JPH0557443B2 - - Google Patents

Info

Publication number
JPH0557443B2
JPH0557443B2 JP16446286A JP16446286A JPH0557443B2 JP H0557443 B2 JPH0557443 B2 JP H0557443B2 JP 16446286 A JP16446286 A JP 16446286A JP 16446286 A JP16446286 A JP 16446286A JP H0557443 B2 JPH0557443 B2 JP H0557443B2
Authority
JP
Japan
Prior art keywords
valve
small diameter
diameter hole
oil chamber
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16446286A
Other languages
Japanese (ja)
Other versions
JPS6319405A (en
Inventor
Masaru Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP16446286A priority Critical patent/JPS6319405A/en
Publication of JPS6319405A publication Critical patent/JPS6319405A/en
Publication of JPH0557443B2 publication Critical patent/JPH0557443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Lift Valve (AREA)
  • Safety Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流量制御弁に係り、特に、本願出願人
の先願(特願昭61−11709号、特願昭61−11710
号、特願昭61−31699号、特願昭61−31700号)に
係る各装置の主弁として最適に採用し得る流量制
御弁に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flow rate control valve, and in particular, the present invention relates to a flow rate control valve, and in particular, the present invention relates to a flow rate control valve.
The present invention relates to a flow control valve that can be optimally adopted as a main valve of various devices related to Japanese Patent Application No. 61-31699 and Japanese Patent Application No. 61-31700).

〔先願の技術〕[Technology of prior application]

本願出願人は、上記した先願、例えば特願昭61
−11709号にて、第5図に例示する装置を提案し
た。
The applicant of this application has filed the above-mentioned earlier application, for example, Japanese Patent Application No. 61
In No. 11709, we proposed the device illustrated in FIG.

第5図に示す装置は、主弁10、第1パイロツ
ト弁20及び第2パイロツト弁30によつて構成
されている流量制御装置であり、主弁10は弁本
体11と、この弁本体11内に上下方向(軸方
向)へ摺動自在に嵌挿した弁体12と、この弁体
12を下方へ付勢するばね13を主要構成部材と
している。弁本体11は、大径孔11aの上下両
側に同一径の小径孔11b,11cをそれぞれ同
軸的に設けてなり下方の段部に弁座11dを形成
してなる段付内孔を有するとともに、流入路P1
が連通する環状溝11eや流出路P2が連通する
環状溝11fを有している。
The device shown in FIG. 5 is a flow control device composed of a main valve 10, a first pilot valve 20, and a second pilot valve 30. The main components are a valve body 12 that is slidably inserted in the vertical direction (axial direction), and a spring 13 that biases the valve body 12 downward. The valve body 11 has a stepped inner hole in which small diameter holes 11b and 11c of the same diameter are coaxially provided on both upper and lower sides of a large diameter hole 11a, and a valve seat 11d is formed in a lower step. Inflow path P1
It has an annular groove 11e with which it communicates and an annular groove 11f with which the outflow path P2 communicates.

弁体12は、大径溝11a内に圧力バランスさ
れた状態(上下両端部に作用する流入路P1内の
圧力が常に相殺される状態)にて摺動自在に嵌挿
されてテーパ面12a1にて弁座11dに着座し
たり離脱して流入路P1と流出路P2間を連通遮
断するポペツト弁部12aと、同ポペツト弁部1
2aの下側に設けられて下方の小径孔11b内に
延び同小径孔11bとの間に流出路P2が常時連
通する油室P1を形成する連結部12bと、同連
結部12bの下側に設けられて下方の小径孔11
bに摺動自在に嵌挿され同小径孔11b端に油室
R2を形成するピストン部12cを一体的に備え
るとともに、ポペツト弁部12aの上側に設けら
れて上方の小径孔11cに摺動自在に嵌挿され同
小径孔11c端に油室R3を形成する小径筒部1
2dを一体的に備えている。しかして、油室R2
は第1パイロツト弁20に接続されるとともに第
2パイロツト弁30の第1切換弁31に接続さ
れ、また油室R3は絞り14を介して流入路P1
に接続されるとともに、第2パイロツト弁30の
第2切換弁32に接続されている。
The valve body 12 is slidably inserted into the large-diameter groove 11a in a pressure-balanced state (a state in which the pressure in the inflow path P1 acting on both the upper and lower ends is always canceled out) and is inserted into the tapered surface 12a1. a poppet valve portion 12a that seats on or leaves the valve seat 11d to cut off communication between the inflow path P1 and the outflow path P2, and the poppet valve portion 1
A connecting part 12b that is provided on the lower side of the connecting part 2a and forms an oil chamber P1 that extends into the lower small diameter hole 11b and has an outflow passage P2 communicating with the small diameter hole 11b at all times; A lower small diameter hole 11 is provided.
It is integrally provided with a piston portion 12c that is slidably inserted into the small diameter hole 11b and forms an oil chamber R2 at the end of the small diameter hole 11b, and is provided above the poppet valve portion 12a and is slidable into the upper small diameter hole 11c. A small-diameter cylindrical portion 1 that is fitted into the small-diameter hole 11c and forms an oil chamber R3 at the end of the small-diameter hole 11c.
2d is integrally provided. However, oil chamber R2
is connected to the first pilot valve 20 and to the first switching valve 31 of the second pilot valve 30, and the oil chamber R3 is connected to the inlet passage P1 via the throttle 14.
It is connected to the second switching valve 32 of the second pilot valve 30.

第1パイロツト弁20は、供給路P3を通して
導入された圧油を所定値に減圧する減圧弁21
と、この減圧弁21から絞り22を通して油室R
2に付与されるパイロツト圧を電流付与値に応じ
て比例制御する電流制御リリーフ弁23によつて
構成されている。第2パイロツト弁30は、油室
R2に付与されるパイロツト圧により作動を制御
される第1切換弁31と、この第1切換弁31に
よつて作動を制御される第2切換弁32によつて
構成されている。第1切換弁31は、油室R2か
ら通路P4を通して付与されるパイロツト圧が設
定値未満であるとき図示のように非作動状態にあ
つて供給路P3と第2切換弁32の接続を断ちま
たパイロツト圧が設定値以上であるとき作動状態
となつて供給路P3を第2切換弁32に接続させ
る。第2切換弁32は、第1切換弁31によつて
供給路P3に接続されたとき作動して油室R3に
連通する通路P5とリザーバTに連通する戻り路
P6を連通させ、また第1切換弁31によつて供
給路P3との接続を断たれて戻り路P6に接続さ
れたとき図示のように非作動となつて油室R3に
連通する通路P5と戻り路P6の連通を遮断す
る。
The first pilot valve 20 is a pressure reducing valve 21 that reduces the pressure of the pressure oil introduced through the supply path P3 to a predetermined value.
The pressure reducing valve 21 passes through the throttle 22 to the oil chamber R.
The current control relief valve 23 proportionally controls the pilot pressure applied to the valve 2 in accordance with the current applied value. The second pilot valve 30 includes a first switching valve 31 whose operation is controlled by the pilot pressure applied to the oil chamber R2, and a second switching valve 32 whose operation is controlled by the first switching valve 31. It is structured as follows. When the pilot pressure applied from the oil chamber R2 through the passage P4 is less than the set value, the first switching valve 31 is in an inoperable state as shown in the figure and disconnects the supply path P3 from the second switching valve 32. When the pilot pressure is equal to or higher than the set value, it is activated and connects the supply path P3 to the second switching valve 32. The second switching valve 32 operates when connected to the supply path P3 by the first switching valve 31, and connects the passage P5 communicating with the oil chamber R3 and the return path P6 communicating with the reservoir T. When the switching valve 31 disconnects the supply path P3 and connects it to the return path P6, it becomes inactive as shown in the figure, cutting off communication between the path P5 communicating with the oil chamber R3 and the return path P6. .

上記のように構成した流量制御装置において
は、主弁10の弁体12におけるポペツト弁部1
2aに流入路P1内圧力が常に相殺されるように
作用し、また同ポペツト弁部12aとピストン部
12cに流出路P2内圧力が常に相殺されるよう
に作用するため、如何なる状態においても流入路
P1内圧力や流入路P2内圧力の変動によつて主
弁10の弁体12が軸方向へ押動されることはな
い。
In the flow control device configured as described above, the poppet valve portion 1 of the valve body 12 of the main valve 10
2a so that the pressure inside the inflow path P1 always cancels out, and the poppet valve part 12a and the piston part 12c act so that the pressure inside the outflow path P2 always cancels out, so the inflow path The valve body 12 of the main valve 10 is not pushed in the axial direction due to fluctuations in the pressure inside P1 or the pressure inside the inflow path P2.

また第1パイロツト弁20におけるリリーフ弁
23への電流付与値が設定値未満であつて油室R
2に付与されるパイロツト圧が設定値未満である
場合には、図示のごとく、第2パイロツト弁30
における第1切換弁31が非作動状態にあつて供
給路P3と第2切換弁32の接続を断つており、
第2切換弁32が非作動状態にあつて油室R3と
戻り路P6の連通を遮断している。このため、主
弁10の弁体12は流入路P1から絞り14を通
して油室R3に付与される油圧及びばね13の作
用によりポペツト弁部12aを弁座11dに着座
させており、流入路P1と流出路P2の連通が適
確に遮断されている。
Also, if the value of the current applied to the relief valve 23 in the first pilot valve 20 is less than the set value, the oil chamber R
If the pilot pressure applied to the second pilot valve 30 is less than the set value, the second pilot valve 30
The first switching valve 31 is in an inoperable state and disconnects the supply path P3 from the second switching valve 32;
The second switching valve 32 is in a non-operating state, cutting off communication between the oil chamber R3 and the return path P6. Therefore, the valve body 12 of the main valve 10 seats the poppet valve portion 12a on the valve seat 11d by the action of the spring 13 and the hydraulic pressure applied to the oil chamber R3 from the inflow path P1 through the throttle 14. Communication of the outflow path P2 is appropriately blocked.

しかして、第1パイロツト弁20におけるリリ
ーフ弁23への電流付与値を設定値以上として油
室R2に付与されるパイロツト圧を設定値以上と
すると、第2パイロツト弁30における第1切換
弁31が作動して供給路P3を第2切換弁32に
接続するため、第2切換弁32が作動して油室R
3を戻り路P6に連通させる。このため、油室R
3内の油圧は略ゼロとなり、主弁10の弁体12
は油室R2内のパイロツト圧(第1パイロツト弁
20によつて設定値以上の或る値に設定されてい
る)による押圧力とばね13の作用力がバランス
する位置にて保持され流入路P1から流出路P2
へ流れる流量が規定される。したがつて、第1パ
イロツト弁20におけるリリーフ弁23への電流
付与値を変えて油室R2に付与されるパイロツト
圧を変えることにより、主弁10の弁体12の位
置を調整でき、流入路P1から流出路P2へ流れ
る流量を調整することができる。
Therefore, when the value of current applied to the relief valve 23 in the first pilot valve 20 is made equal to or more than the set value and the pilot pressure given to the oil chamber R2 is made equal to or more than the set value, the first switching valve 31 in the second pilot valve 30 becomes more than the set value. The second switching valve 32 operates to connect the supply path P3 to the second switching valve 32, and the second switching valve 32 operates to connect the supply path P3 to the second switching valve 32.
3 is communicated with the return path P6. For this reason, oil chamber R
3 becomes almost zero, and the valve body 12 of the main valve 10
is maintained at a position where the pressing force due to the pilot pressure in the oil chamber R2 (set to a certain value higher than the set value by the first pilot valve 20) and the acting force of the spring 13 are balanced, and the inflow path P1 Outflow path P2
The flow rate flowing to is specified. Therefore, by changing the value of current applied to the relief valve 23 in the first pilot valve 20 and changing the pilot pressure applied to the oil chamber R2, the position of the valve body 12 of the main valve 10 can be adjusted, and the inflow path The flow rate flowing from P1 to outflow path P2 can be adjusted.

以上の説明から明らかなように、上記した流量
制御装置の主弁10は、ポペツト弁としての機
能、すなわち流入路P1と流出路P2間の連通を
適確に遮断する(洩れなく遮断する)機能を備え
ながら、油室R2に付与されるパイロツト圧に応
じて流入路P1から流出路P2に流れる流量を容
易かつ正確に調整できる利点を備えている。
As is clear from the above description, the main valve 10 of the flow rate control device described above has the function of a poppet valve, that is, the function of appropriately blocking communication between the inflow path P1 and the outflow path P2 (blocking without leakage). However, it has the advantage that the flow rate flowing from the inflow path P1 to the outflow path P2 can be easily and accurately adjusted in accordance with the pilot pressure applied to the oil chamber R2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記した流量制御装置の主弁10に
おいては、弁体12のポペツト弁部12aにおけ
るテーパ面12a1の頂角θが弁座11dへの適
確なシート性を確保する必要性から所定角(通常
40〜60度)に限定されるため、ポペツト弁部12
aの軸方向ストロークに対する可変絞り部の流路
面積(当該弁の流量を規定する開口面積)の変化
率が大きく、同流路面積を所望の値に設定しづら
いといつた問題がある。
By the way, in the main valve 10 of the flow control device described above, the apex angle θ of the tapered surface 12a1 in the poppet valve portion 12a of the valve body 12 is set at a predetermined angle ( usually
40 to 60 degrees), the poppet valve part 12
There is a problem in that the rate of change in the flow path area (opening area that defines the flow rate of the valve) of the variable restrictor with respect to the axial stroke of a is large, and it is difficult to set the flow path area to a desired value.

また、ポペツト弁部12aのテーパ面12a1
と弁座11d間に形成される可変絞り部を流れる
圧油により大きなフローフオースが発生して弁体
12が軸方向へ押動されることがあるため、折角
設定した上記流路面積が影響を受けることがあ
る。
Further, the tapered surface 12a1 of the poppet valve portion 12a
A large flow force may be generated by the pressure oil flowing through the variable restrictor formed between the valve seat 11d and the valve seat 11d, and the valve body 12 may be pushed in the axial direction. Sometimes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記した問題を解決するために、上記
した主弁10として採用し得る流量制御弁を、 大径孔の両側に同一径の小径孔をそれぞれ同軸
的に設けてなり、一方の小径孔と前記大径孔間の
段部に弁座を形成するとともに、同弁座の前記大
径孔側に第1流入出路を接続し、また一方の小径
孔の中間部に第2流入出路を接続してなる弁本体
と、 前記大径孔内に前記第1流入出路から受ける圧
力が常に相殺される状態にて嵌挿されてテーパ面
にて前記弁座に着座したり離脱して前記両流入出
路間を連通遮断するポペツト弁部と、同ポペツト
弁部の一側に設けられて前記一方の小径孔に摺動
自在に嵌挿されるスプール部と、同スプール部の
一側に設けられて前記一方の小径孔内に延び同小
径孔との間に前記第2流入出路に連通する第1油
室を形成する連結部と、同連結部の一側に設けら
れて前記一方の小径孔に摺動自在に嵌挿され同小
径孔端にパイロツト圧が付与される第2油室を形
成するピストン部を一体的に備えるとともに、前
記ポペツト弁部の他側に設けられて前記他方の小
径孔に摺動自在に嵌挿され同小径孔端に前記両流
入出路のうち流入路となる流路に絞りを介して常
に接続されるとともに戻り路に選択的に接続され
る第3油室を形成する小径部を一体的に備え、ま
た前記スプール部の外周に前記第3油室側への軸
方向移動によつて前記ポペツト弁部のテーパ面と
弁座間に形成される流路面積より流路面積が常に
小さい可変絞り部を前記大径孔及び一方の小径孔
内壁とにより構成する切欠を備える弁体と、 同弁体を前記第2油室に向けて付勢するばねを
具備する構成とした。
In order to solve the above-described problems, the present invention provides a flow control valve that can be adopted as the main valve 10 described above, in which a large-diameter hole and small-diameter holes of the same diameter are coaxially provided on both sides of the large-diameter hole, and one small-diameter hole is provided. A valve seat is formed in a stepped portion between the large diameter hole and a first inflow/outflow passage is connected to the large diameter hole side of the valve seat, and a second inflow/outflow passage is connected to an intermediate portion of one of the small diameter holes. a valve body that is fitted into the large-diameter hole in such a manner that pressures received from the first inflow and outflow passages are always canceled out, and seated on the valve seat on a tapered surface, and separated from the valve seat so that both the inflow and outflow passages are connected to each other; a poppet valve portion that disconnects communication between the outlet passages; a spool portion provided on one side of the poppet valve portion and slidably inserted into the small diameter hole of the one said spool portion; a connecting portion that extends into one of the small diameter holes and forms a first oil chamber communicating with the second inflow/output passage between the small diameter holes; A piston is integrally provided with a second oil chamber that is movably inserted into the small diameter hole and applies pilot pressure to the end of the small diameter hole, and is provided on the other side of the poppet valve part and connected to the other small diameter hole. A third oil chamber is formed at the end of the small diameter hole by being slidably inserted therein and always connected to the inflow path of the two inflow and outflow paths via a throttle and selectively connected to the return path. A small diameter portion is integrally provided, and the flow path area is smaller than the flow path area formed between the tapered surface of the poppet valve portion and the valve seat by axial movement toward the third oil chamber on the outer periphery of the spool portion. The valve body is provided with a notch that forms a variable throttle portion that is always small by the large diameter hole and the inner wall of one of the small diameter holes, and a spring that biases the valve body toward the second oil chamber. .

〔発明の作用・効果〕[Action/effect of the invention]

本発明による流量制御弁においては、第2油室
にパイロツト圧が付与されて弁体がばねに抗して
軸方向へ移動することにより、流入路と流出路が
ポペツト弁部のテーパ面と弁座間に形成される流
路、弁体のスプール部に設けた切欠と弁本体の大
径孔及び一方の小径孔内壁とにより構成される可
変絞り部、及び第1油室を通して連通して、ポペ
ツト弁部のテーパ面と弁座間に形成される流路が
前記可変絞り部の流路面積より流路面積が常に大
きい単なる通路として機能し、流入路から流出路
へ流れる流量が流路面積の最も小さい可変絞り部
にて規定される。
In the flow control valve according to the present invention, by applying pilot pressure to the second oil chamber and moving the valve body in the axial direction against the spring, the inflow passage and the outflow passage are connected to the tapered surface of the poppet valve portion and the valve body. The flow path formed between the seats, the variable throttle section formed by the notch provided in the spool part of the valve body, the large diameter hole of the valve body, and the inner wall of one of the small diameter holes, and the first oil chamber communicate with each other to form a poppet. The flow path formed between the tapered surface of the valve portion and the valve seat functions as a simple passage whose flow path area is always larger than the flow path area of the variable throttle portion, and the flow rate from the inflow path to the outflow path is the largest of the flow path area. Defined by a small variable diaphragm.

しかして、スプール部に設けられる切欠は、そ
の形状を他のものに制約されることなく適宜に設
定可能であり、弁体の軸方向ストロークに対する
可変絞り部の流路面積の変化率を適宜に小さくす
ることができる。したがつて、可変絞り部の流路
面積を所望の値に設定しやすくすることができ
る。
Therefore, the shape of the notch provided in the spool part can be set as appropriate without being restricted by other things, and the rate of change in the flow path area of the variable throttle part with respect to the axial stroke of the valve body can be set as appropriate. Can be made smaller. Therefore, it is possible to easily set the flow path area of the variable throttle portion to a desired value.

また、本発明による流量制御弁においては、ポ
ペツト弁部のテーパ面と弁座間に形成される流路
が単なる通路として機能し、かつスプール部に設
けた切欠と弁本体の大径孔及び一方の小径孔内壁
とにより構成される可変絞り部にて流体が絞られ
るようにしたため、ポペツト弁部のテーパ面と弁
座間に形成される流路を流れる圧油により発生す
るフローフオースを殆ど無くすことができるとと
もに、可変絞り部を流れる圧油により発生するフ
ローフオースを第5図に示したものに比して小さ
なものとすることができて、弁体のフローフオー
スによる軸方向移動を小さくすることができ、所
望の値に設定した可変絞り部の流路面積がフロー
フオースの影響をさほど受けないようにすること
ができる。なお、本発明者の実験結果によれば、
本発明による流量制御弁において弁体に作用する
フローフオースは第5図に示した弁体に作用する
フローフオースの略半分になることが判明した。
Further, in the flow control valve according to the present invention, the flow path formed between the tapered surface of the poppet valve part and the valve seat functions as a mere passage, and the notch provided in the spool part and the large diameter hole of the valve body, and Since the fluid is throttled by the variable throttle section formed by the inner wall of the small diameter hole, it is possible to almost eliminate the flow force generated by the pressure oil flowing through the flow path formed between the tapered surface of the poppet valve section and the valve seat. At the same time, the flow force generated by the pressure oil flowing through the variable restrictor can be made smaller than that shown in FIG. The flow path area of the variable throttle section, which is set to the value of , can be made so that it is not so affected by the flow force. According to the inventor's experimental results,
It has been found that in the flow control valve according to the present invention, the flow force acting on the valve body is approximately half the flow force acting on the valve body shown in FIG.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に基づいて説明
する。
An embodiment of the present invention will be described below based on the drawings.

第1図は本発明による流量制御弁を示してい
て、同流量制御弁40は、第1部材41A、第2
部材41B及び第3部材41Cからなる弁本体4
1と、この弁本体41内に上下方向(軸方向)へ
摺動自在に嵌挿した弁体42と、この弁体42を
下方へ付勢するばね43は主要構成部材としてい
る。弁本体41は、大径孔41aの上下両側に同
一径の小径孔41b,41cをそれぞれ同軸的に
設けてなり下方の段部に弁座41dを形成してな
る段付内孔を有するとともに、弁座41dに近接
する側の大径孔端に形成されて流入路P11が連
通する環状溝41eや、下方の小径孔41bの中
間部に形成されて流出路P12が連通する環状溝
41fを有している。
FIG. 1 shows a flow control valve according to the present invention, and the flow control valve 40 includes a first member 41A, a second member 41A, and a second member 41A.
Valve body 4 consisting of member 41B and third member 41C
1, a valve body 42 that is slidably inserted into the valve body 41 in the vertical direction (axial direction), and a spring 43 that biases the valve body 42 downward. The valve body 41 has a stepped inner hole in which small diameter holes 41b and 41c of the same diameter are coaxially provided on both upper and lower sides of a large diameter hole 41a, and a valve seat 41d is formed in the lower step. It has an annular groove 41e formed at the end of the large diameter hole near the valve seat 41d and communicating with the inflow passage P11, and an annular groove 41f formed in the middle part of the lower small diameter hole 41b and communicating with the outflow passage P12. are doing.

弁体42は、大径孔41a内に圧力バランスさ
れた状態(上下両端部に作用する流入路P11内
の圧力が常に相殺される状態)にて摺動自在に嵌
挿されてテーパ面42a1にて弁座41dに着座
したり離脱して流入路P11と流出路P12間を
連通遮断するポペツト弁部42aと、同ポペツト
弁部42aの下側に設けられて下方の小径孔41
bに摺動自在に嵌挿されるスプール部42bと、
同スプール部42bの下側に設けられて小径孔4
1b内に延び同小径孔41bとの間に流出路P1
2に連通する第1油室R11を形成する連結部4
2cと、同連結部42cの下側に設けられて小径
孔41bに摺動自在に嵌挿され同小径孔端にパイ
ロツト圧が付与される第2油室R12を形成する
ピストン部42dを一体的に備えるとともに、ポ
ペツト弁部42aの上側に設けられて上方の小径
孔41cに摺動自在に嵌挿され同小径孔41c端
に絞り44を介して環状溝41eに常に接続され
るとともに戻り路P6に選択的に接続される第3
油室R13(第2図参照)を形成する小径筒部4
2eを一体的に備えている。また弁体42のスプ
ール部42bの外周には、第3油室R13側への
軸方向移動によつてポペツト弁部42aのテーパ
面42a1と弁座41d間に形成される流路面積
より流路面積が常に小さい可変絞り部Aを大径孔
41aの環状溝41e部分及び下方の小径孔内壁
41b1とにより構成する切欠42b1が設けら
れている。
The valve body 42 is slidably inserted into the large-diameter hole 41a in a pressure-balanced state (a state in which the pressure in the inflow path P11 acting on both the upper and lower ends is always canceled out) and is inserted into the tapered surface 42a1. A poppet valve portion 42a that seats on or leaves the valve seat 41d to cut off communication between the inflow path P11 and the outflow path P12, and a small diameter hole 41 provided below the poppet valve portion 42a.
a spool portion 42b that is slidably inserted into b;
A small diameter hole 4 is provided on the lower side of the spool portion 42b.
1b and between it and the same small diameter hole 41b.
Connecting portion 4 forming a first oil chamber R11 communicating with 2
2c and a piston part 42d that forms a second oil chamber R12 that is provided below the connecting part 42c and is slidably inserted into the small diameter hole 41b and applies pilot pressure to the end of the small diameter hole. In addition, it is provided on the upper side of the poppet valve portion 42a, and is slidably inserted into the upper small diameter hole 41c, and is always connected to the annular groove 41e via the throttle 44 at the end of the small diameter hole 41c, and also has a return path P6. a third selectively connected to
Small diameter cylindrical portion 4 forming oil chamber R13 (see Figure 2)
2e is integrally provided. Furthermore, a flow path is formed on the outer periphery of the spool portion 42b of the valve body 42 due to the flow path area formed between the tapered surface 42a1 of the poppet valve portion 42a and the valve seat 41d by the axial movement toward the third oil chamber R13. A notch 42b1 is provided that constitutes a variable throttle portion A whose area is always small by the annular groove 41e portion of the large diameter hole 41a and the lower small diameter hole inner wall 41b1.

上記のように構成した流量制御弁は、第2図に
例示したように、第2油室R12を第1パイロツ
ト弁20に接続するとともに第2パイロツト弁3
0の第1切換弁31に接続し、また第3油室R1
3を第2パイロツト弁30の第2切換弁32に接
続することにより、流量制御装置の主弁として採
用される。なお、第1パイロツト弁20及び第2
パイロツト弁30の構成は第5図に示したものと
全く同じである。
As illustrated in FIG. 2, the flow rate control valve configured as described above connects the second oil chamber R12 to the first pilot valve 20 and connects the second oil chamber R12 to the second pilot valve 3.
0 and the third oil chamber R1.
3 is connected to the second switching valve 32 of the second pilot valve 30, it is used as the main valve of the flow control device. Note that the first pilot valve 20 and the second
The construction of the pilot valve 30 is exactly the same as that shown in FIG.

ところで、上記のように構成した流量制御弁に
おいては、第2油室R12に付与されるパイロツ
ト圧による押圧力が小さく、しかも第3油室R1
3が戻り路P6との連通を遮断されておれば、弁
体42は流入路P11から絞り44を通して第3
油室R13に付与される油圧及びばね43の作用
により上記したパイロツト圧による押圧力に抗し
てポペツト弁部42aを弁座41dに着座させて
おり、流入路P11と流出路P12の連通が適確
に遮断されている。しかして、このときには、弁
体42におけるポペツト弁部42aに流入路P1
1内圧力が常に相殺されるように作用し、またス
プール部42bとピストン部42dに流出路P1
2内圧力が常に相殺されるように作用するため、
流入路内圧力や流出路内圧力の変動によつて弁体
42が軸方向べ押動されることはない。
By the way, in the flow control valve configured as described above, the pressing force due to the pilot pressure applied to the second oil sac R12 is small, and moreover, the pressing force applied to the second oil sac R12 is small.
3 is cut off from communication with the return path P6, the valve body 42 passes through the throttle 44 from the inflow path P11 to the third
The poppet valve portion 42a is seated on the valve seat 41d against the pressing force caused by the pilot pressure described above due to the hydraulic pressure applied to the oil chamber R13 and the action of the spring 43, and proper communication between the inflow path P11 and the outflow path P12 is established. It's definitely blocked. At this time, the inflow path P1 is connected to the poppet valve portion 42a of the valve body 42.
1 internal pressure is always canceled out, and an outflow path P1 is provided between the spool portion 42b and the piston portion 42d.
2 The internal pressures always act to cancel each other out, so
The valve body 42 is not pushed in the axial direction due to fluctuations in the pressure inside the inflow path or the pressure inside the outflow path.

また、第2油室R12に付与されるパイロツト
圧による押圧力ばね43の取付荷重より大きく、
しかも第3油室R13が戻り路P6と接続されて
連通しておれば、第3油室R13内の油圧は略ゼ
ロとなつていて、弁体42は第2油室R12内の
パイロツト圧による押圧力とばね43の作用力が
バランスする位置まで押動されている。このた
め、流入路P11と流出路P12は、ポペツト弁
部42aのテーパ面42a1と弁座41d間に形
成される流路、スプール部42bに設けた切欠4
2b1と大径孔41aの環状溝41e部分及び下
方の小径孔内壁41b1とにより構成される可変
絞り部A及び第1油室R11を通して連通してい
て、ポペツト弁部42aのテーパ面42a1と弁
座41d間に形成される流路が可変絞り部Aの流
路面積より流路面積が常に大きい単なる通路とし
て機能し、流入路P11から流出路P12へ流れ
る流量が流路面積の最も小さい可変絞り部Aにて
規定される。したがつて、第2油室R12に付与
されるパイロツト圧を変えることにより、弁体4
2の位置を調整できて可変絞り部Aでの絞り量を
調整でき、流入路P11から流出路P12へ流れ
る流量を調整することができる。
Also, the mounting load of the pressing force spring 43 due to the pilot pressure applied to the second oil chamber R12 is greater than the mounting load.
Moreover, if the third oil chamber R13 is connected and communicated with the return path P6, the oil pressure in the third oil chamber R13 is approximately zero, and the valve body 42 is controlled by the pilot pressure in the second oil chamber R12. It is pushed to a position where the pressing force and the acting force of the spring 43 are balanced. Therefore, the inflow path P11 and the outflow path P12 are a flow path formed between the tapered surface 42a1 of the poppet valve portion 42a and the valve seat 41d, and a notch 4 formed in the spool portion 42b.
2b1 and the annular groove 41e portion of the large diameter hole 41a and the lower small diameter hole inner wall 41b1 communicate through the variable throttle part A and the first oil chamber R11, and the tapered surface 42a1 of the poppet valve part 42a communicates with the valve seat. The flow path formed between 41d functions as a simple passage whose flow path area is always larger than the flow path area of the variable throttle section A, and the flow rate flowing from the inflow path P11 to the outflow path P12 is the variable throttle section with the smallest flow path area. Specified in A. Therefore, by changing the pilot pressure applied to the second oil chamber R12, the valve body 4
2 can be adjusted, the amount of throttling in the variable throttle part A can be adjusted, and the flow rate flowing from the inflow path P11 to the outflow path P12 can be adjusted.

しかして、弁体42のスプール部42bに設け
られる切欠42b1は、その形状を他のものに制
約されることなく適宜に設定可能であり、弁体4
2の軸方向スロトークにする可変絞り部Aの流路
面積の変化率を適宜に小さくすることができる。
したがつて、可変絞り部Aの流路面積を所望の値
に設定しやすくすることができる。
Therefore, the shape of the notch 42b1 provided in the spool portion 42b of the valve body 42 can be set as appropriate without being restricted by other things, and
The rate of change in the flow path area of the variable throttle section A to achieve the second axial throat talk can be appropriately reduced.
Therefore, the flow path area of the variable throttle section A can be easily set to a desired value.

また、本実施例の流量制御弁においては、ポペ
ツト弁部42aのテーパ面42a1と弁座41d
間に形成される経路が単なる通路として機能し、
かつスプール部42bに設けた切欠42b1と大
径孔41aの環状孔41e部分及び下方の小径孔
内壁41b1とにより構成される可変絞り部Aに
て流体が絞られるようにしたため、ポペツト弁部
42aのテーパ面42a1と弁座41d間に形成
される流路を流れる圧油により発生するフローフ
オースを殆ど無くすことができるとともに、可変
絞り部Aを流れる圧油により発生するフローフオ
ースを第5図に示したものに比して小さなものと
することができて、弁体42のフローフオースに
よる軸方向移動を小さくすることができ、所望の
値に設定した可変絞り部Aの流路面積がフローフ
オースの影響をさほど受けないようにすることが
できる。なお、本発明者の実験結果によれば、弁
体42に作用するフローフオースは第5図に示し
た弁体12に作用するフローフオースの略半分に
なることが判明した。
In addition, in the flow control valve of this embodiment, the tapered surface 42a1 of the poppet valve portion 42a and the valve seat 41d
The path formed between them functions simply as a passage,
In addition, since the fluid is throttled in the variable throttle part A formed by the notch 42b1 provided in the spool part 42b, the annular hole 41e portion of the large diameter hole 41a, and the lower small diameter hole inner wall 41b1, the poppet valve part 42a is The flow force generated by the pressure oil flowing through the flow path formed between the tapered surface 42a1 and the valve seat 41d can be almost eliminated, and the flow force generated by the pressure oil flowing through the variable throttle part A is shown in FIG. , the axial movement of the valve body 42 due to the flow force can be reduced, and the flow path area of the variable throttle section A, which is set to a desired value, is not affected by the flow force so much. You can avoid it. According to the experimental results of the present inventor, it has been found that the flow force acting on the valve body 42 is approximately half of the flow force acting on the valve body 12 shown in FIG.

第3図は本発明の他の実施例を示していて、同
図に示した流量制御弁においては、弁本体41が
第1〜第4部材41A〜41Dによつて構成され
ていて、第4部材41Dに弁座41dが形成され
ている。このため、第4部材41Dの材質を例え
ば鉄として弁座41dの耐久性向上を図ることが
できる。また、弁本体41の第2部材41Bと第
4部材41Dが一体的に結合された状態に第1部
材41A内に組付けられており、第2部材41B
と第4部材41D内には弁体42とばね43が予
め組込まれている。このため、この流量制御弁に
おいては、組付性がよいといつた利点やばね43
の取付荷重を予め調整することができるといつた
利点がある。なお、その他の構成は第1図に示し
た流量制御弁の構成と実質的に同じである。ま
た、第3図に示した実施例の作用・効果は上述し
た第1図及び第2図にて示した実施例の作用・効
果と実質的に同じであるため、その説明は省略す
る。
FIG. 3 shows another embodiment of the present invention, and in the flow control valve shown in the same figure, the valve body 41 is constituted by first to fourth members 41A to 41D, and the fourth A valve seat 41d is formed on the member 41D. Therefore, the durability of the valve seat 41d can be improved by using iron as the material of the fourth member 41D, for example. Further, the second member 41B and the fourth member 41D of the valve body 41 are assembled into the first member 41A in an integrally coupled state, and the second member 41B
A valve body 42 and a spring 43 are installed in advance in the fourth member 41D. For this reason, this flow control valve has the advantages of easy assembly and the spring 43
The advantage is that the mounting load can be adjusted in advance. Note that the other configurations are substantially the same as the configuration of the flow control valve shown in FIG. Further, since the functions and effects of the embodiment shown in FIG. 3 are substantially the same as those of the embodiment shown in FIGS. 1 and 2 described above, their explanation will be omitted.

なお、上記した実施例においては、第2図にて
示したように、第3油室R13を絞り44を介し
て環状溝41eに連通させて、環状溝41eに接
続された流路を流入路P11とするとともに環状
溝41fに接続された流路を流出路P12とした
が、第3油室R13を絞り44を介して環状溝4
1fに連通させて、環状溝41fに接続された流
路を流入路とするとともに環状溝41eに接続さ
れた流路を流出路としても、上記実施例と同様の
作用・効果が期待できる。また、上記実施例にお
いては、弁本体41の大径孔41aの下端部に環
状溝41eを形成して、この環状溝41eに流入
路P11を連通させたが、第4図にて示したよう
に、大径孔41aを環状溝41eの径まで大きく
して同大径孔41aに流入路P11を連通させる
ようにしても、上記実施例と同様の作用・効果が
期待できる。
In the above embodiment, as shown in FIG. 2, the third oil chamber R13 is communicated with the annular groove 41e through the throttle 44, and the flow path connected to the annular groove 41e is connected to the inflow path. P11 and the flow path connected to the annular groove 41f was defined as the outflow path P12, but the third oil chamber R13 is connected to the annular groove 4 through the throttle 44.
1f and the flow path connected to the annular groove 41f is used as the inflow path, and the flow path connected to the annular groove 41e is used as the outflow path, the same effects and effects as in the above embodiment can be expected. Further, in the above embodiment, an annular groove 41e is formed at the lower end of the large diameter hole 41a of the valve body 41, and the inflow passage P11 is communicated with the annular groove 41e. Furthermore, even if the large-diameter hole 41a is enlarged to the diameter of the annular groove 41e and the inflow passage P11 is communicated with the large-diameter hole 41a, the same functions and effects as in the above embodiment can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による流量制御弁の一実施例を
示す要部拡大断面図、第2図は第1図に示した流
量制御弁を主弁として構成した流量制御装置の一
例を示す全体構成図、第3図は本発明による流量
制御弁の他の実施例を示す要部拡大断面図、第4
図は本発明による流量制御弁の変形例を主弁とし
て構成した流量制御装置を示す全体構成図、第5
図は特願昭61−11709号にて提案した流量制御装
置の一例を示す全体構成図である。 符号の説明、40……流量制御弁(主弁)、4
1……弁本体、41a……大径孔、41b,41
c……小径孔、41d……弁座、42……弁体、
42a……ポペツト弁部、42a1……テーパ
面、42b……スプール部、42b1……切欠、
42c……連結部、42d……ピストン部、42
e……小径部、43……ばね、44……絞り、A
……可変絞り部、P11……流入路(第1流入出
路)、P12……流出路(第2流入出路)、P6…
…戻り路、R11……第1油室、R12……第2
油室、R13……第3油室。
FIG. 1 is an enlarged cross-sectional view of essential parts showing an embodiment of a flow control valve according to the present invention, and FIG. 2 is an overall configuration showing an example of a flow control device configured with the flow control valve shown in FIG. 1 as a main valve. FIG. 3 is an enlarged cross-sectional view of main parts showing another embodiment of the flow control valve according to the present invention, and FIG.
Figure 5 is an overall configuration diagram showing a flow control device in which a modification of the flow control valve according to the present invention is used as the main valve.
The figure is an overall configuration diagram showing an example of a flow rate control device proposed in Japanese Patent Application No. 11709/1983. Explanation of symbols, 40...Flow rate control valve (main valve), 4
1...Valve body, 41a...Large diameter hole, 41b, 41
c...Small diameter hole, 41d...Valve seat, 42...Valve body,
42a...poppet valve part, 42a1...tapered surface, 42b...spool part, 42b1...notch,
42c...Connection part, 42d...Piston part, 42
e...Small diameter part, 43...Spring, 44...Aperture, A
...Variable throttle part, P11...Inflow path (first inflow/output path), P12...Outflow path (second inflow/output path), P6...
...Return path, R11...First oil chamber, R12...Second
Oil chamber, R13...3rd oil chamber.

Claims (1)

【特許請求の範囲】 1 大径孔の両側に同一径の小径孔をそれぞれ同
軸的に設けてなり、一方の小径孔と前記大径孔間
の段部に弁座を形成するとともに、同弁座の前記
大径孔側に第1流入出路を接続し、また一方の小
径孔の中間部に第2流入出路を接続してなる弁本
体と、 前記大径孔内に前記第1流入出路から受ける圧
力が常に相殺される状態にて嵌挿されてテーパ面
にて前記弁座に着座したり離脱して前記両流入出
路間を連通遮断するポペツト弁部と、同ポペツト
弁部の一側に設けられて前記一方の小径孔に摺動
自在に嵌挿されるスプール部と、同スプール部の
一側に設けられて前記一方の小径孔内に延び同小
径孔との間に前記第2流入出路に連通する第1油
室を形成する連結部と、同連結部の一側に設けら
れて前記一方の小径孔に摺動自在に嵌挿され同小
径孔端にパイロツト圧が付与される第2油室を形
成するピストン部を一体的に備えるとともに、前
記ポペツト弁部の他側に設けられて前記他方の小
径孔に摺動自在に嵌挿され同小径孔端に前記両流
入出路のうち流入路となる流路に絞りを介して常
に接続されるとともに戻り路に選択的に接続され
る第3油室を形成する小径部を一体的に備え、ま
た前記スプール部の外周に前記第3油室側への軸
方向移動によつて前記ポペツト弁部のテーパ面と
弁座間に形成される流路面積より流路面積が常に
小さい可変絞り部を前記大径孔及び一方の小径孔
内壁とにより構成する切欠を備える弁体と、 同弁体を前記第2油室に向けて付勢するばねを
具備してなる流量制御弁。
[Scope of Claims] 1 Small diameter holes of the same diameter are coaxially provided on both sides of a large diameter hole, and a valve seat is formed in the step between one of the small diameter holes and the large diameter hole, and A valve body having a first inflow/outflow passage connected to the large diameter hole side of the seat and a second inflow/outflow passage connected to an intermediate portion of one of the small diameter holes; a poppet valve portion that is inserted into the valve seat in a state where the pressures received are always canceled out and seats on the valve seat with a tapered surface, and separates from the valve seat to cut off communication between the two inflow and outflow passages, and one side of the poppet valve portion. a spool portion provided on one side of the spool portion and slidably inserted into the one small diameter hole; and a second inflow/outflow path provided on one side of the spool portion and extending into the one small diameter hole between the second small diameter hole. a connecting portion forming a first oil chamber communicating with the first oil chamber; and a second connecting portion provided on one side of the connecting portion and slidably inserted into the one small diameter hole and applying pilot pressure to the end of the small diameter hole. A piston part that forms an oil chamber is integrally provided, and the piston part is provided on the other side of the poppet valve part and is slidably inserted into the other small diameter hole, and the inflow and outflow passages are connected to the end of the small diameter hole. It is integrally provided with a small diameter portion forming a third oil chamber that is always connected to the flow path via a throttle and selectively connected to the return path, and the third oil chamber is provided on the outer periphery of the spool portion. A variable throttle portion whose flow path area is always smaller than the flow path area formed between the tapered surface of the poppet valve portion and the valve seat by axial movement toward the chamber side is formed between the large diameter hole and the inner wall of one of the small diameter holes. A flow control valve comprising: a valve body having a notch; and a spring urging the valve body toward the second oil chamber.
JP16446286A 1986-07-11 1986-07-11 Flow control valve Granted JPS6319405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16446286A JPS6319405A (en) 1986-07-11 1986-07-11 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16446286A JPS6319405A (en) 1986-07-11 1986-07-11 Flow control valve

Publications (2)

Publication Number Publication Date
JPS6319405A JPS6319405A (en) 1988-01-27
JPH0557443B2 true JPH0557443B2 (en) 1993-08-24

Family

ID=15793631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16446286A Granted JPS6319405A (en) 1986-07-11 1986-07-11 Flow control valve

Country Status (1)

Country Link
JP (1) JPS6319405A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577225B2 (en) * 1987-06-23 1997-01-29 株式会社小松製作所 Flow control valve
JPH01115001U (en) * 1988-01-29 1989-08-02

Also Published As

Publication number Publication date
JPS6319405A (en) 1988-01-27

Similar Documents

Publication Publication Date Title
JP4410987B2 (en) Electro-hydraulic valve assembly
AU672713B2 (en) Two stage pressure control valve
JP3703265B2 (en) Hydraulic control device
JPH01295083A (en) Pressure limiting valve
JP3891738B2 (en) Proportional solenoid relief valve
JPH0557443B2 (en)
JP4514324B2 (en) Hydraulic control valve
JPH043190Y2 (en)
JPH0557442B2 (en)
JPH0557441B2 (en)
JPH0557444B2 (en)
JP2019196779A (en) Solenoid flow control valve
JP2561717Y2 (en) Two-way relief valve
JP3860944B2 (en) Damping hydraulic damper
JP3893870B2 (en) Steering damper
JPS6315661Y2 (en)
JPH0645042Y2 (en) Control valve
JPH08184301A (en) Hydraulic control device
JPS6128529Y2 (en)
JPS6327974Y2 (en)
JP2586207Y2 (en) Poppet valve device
JPH0198774A (en) Pressure control valve
JPH0129281Y2 (en)
JPH0438135Y2 (en)
JPH0438923B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees