこのような形状のものが混在している。本発明
者は、相対回転する円盤間に球体を挟持して研磨加工す
る装置において、2点支持あるいは近似2点支持で前記
球体を挟持した場合に2角形状および偶数角形状の球体
に対する修正、真円真球度の向上が著しく、3点支持あ
るいは近似3点支持の場合には3角形状および奇数角形
状の球体の修正、真円真球度の向上が著しいことを見い
出したものである。本発明は、上述の知見に基づき、
産工程上のロスを最小限に抑えて単一の研磨工程で奇数
角形状も偶数角形状も共に高精度の球体に研磨加工でき
る球体研磨装置を提供することにある。
Here, even-numbered or odd-numbered angular shapes are used.
A sphere is defined as any enlarged cross-section passing through the center of the sphere
The plane shape that appears on the surface is approximately an even-numbered angle or approximately an odd-numbered angle
Refers to the shape of a large number of rough-ground
The sphere has a mixture of such shapes. The present invention
Perform grinding by holding a sphere between disks that rotate relative to each other.
In two-point support or near-two-point support,
Diagonal and even-numbered spheres when a sphere is sandwiched
And the improvement of the perfect circularity is remarkable.
Or triangular and odd polygons for approximate three-point support
Correction of spherical shape and improvement of circular sphericity are remarkable
It was issued. The present invention provides a sphere polishing apparatus capable of polishing both odd-numbered shapes and even-numbered shapes to high-precision spheres in a single polishing step while minimizing a loss in a production process based on the above findings. It is in.

【0006】[0006]

【課題を解決するための手段】本発明は、ストレージに
収容された被加工球体を、互いに所定間隔を有して対向
している回転盤体と固定盤体との間に複数列で供給しか
つこの両盤体により加工圧を加えて研磨加工し、前記両
盤体から排出された被加工球体を前記ストレージに戻し
て再び前記両盤体間に供給し、この動作を繰り返すよう
に構成した球体研磨装置において、前記両盤体の少なく
とも一方の盤体に複数本の同芯状の球体転走溝を形成
し、その一部の前記球体転走溝の溝断面形状を他の部分
の球体転走溝の溝断面形状とは異なる形状にしたもので
ある。
SUMMARY OF THE INVENTION According to the present invention, a plurality of spheres to be processed accommodated in a storage are supplied between a rotating disk and a fixed disk which are opposed to each other at a predetermined interval. In addition, a polishing pressure is applied by the two discs, and the workpiece is discharged from the two discs, and the sphere to be processed is returned to the storage and supplied again between the two discs. This operation is repeated. In the spherical polishing apparatus, a plurality of concentric spherical ball rolling grooves are formed on at least one of the two disk bodies, and a part of the spherical ball rolling grooves is changed to a spherical body of another part. The shape is different from the cross-sectional shape of the rolling groove.

【0007】[0007]

【作用】本発明においては、盤体に形成した複数本の球
体転走溝が同一の溝断面形状でなく、1つの盤体に2点
あるいは近似2点支持の溝と3点あるいは近似3点支持
の溝とが併設されているので、ストレージコンベヤ内で
ランダムに混合された奇数角形状および偶数角形状の被
加工球体は、ある時は3点あるいは近似3点支持の溝に
入って研磨加工され、またある時は2点あるいは近似2
点支持の溝に入って研磨加工され、この動作が多数回繰
り返し行われることになり、これによって奇数角形状の
ものも偶数角形状のものも共に高精度な球体に研磨され
る。1つの球体転走溝を該溝の途中で例えばV形溝から
円弧溝へ形状変化させたものにあっては、1つの球体転
走溝を被加工球体が1周分通過するごとにV形溝と円弧
溝の両方の加圧挟持作用を受けることになり、繰り返し
の回数が少なくても奇数角形状,偶数角形状共に高精度
の研磨加工がなされる。
According to the present invention, the plurality of spherical rolling grooves formed on the disk are not of the same groove cross-sectional shape, and two or approximately two-point supporting grooves and three or approximately three points are provided on one disk. Since the supporting grooves are provided side by side, the odd- and even-numbered spheres that are randomly mixed in the storage conveyor sometimes enter the three-point or approximately three-point supporting grooves and are polished. And sometimes two points or approx.
Polishing is performed in the groove of the point support, and this operation is repeated a number of times. As a result, both the odd-numbered and the even-numbered shapes are polished into highly accurate spheres. In the case where one spherical rolling groove is changed in shape in the middle of the groove, for example, from a V-shaped groove to an arc-shaped groove, a V-shaped groove is formed every time the sphere to be processed passes through one spherical rolling groove. Since both the grooves and the arc grooves are subjected to the pressing and clamping action, the polishing process with high precision is performed for both the odd-numbered and even-numbered shapes even if the number of repetitions is small.

【0008】[0008]

【実施例】次に本発明を実施例について図面を参照して
説明する。本発明の球体研磨装置は図5で説明したよう
な回転盤体と固定盤体との間にストレージコンベヤから
被加工球体を送り込み、回転盤体の回転で盤体内の球体
転走溝を転走させて前記ストレージコンベヤに該球体を
排出し、再び盤体間に供給し、これを多数回繰り返すよ
うに構成されたものであるが、必ずしも図5のように盤
体の軸線が水平なもの(横軸型)に限定されず、盤体の
軸線が垂直となったもの(縦軸型)でもよい。図1〜図
4は本発明の各種実施例による両盤体間の球体転走溝の
溝断面形状を示した部分的な縦断面図である。まず図1
の第1の実施例では、回転砥石盤体1に溝は形成され
ず、固定盤体2にV形溝6と円弧溝8とが交互に、か
つ、同芯状に形成され、両盤体1,2間に供給された被
加工球体3a,3bは両盤体1,2に加圧挟持されつつ
これらの溝6,8を転走して研磨加工される。ここでV
形溝6に入った被加工球体3aは両盤体1,2に対して
3点接触で研磨加工されるため、特に3角形状および奇
数角形状の球体の真円真球精度が向上する。一方円弧溝
8に入る被加工球体3bは両盤体1,2と近似2点接触
で研磨加工されるため、特に2角形状および偶数角形状
の精度が向上する。前述したように多数の被加工球体は
ストレージコンベヤ内でランダムに混合され、繰り返し
数10回から数100回も両盤体間へ送り込まれ、しか
もV形溝6,円弧溝8は交互に配列されているので、個
々の被加工球体はこの繰返し中に特定の溝にのみ集中し
て入ることはなく、したがって3角形状、奇数角形状お
よび2角形状,偶数角形状の真円真球度が向上し、溝形
状の異なる別の盤体による研磨工程にかけなくても従来
にない高精度球体を得ることができる。図2は図1の実
施例の変形例を示したものであり、この場合は図1にお
けるV形溝6に代えて溝底部中央に凹状の逃げ部9をも
つ逃げ溝付き円弧溝10としてある。逃げ部9は前記溝
10の周方向全周にのびて形成されている。このような
逃げ部9が形成された逃げ溝付き円弧溝10と平坦な回
転砥石盤体1とにより被加工球体3aは近似3点接触に
より加圧挟持され、被加工球体3bは図1の実施例と同
様に近似2点接触で研磨加工され、したがって円弧溝8
と逃げ溝付き円弧溝10とを交互に配置することによ
り、図1の円弧溝8とV形溝6の交互配置と同様な作
用,効果を発揮する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. The sphere polishing apparatus of the present invention feeds a sphere to be processed from a storage conveyor between a rotating disk and a fixed disk as described with reference to FIG. 5, and rolls a sphere rolling groove in the disk by rotation of the rotating disk. Then, the spheres are discharged to the storage conveyor, supplied again between the boards, and this is repeated a number of times. However, as shown in FIG. It is not limited to the (horizontal axis type), but may be one in which the axis of the board is vertical (vertical axis type). 1 to 4 are partial longitudinal sectional views showing a groove cross-sectional shape of a spherical rolling groove between both boards according to various embodiments of the present invention. First, Figure 1
In the first embodiment, no grooves are formed in the rotary grindstone disc body 1, and V-shaped grooves 6 and arc grooves 8 are formed alternately and concentrically on the fixed disc body 2. The spheres 3a, 3b supplied between the first and second plates are polished by rolling in these grooves 6, 8 while being pressed and sandwiched between the two plates 1, 2. Where V
Since the sphere 3a to be machined in the groove 6 is polished by three-point contact with both the discs 1 and 2, the accuracy of the spheres having a triangular shape and an odd-angle shape is particularly improved. On the other hand, the sphere 3b to be processed, which enters the arc groove 8, is polished with the two disk bodies 1 and 2 at approximately two-point contact, so that the accuracy of the diagonal shape and the even-numbered shape is particularly improved. As described above, a large number of spheres to be processed are randomly mixed in the storage conveyor, and are repeatedly sent between the discs tens to hundreds of times, and the V-shaped grooves 6 and the arc grooves 8 are alternately arranged. Therefore, the individual spheres to be machined do not concentrate only in a specific groove during this repetition, so that the round sphericity of the triangular shape, the odd-numbered shape, the diagonal shape, and the even-numbered square shape is not increased. It is possible to obtain an unprecedented high-precision sphere without performing a polishing step using another board having a different groove shape. FIG. 2 shows a modification of the embodiment of FIG. 1. In this case, instead of the V-shaped groove 6 in FIG. 1, an arc groove 10 with a clearance groove having a concave relief 9 at the center of the groove bottom is used. . The escape portion 9 is formed so as to extend over the entire circumferential direction of the groove 10. Workpiece sphere 3a is pressed and clamped by approximate three-point contact by arcuate groove 10 with escape groove in which such relief portion 9 is formed and flat rotating grindstone disc body 1, and workpiece sphere 3b is formed as shown in FIG. As in the example, it is polished with approx.
By alternately arranging the arc grooves 10 with the relief grooves, the same operation and effect as in the alternate arrangement of the arc grooves 8 and the V-shaped grooves 6 in FIG.

【0009】図3の第2の実施例は、回転砥石盤体1に
被加工球体3の球半径に相当する円弧溝8を形成した例
であり、回転砥石盤体1が摩耗して被加工球体3に馴染
む状態を予め該砥石盤体1に付与して高精度,高能率化
を実現したものである。固定盤体2の溝形状は図1の第
1の実施例と同様である。図4に示す第3の実施例は固
定盤体2側にV形溝6と角形溝11を交互に形成した例
である。回転砥石盤体1側は溝無しとし、角形溝11の
部分では回転砥石盤体1と協働して2点接触の研磨加工
がなされる。この第3実施例の変形例として角形溝11
またはV形溝6に代えて、あるいはこれらに付加する形
で台形溝を形成してもよい。
The second embodiment shown in FIG. 3 is an example in which an arc-shaped groove 8 corresponding to the radius of the sphere 3 to be processed is formed on the rotary grindstone disk body 1. A state in which the ball 3 is adapted to the sphere 3 is given to the grinding wheel body 1 in advance to achieve high accuracy and high efficiency. The groove shape of the fixed plate 2 is the same as that of the first embodiment shown in FIG. The third embodiment shown in FIG. 4 is an example in which V-shaped grooves 6 and rectangular grooves 11 are alternately formed on the fixed board 2 side. There is no groove on the side of the grinding wheel body 1, and two-point contact polishing is performed on the square groove 11 in cooperation with the grinding wheel body 1. As a modification of the third embodiment, a rectangular groove 11
Alternatively, a trapezoidal groove may be formed instead of or in addition to the V-shaped groove 6.

【0010】図8は本発明の第4の実施例による固定盤
体2の球体転走溝形成面の平面図である。図示のように
同芯状の各球体転走溝の円周方向長さのほぼ1/2をV
形溝6とし、残りを円弧溝8としてある。これにより両
盤体間に入るすべての被加工球体は両盤体内を一周して
出てくる間にV形溝6による3点接触の研磨加工と円弧
溝8による近似2点接触の研磨加工(回転側盤体が溝無
しの場合)を受けることになり、3角形状,奇数角形状
および2角形状,偶数角形状をともに高精度の真円真球
度にすることができる。なお円弧溝8に代えて角形溝と
V形溝の組み合せとしてもよく、また回転砥石盤体にも
円弧溝や角形溝を付与することも可能である。さらに、
球体転走溝の円周方向長さの約1/2を前記V形溝6に
代えて溝底に円周方向にのびる凹状の逃げ部をもつ逃げ
溝付き円弧溝とし、残りの円周方向約1/2の長さの部
分を逃げ部のない円弧溝8としてもよい。この場合は溝
加工が容易でありかつ球体はスムーズに近似3点接触か
ら近似2点接触へと移行する。図9の実施例は固定盤体
2の各球体転走溝を円周方向長さで1/4づつ変化させ
た例であり、それぞれ中心角のほぼ1/4の範囲で非対
称V形溝12から対称V形溝13へ、さらに角形溝1
1,円弧溝8へと順に断面形状を変化させてある。被加
工球体はそれだけ多種の形状の溝による研磨加工を受
け、循環繰返し回数を減らしても高精度球体を得ること
ができる。図10は本発明に適用されるV形溝の各種の
断面形状を示した図である。同図(a)は左右対称90
゜V溝、(b)はV溝中心線が盤体面の法線に対し8゜
傾斜した90゜V溝、(c)は同様に15゜傾斜した9
0゜V溝、(d),(e)は各々のV溝が被加工球体で
馴染んだ時の溝形状を予め付与した例である。同図
(f)は左右対称120゜V溝の溝断面を示したもので
ある。
FIG. 8 is a plan view of a spherical rolling groove forming surface of the fixed disk 2 according to a fourth embodiment of the present invention. As shown in the figure, approximately 1/2 of the circumferential length of each concentric spherical rolling groove is V
The groove 6 is formed, and the rest is formed as an arc groove 8. As a result, all the spheres to be processed between the two disc bodies come out around the two disc bodies and come out around the two disc bodies, and the three-point contact polishing by the V-shaped groove 6 and the approximate two-point contact polishing by the arc groove 8 ( In the case where the rotating side plate has no groove), the triangular shape, the odd-numbered shape, the diagonal shape, and the even-numbered shape can all be made to be highly accurate perfect sphericity. It is to be noted that a combination of a square groove and a V-shaped groove may be used in place of the arc groove 8, and it is also possible to provide the rotary grindstone body with an arc groove or a square groove. further,
About 1/2 of the circumferential length of the spherical rolling groove is replaced by the V-shaped groove 6 to form an arc groove with a relief groove having a concave relief portion extending in the circumferential direction at the groove bottom, and the remaining circumferential direction. A portion having a length of about 2 may be an arc groove 8 having no escape portion. In this case, groove processing is easy and the sphere smoothly transitions from approximate three-point contact to approximate two-point contact. The embodiment of FIG. 9 is an example in which each spherical rolling groove of the fixed board 2 is changed by 1/4 in the circumferential direction length, and the asymmetric V-shaped groove 12 is formed within a range of approximately 1/4 of the central angle. To the symmetrical V-shaped groove 13 and the square groove 1
1, the cross-sectional shape is sequentially changed to an arc groove 8. The sphere to be processed is polished by grooves having various shapes, so that a high-precision sphere can be obtained even if the number of times of circulation is reduced. FIG. 10 is a view showing various cross-sectional shapes of a V-shaped groove applied to the present invention. FIG. 9A shows a symmetric 90
{V-groove, (b): 90-degree V-groove whose V-groove center line is inclined by 8 ° with respect to the normal to the surface of the disc body, (c): Similarly, the V-groove is inclined by 15 ° 9
0 ° V-grooves, (d) and (e) are examples in which a groove shape at the time when each V-groove is adapted to the sphere to be processed is given in advance. FIG. 3F shows a groove cross section of a 120 ° V groove which is symmetrical in the left-right direction.

【0011】本発明においては、上述の実施例で示した
各盤体の溝形状を回転砥石盤体1と固定盤体2について
逆にしても同様の効果が得られることは勿論である。ま
た実施例では回転側の盤体1を砥石盤体としたが、固定
盤体を砥石盤体とすることも可能である。さらに両盤体
共に砥粒のない鋳物等の金属盤とし、これら両盤体間に
遊離砥粒を供給するようにしてもよく、本発明における
球体転走溝構造はこのような盤体にも有効に適用でき
る。なお、円弧溝と球体との接触の場合は、溝に直交す
る断面でみた場合の円弧溝と球体との接触が、V形溝や
角形溝の場合に比べ厳密には広い範囲に渡る接触となる
ため、このような場合を指して近似1点接触と称するも
のであり、上述した近似2点接触、近似2点支持あるい
は近似3点接触、近似3点支持なる表現はこの意味で使
用されたものであることは明らかである。
In the present invention, the same effect can of course be obtained even if the groove shape of each disk shown in the above embodiment is reversed with respect to the rotary grinding disk 1 and the fixed disk 2. Further, in the embodiment, the disk body 1 on the rotating side is a grindstone disk body, but it is also possible to use a fixed disk body as a grindstone disk body. Further, both discs may be metal discs such as castings without abrasive grains, and free abrasive grains may be supplied between these discs. The spherical rolling groove structure in the present invention is also applicable to such discs. Can be applied effectively. In the case of contact between the arc groove and the sphere,
The contact between the arc groove and the sphere when viewed from the cross section
Strictly more contact than square grooves
Therefore, such a case is referred to as approximate one-point contact.
And the above-mentioned approximate two-point contact, approximate two-point support or
The expression “approximately three points of contact” and “approximately three points of support” are used in this sense.
Obviously, it was used.

【0012】[0012]

【発明の効果】以上説明したように本発明によれば、回
転盤体と固定盤体の間で被加工球体を加圧挟持して研磨
加工する際に、一対の盤体の或る部分では被加工球体を
3点で挟持し或る部分では2点で挟持するような球体転
走溝を盤体に配設したので、3点で挟持する部分では3
角形状,奇数角形状の被加工球体を、2点で挟持する部
分では2角形状,偶数角形状の被加工球体を修正向上さ
せることができ、被加工球体を盤体間とストレージとの
間で多数回循環させることにより、同じ盤体による1工
程の研磨加工ですべての形状精度を飛躍的に向上させる
ことが可能となる。したがって従来のように異なる盤体
をもつ2種の研磨装置による2工程の研磨処理あるいは
途中で盤体を交換する球体研磨処理が不要となり、精度
向上に加えて工程削減,能率向上,コスト低減等の効果
がもたらされる。
As described above, according to the present invention, when a sphere to be processed is pressed and sandwiched between a rotating disk and a fixed disk, polishing is performed at a certain portion of a pair of disks. Since the ball to be machined is clamped at three points and a ball rolling groove is clamped at two points in a certain part, the ball is provided in the board.
In the portion where the spherical and odd-numbered spherical spheres are sandwiched between two points, it is possible to improve and improve the square and even-numbered spherical spheres to be processed. By circulating a large number of times, it is possible to dramatically improve the accuracy of all shapes by one-step polishing with the same board. Therefore, there is no need to perform two steps of polishing using two types of polishing apparatuses having different discs as in the prior art, or a ball polishing process for exchanging discs during the process. The effect of is brought.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例による盤体構造の部分的
な縦断面図である。
FIG. 1 is a partial longitudinal sectional view of a board structure according to a first embodiment of the present invention.

【図2】図1に示す実施例の変形例による盤体構造の部
分的な縦断面図である。
FIG. 2 is a partial longitudinal sectional view of a board structure according to a modification of the embodiment shown in FIG. 1;

【図3】本発明の第2の実施例による盤体構造の部分的
な縦断面図である。
FIG. 3 is a partial longitudinal sectional view of a board structure according to a second embodiment of the present invention.

【図4】本発明の第3の実施例による盤体構造の部分的
な縦断面図である。
FIG. 4 is a partial longitudinal sectional view of a board structure according to a third embodiment of the present invention.

【図5】回転盤体と固定盤体を有し両盤体間に被加工球
体を循環供給する球体研磨装置の概略的な斜視図であ
る。
FIG. 5 is a schematic perspective view of a sphere polishing apparatus having a rotating disk and a fixed disk, and supplying a sphere to be processed between the two disks;

【図6】従来の球体研磨装置における盤体構造の各種例
を示す縦断面図である。
FIG. 6 is a longitudinal sectional view showing various examples of a disk structure in a conventional ball polishing apparatus.

【図7】従来の盤体構造の他の例を示す縦断面図であ
る。
FIG. 7 is a longitudinal sectional view showing another example of the conventional board structure.

【図8】本発明の第4の実施例に係る固定盤体の概略的
な平面図である。
FIG. 8 is a schematic plan view of a fixed board according to a fourth embodiment of the present invention.

【図9】本発明の第5の実施例に係る固定盤体の概略的
な平面図である。
FIG. 9 is a schematic plan view of a fixed board according to a fifth embodiment of the present invention.

【図10】本発明に適用される各種のV形溝の溝断面形
状を示す図である。
FIG. 10 is a view showing a groove cross-sectional shape of various V-shaped grooves applied to the present invention.

【符号の説明】[Explanation of symbols]

1 回転砥石盤体 2 固定盤体 3,3a,3b 被加工球体 4 球体給排出口 6 V形溝 7 ストレージコンベヤ 8 円弧溝 9 逃げ部 10 逃げ溝付き円弧溝 11 角形溝 DESCRIPTION OF SYMBOLS 1 Rotating grindstone disk body 2 Fixed disk body 3, 3a, 3b Worked sphere 4 Sphere supply / discharge port 6 V-shaped groove 7 Storage conveyor 8 Arc groove 9 Escape part 10 Arc groove with relief groove 11 Square groove

フロントページの続き (56)参考文献 特開 昭47−8599(JP,A) 特開 昭60−207757(JP,A) 特開 昭63−162148(JP,A) (58)調査した分野(Int.Cl.7,DB名) B24B 11/06 B24B 37/02 Continuation of front page (56) References JP-A-47-8599 (JP, A) JP-A-60-207757 (JP, A) JP-A-63-162148 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) B24B 11/06 B24B 37/02

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ストレージに収容された被加工球体を、互
いに所定間隔を有して対向している回転盤体と固定盤体
との間に複数列で供給しかつこの両盤体により加工圧を
加えて研磨加工し、前記両盤体から排出された被加工球
体を前記ストレージに戻して再び前記両盤体間に供給
し、この動作を繰り返すように構成した球体研磨装置に
おいて、前記両盤体の少なくとも一方の盤体に複数本の
同芯状の球体転走溝を形成し、前記複数本の球体転走溝
は、前記盤体の球体転走溝形成面全体でみて、球体転走
溝内の球体が両盤体に挟圧されて2点接触支持あるいは
近似2点接触支持となる溝断面形状の球体転走溝と、3
点接触支持あるいは近似3点接触支持となる溝断面形状
の球体転走溝とで構成されることを特徴とする球体研磨
装置。
1. A plurality of spheres to be processed, which are accommodated in a storage, are supplied in a plurality of rows between a rotating disk body and a fixed disk body which are opposed to each other with a predetermined space therebetween, and a processing pressure is provided by the two disk bodies. In the spherical polishing apparatus configured to return the storage sphere discharged from the both discs to the storage and supply the sphere again between the two discs, and to repeat this operation, A plurality of concentric sphere rolling grooves formed on at least one of the disk bodies ;
Indicates that the ball is rolling on the entire surface of the disk where the ball rolling groove is formed.
The sphere in the groove is pinched by both discs to support two-point contact or
A spherical rolling groove having a groove cross-sectional shape serving as approximate two-point contact support;
Groove cross-sectional shape for point contact support or approximate three-point contact support
And a spherical rolling groove .
【請求項2】前記球体転走溝の溝断面形状を隣接する溝
1本づづ交互に円弧溝形状または角形溝形状とV形溝形
状にすることを特徴とする請求項第1項記載の球体研磨
装置。
2. The spherical body according to claim 1, wherein the spherical cross-sectional shape of the spherical rolling groove is alternately formed into an arcuate groove, a square groove, and a V-shaped groove one by one adjacent grooves. Polishing equipment.
【請求項3】前記球体転走溝の溝断面形状を円弧溝形
状,V形溝形状および角形溝形状の混在形とすることを
特徴とする請求項第1項記載の球体研磨装置。
3. The sphere polishing apparatus according to claim 1, wherein the spherical cross-sectional shape of said spherical rolling groove is a mixture of an arc-shaped groove, a V-shaped groove and a square groove.
【請求項4】前記球体転走溝の溝断面形状を、隣接する
溝1本づつ交互に円弧溝形状と、円弧溝形状の溝底に円
周方向にのびる凹状の逃げをもつ溝形状にすることを特
徴とする請求項第1項記載の球体研磨装置。
4. A cross-sectional shape of the spherical rolling groove is formed into an arcuate groove shape alternately one by one adjacent groove and a groove shape having a concave relief extending circumferentially at a groove bottom of the arcuate groove shape. 2. The sphere polishing apparatus according to claim 1, wherein:
【請求項5】前記球体転走溝の溝断面形状を該溝の円周
方向長さの一部分について異なる形状とすることを特徴
とする請求項第1項または第3項記載の球体研磨装置。
5. The sphere polishing apparatus according to claim 1, wherein a cross-sectional shape of said sphere rolling groove has a different shape with respect to a part of a circumferential length of said groove.
【請求項6】前記球体転走溝の溝断面形状を、該溝の円
周方向長さの約1/2を円弧溝形状または角形溝形状
し、残りをV形溝形状とすることを特徴とする請求項第
5項記載の球体研磨装置。
6. The groove cross-sectional shape of the spherical rolling groove is approximately half the circumferential length of the groove is an arc-shaped groove or a square groove , and the remainder is a V-shaped groove. 6. The sphere polishing apparatus according to claim 5, wherein:
【請求項7】前記球体転走溝の溝断面形状を、該溝の円
周方向長さの約1/2を円弧溝形状とし、残りの円周方
向約1/2を円弧溝形状の溝底に円周方向にのびる凹状
の逃げをもつ溝形状とすることを特徴とする請求項第5
項記載の球体研磨装置。
7. The groove cross-sectional shape of the spherical rolling groove is a groove having an arc length of about 1/2 of the circumferential length of the groove, and an arc groove having the remaining circumferential length of about 1/2. 6. A groove having a concave relief extending in a circumferential direction at a bottom thereof.
Item 2. A spherical polishing device according to item 1.
JP24445591A 1991-08-29 1991-08-29 Spherical polishing device Expired - Fee Related JP3225548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24445591A JP3225548B2 (en) 1991-08-29 1991-08-29 Spherical polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24445591A JP3225548B2 (en) 1991-08-29 1991-08-29 Spherical polishing device

Publications (2)

Publication Number Publication Date
JPH0557588A JPH0557588A (en) 1993-03-09
JP3225548B2 true JP3225548B2 (en) 2001-11-05

Family

ID=17118911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24445591A Expired - Fee Related JP3225548B2 (en) 1991-08-29 1991-08-29 Spherical polishing device

Country Status (1)

Country Link
JP (1) JP3225548B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103567856A (en) * 2013-10-10 2014-02-12 浙江工业大学 High-precision sphere processing method based on variable curvature groove grinding
CN103567855A (en) * 2013-10-10 2014-02-12 浙江工业大学 Variable camber groove grinding-based high-precision ceramic ball machining equipment
CN103991025A (en) * 2014-05-21 2014-08-20 浙江工业大学 High-accuracy ball body machining method through eccentric type curvature-variable groove
US10118274B2 (en) 2015-10-30 2018-11-06 Aktiebolaget Skf Apparatus for producing compressive residual stress in balls
US10480578B2 (en) * 2015-10-30 2019-11-19 Aktiebolaget Skf Method of imparting compressive residual stress to balls
JP7003553B2 (en) * 2017-10-11 2022-01-20 株式会社ジェイテクト Polishing machine, sphere polishing device and sphere polishing method

Also Published As

Publication number Publication date
JPH0557588A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
CN101198441B (en) Burnishing roller for crankshaft
JP2930462B2 (en) Grinding method
JP3225548B2 (en) Spherical polishing device
CN108581647B (en) Magnetic grinding disc, equipment and method for finishing rolling surface of cylindrical roller
CN108908094B (en) Grinding disc, equipment and method for finishing rolling surface of cylindrical roller
JPH07314325A (en) Sphere polishing device
JP2005342815A (en) Sphere polishing device
JPS6348666B2 (en)
CN108890403B (en) Magnetic grinding disc, equipment and method for finishing rolling surface of cylindrical roller
JPH0428488B2 (en)
JPS60104645A (en) Sphere machining device
JP2001336593A (en) Loading cam plate for toroidal type continuously variable transmission
CN108705444B (en) Magnetic grinding disc, equipment and method for finishing rolling surface of convex cylindrical roller
CN108723981B (en) Magnetic grinding disc, equipment and method for finishing rolling surface of convex conical roller
JPH11300605A (en) Spherical body grinding board
CN108705443B (en) Grinding disc kit, equipment and method for finishing rolling surface of cylindrical roller
JP2815267B2 (en) Grinding method of long spline shaft
WO2017014001A1 (en) Superfinishing method for roller bearing rolling surface
JPS63212454A (en) Spherical face honing method
JP7210307B2 (en) Method for manufacturing metal parts
RU2033915C1 (en) Honing head
JPH065079Y2 (en) Polishing equipment
JPS6389259A (en) Three faces simultaneous processing method and device for use in this method
JPS63280914A (en) Radial bearing device with fluid holding groove and its manufacture
JPS60207757A (en) Spherical-body working apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees