JPH0555645A - 薄膜素子 - Google Patents

薄膜素子

Info

Publication number
JPH0555645A
JPH0555645A JP3137754A JP13775491A JPH0555645A JP H0555645 A JPH0555645 A JP H0555645A JP 3137754 A JP3137754 A JP 3137754A JP 13775491 A JP13775491 A JP 13775491A JP H0555645 A JPH0555645 A JP H0555645A
Authority
JP
Japan
Prior art keywords
oxide superconductor
thin film
film
layer
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3137754A
Other languages
English (en)
Inventor
Yukio Watabe
行男 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15534757&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0555645(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP3137754A priority Critical patent/JPH0555645A/ja
Publication of JPH0555645A publication Critical patent/JPH0555645A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • H10N60/858Ceramic superconductors comprising copper oxide having multilayered structures, e.g. superlattices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0381Processes for depositing or forming copper oxide superconductor layers by evaporation, e.g. MBE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices
    • H10N60/0941Manufacture or treatment of Josephson-effect devices comprising high-Tc ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • Y10S505/702Josephson junction present

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】 〔目的〕 例えばジョセフソン素子として用いられる優
れた特性を有する薄膜素子を提供したい。 〔構成〕 基板上に、基板に対し実質的に垂直方向に元
素が周期を有する酸化物超伝導体からなる格子構造を備
えた薄層を形成し、その薄層の中間部において形成され
る非超伝導体中間層は、該酸化物超伝導体構成元素の少
なくとも一部が他の元素で置換し、酸化物超伝導体の格
子構造に従う積層の周期性が超伝導層と非超伝導体中間
層との界面を横切って維持するようにする。こうするこ
とにより置換した非超伝導体中間層部分がジョセフソン
接合に必要な絶縁特性または常伝導特性を示すことにな
る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は薄膜素子に関し、更に
詳しくは、酸化物高温超伝導体を用いた、積層型のジョ
セフソン素子などに有用な薄膜素子に関するものであ
る。
【0002】
【従来の技術】近年、従来より研究されてきたNb,な
いしNb3 SnやNb3 Ge等のA15型化合物(β−W
型結晶構造)の超伝導体に代わる超伝導体として、Cu
−O層を結晶構造中に含む酸化物超伝導体の研究が活発
である。
【0003】このような酸化物超伝導体の典型的な材料
としてはY−Ba−Cu−O(YBCO)系(臨界温度
Tc >90K)、Bi−Sr−Ca−Cu系(臨界温度T
c =80〜 110K)、あるいはTl−Ba−Ca−Cu−
O系(臨界温度Tc =90〜 120K)などが知られてい
る。
【0004】そしてこれらの材料を電子素子であるジョ
セフソン素子として用いる場合における最重要技術がジ
ョセフソン接合の形成である。このジョセフソン接合
は、一般的には、蒸着法、スパッタ蒸着法、あるいはレ
ーザーアブレーションなどによって形成される。
【0005】ところが、上記のような材料はその相関長
が極めて短かく(良好なジョセフソン接合のためには、
界面での乱れの大きさが相関長より小さいことが良
い)、且つ材料表面が劣化し易いことが確認されてい
る。
【0006】このため、これらの材料の薄膜を間隙を形
成するための中間層を介して積層化してジョセフソン接
合を形成した場合、超伝導材料と中間層の格子整合性が
悪く、隣接する超伝導層の特性が劣化したり、中間層か
らリーク電流が生じたりするため、再現性のよいS/N
/S(超伝導体/常伝導体(導電体)/超伝導体)接合
が得られなかったり、あるいはS/I/S(超伝導体/
絶縁体/超伝導体)接合の場合でもリーク電流が生じた
り、超伝導結合が得られないなどの欠点がある。
【0007】これらの欠点を解決するため、例えば積層
型薄膜素子の場合、従来は以下の(a) 〜(c) のような方
法が提案されている。
【0008】(a) 酸化物超伝導体上に絶縁膜を形成した
後、従来型(フォノン型)の超伝導体(例えばNbない
しNb系合金、PbないしPb化合物)を積層する方
法。
【0009】(b) 酸化物超伝導体上に、中間層として金
属超伝導体の酸素の少ない材料,または通常基板に用い
られるMgO、SrTiO3 、ZrO2 などの材料を積
層し、この上に超伝導体を積層する方法。
【0010】(c) 酸化物超伝導体上に、この酸化物超伝
導体のうちの希土類元素やアルカリ土金属を他の元素で
置換して絶縁体層を形成し、この絶縁体層の上に酸化物
超伝導体を積層する方法。
【0011】
【発明が解決しようとする課題】しかしながら、上記
(a) の方法の場合には、従来型の超伝導体を用いている
ことから、液体ヘリウム温度でしか薄膜素子を作動させ
ることができないという問題がある。
【0012】また(b) の方法では、中間層として金属超
伝導体の酸素の少ない材料を用いる場合はアニール時に
おける酸素の拡散の制御性が悪いためシャープな界面が
得難いし、またMgOなどの基板材料を用いた場合では
Mgなどの拡散によって特性の良い膜が得難いという問
題がある。
【0013】更に(C) の方法では、超伝導特性を示すC
u−O層と希土類元素などとの結合が弱いため、超伝導
特性から絶縁特性に変えるためには上記置換を多量(50
%以上)にしなければならないという問題がある。
【0014】
【課題を解決するための手段】本発明者は上記問題を解
決すべく鋭意研究した所、超伝導体の実質的構造を変化
させずにS/N/S,あるいはS/I/S構造などを作
製し得る手段を知得した。
【0015】本発明者はCuを含む酸化物超伝導体の基
本構造の特異性,特にその2次元性に着眼し、基板上
に、前記基板に対し実質的に垂直方向に元素が周期を有
する酸化物超伝導体からなる格子構造を備えた薄膜が形
成され、前記薄膜の中間部において前記格子構造と前記
周期を変えることなく元素の置換がされているようなヘ
テロ界面を備えた薄膜素子を見出した。
【0016】本発明は、基板上に酸化物超伝導体膜を形
成してなる薄膜素子であって、該酸化物超伝導体膜は、
酸化物超伝導体を構成する原子の少なくとも一つからな
る原子の単層が基板に対して実質的に垂直方向に酸化物
超伝導体の格子構造に従って周期性をもって積層された
ものであり、且つその中間部において酸化物超伝導体構
成原子の少なくとも一部が他の元素に置換されて非超伝
導体中間層が形成されており、酸化物超伝導体の格子構
造に従う積層の周期性が超伝導体層と非超伝導体中間層
との間の界面を横切って維持されていることを特徴とす
る薄膜素子である。
【0017】上記薄膜は、具体的には例えばLB2 Cu
3 7-δ(L:希土類元素,B:アルカリ土金属),T
lBa2-n Can-1+x Cun 2n+1(n:1,2,3)
またはBi2 Srx Cay Cun 2n+4(n:1,2,
3、x+y≒n+1)などのCu−O層を含む酸化物超
伝導体である。そしてこの場合、薄膜中間部においてこ
のCu−O層のCuの一部または全部を他の元素で置換
するようにすれば良い。またこの置換元素としては、周
期表II族b亜族元素,周期表III 族b亜族元素,あるい
はCu以外の遷移元素を用いれば良い。
【0018】また、上記薄膜をLB2 Cu3
7-δ(L:希土類元素、B:アルカリ土金属)で構成し
た場合は、薄膜中間部においてこのL含有層のLの一部
または全部を他の希土類元素またはアルカリ土類金属元
素で置換すれば良い。
【0019】更に,上記の薄膜をTlBa2-n Ca
n-1+xCun 2n+1(n:1,2,3)またはBi2
x Cay Cun 2n+4(n:1,2,3、x+y≒n
+1)で構成した場合には、薄膜中間部においてCa含
有層のCaの一部または全部を他のアルカリ土金属また
は3価の希土類元素(例えばY)で置換すれば良い。
【0020】一方このような薄膜を作製する際には、分
子線蒸着(MBE),レーザーアブレーション,あるい
は電子ビームや抵抗加熱による蒸着法などの方法が用い
られる。
【0021】またこの薄膜において上記のように基板に
対し元素が実質的に垂直方向に周期構造を有する酸化物
超伝導体構造とするための具体的な作製法は、従来技術
において超格子を作製するのと同様な方法が用いられ
る。
【0022】このような具体的な方法としては、各層を
一層づつ、YBCOの場合ではBaO,CuO2 ,Ba
O,CuO2 ,YCuO2 の順に滞積していく方法,例
えば積み上げ法蒸着(layer by layer)などが挙げられ
る。
【0023】その他、薄膜を構成するブロック層毎に順
次蒸着して堆積する方法を採っても勿論良い。この場
合、例えばYBa2 Cu3 7 では、BaCuO2 ,Y
CuO2.5 ,BaCuO2 の順で行えば良い。またBi
2 Sr2 CaCu2 8 の場合には、JJAP 27(1988)218
83において川合,安達氏らによる論文に述べられている
ように、Bi2 2 −SrCuO2 −CaCuO2 −S
rCuO2 (−Cu)の順で堆積することにより作製す
ることができる。
【0024】また実際の薄膜素子においては変調層の上
下部分にそれぞれ独立して電流端子を設けるため、上記
構造を作製後に、例えば第4図のように下側の超伝導層
1 が露出するようにエッチングするか,あるいは下側
の超伝導層S1 作製後ないし場合によっては超伝導構成
原子の一部が他の元素に置換された非超伝導体中間層す
なわち変調層D作製後にマスクをかぶせて、下側の超伝
導層S1 の一部が露出し、その他が変調層Dと上側の超
伝導層S2 に覆われるようにする必要がある。
【0025】また、本発明においては、積層構造を例え
ばS/I/S/I/S,S/N/S/I/Sとしたり、
更には薄膜素子の上ないし下に他の公知の構造を積層し
てもよい。
【0026】
【作 用】例えば ISTECジャーナル(3)1989, P19
の川合氏による研究論文にはレーザーアブレーションに
よる超格子構造の作製が解説されているが、この研究の
目的は超伝導体の次元性や超格子構造の作製にあり、本
発明における上記のヘテロ界面の作製とは構造が異な
る。
【0027】つまり本発明ではこれらの超格子作製技術
は利用するが、例えばYBCO系酸化物超伝導体中の希
土類元素やCu,あるいはBi系酸化物超伝導体中のア
ルカリ土金属やCuをそれぞれ他の元素で置換した部分
がもとの結晶構造中にこの結晶構造を安定に保ったまま
存在すること、従って酸化物超伝導体の格子構造に従う
積層の周期性が超伝導層と非超伝導体中間層との界面を
横切って維持されており、この置換された非超伝導体中
間層部分がジョセフソン接合に必要な絶縁特性または常
伝導特性を示すことが特徴である。
【0028】従来は、例えばYBa2 CuO7 /(YP
r)Ba2 Cu3 7 /YBa2 Cu3 7 などのS/
I/S構造が検討されてきたが、これはあくまで従来の
ヘテロ積層膜という考えにたっており、もとのYBCO
系酸化物超伝導体膜の組成を局所的に変調したものでは
ない。
【0029】すなわち従来のYBa2 Cu3 7 ,Bi
2 Sr2 CaCu2 8-δなどの結晶構造は極低温(4
K)から高温(〜 600℃)までの広い温度範囲で安定で
あるが従来のヘテロ構造はこの安定な構造を壊すことで
作製されてきたため、この従来構造では異種層の界面の
制御が旨くできず、熱力学的に安定な構造の薄膜素子は
作製されない。
【0030】これに対し本発明の場合、本来安定である
結晶構造をほぼ完全に保ったままで上記従来のヘテロ構
造と実質的に同一の電気特性が得られ、また用いられる
変調部の組成は基本組成である超伝導と同様にその結晶
が熱力学的に安定であり安定な膜として存在し得る。そ
してこのため、本発明によれば、上記従来の問題がな
く、作動温度が高く、また特性の良好な薄膜素子を得る
ことができる。
【0031】
【実施例】以下に本発明の実施例を説明する。
【0032】本発明の特徴性は層構成にあるので、以下
の説明ではこれについてのみ示す。
【0033】第1図(A) はc軸配向したYBCO系酸化
物超伝導体膜の基本構成を示したもので、BaO−Cu
O−BaO−CuO−Y−CuOの基本周期が繰返され
ている。但し欠陥の発生によりこの基本周期の一部が局
所的に崩れることもある。
【0034】第1図(B) に示したのは上記c軸配向膜に
関する本発明の実施例で、第1図(A) の構造中の中間層
におけるCu−O層(図の場合はCuO平面のCu−
O)をCuMOで置換した構造で、図示のようにCuM
Oの間には変調部が形成される。この変調部は上記の基
本周期を保つように導入される。尚、MはZnなどの周
期表II族b亜族元素、Al,Gaなどの周期表III 族b
亜族元素、あるいはCr、Fe,Co,Ni,Zr、P
tなどのCu以外の遷移元素で、Cuとのイオン半径が
大きく異ならないものが好ましい(以下同じ)。
【0035】上記の変調部の長さは、通常、相関長より
長く且つ相関長の10倍以下にする必要があると考えられ
ている。液体窒素温度(77K)以上の臨界温度Tc をも
つ酸化物の場合、異方性があるが、典型的には相関長は
10A程度かそれ以下であり、従って変調部の長さは最小
基本構造単位(c軸長)〜10倍のc軸長,即ち10〜 100
Åが好ましい範囲といえる。また上下の超伝導層として
は50〜1000Åが適切である。
【0036】第1図(C) はC軸配向膜の他の変調例を示
したもので、この例ではCuO平面でなくCuO鎖をC
uMOで置換したものである。
【0037】第1図(D) は、YをY及びY以外の価数の
異なる希土類元素L(例えばCe4+、Pr4+)で置換し
た実施例を示したものである。その他、この置換をアル
カリ土金属(例えばCa2+)で行っても良い。
【0038】第2図(A) はa軸配向したYBCO系酸化
物超伝導膜の基本構成を示したもので、YBaO−Cu
Oの基本周期が繰返されている。本発明の薄膜素子にお
いては、この基本周期が保たれるように変調が行われ
る。
【0039】即ち第2図(B) ,(C) はこのa軸配向膜に
関する本発明の実施例で、第2図(B) の例は中間部にお
けるCuO層をCuMOで置換した構造で、このCuM
Oの間には変調部が形成される。また第2図(C) はY−
BaO層のYをY及びY以外の希土類元素Lで置換した
実施例を示したものである。
【0040】第3図(A) はc軸配向したBi2 Sr2
aCu2 2n+4+δ膜の基本構造を示したもので、Bi
O−SrO−CuO−CaO−CuO−SrO−BiO
の基本周期が繰返されている。
【0041】そして第3図(B) に示した本発明の薄膜素
子はCuの一部をCuMに置換した構造であり、CuM
O間に変調部が形成される。また第3図(C) に示した例
ではCaの一部がYで置換され、CaYOの間に変調部
が形成される。
【0042】尚、Tl−Ba−Ca−Cu−O系の酸化
物超伝導体の場合には、第3図(A)〜(C) においてBi
をTl,SrをBaとしたのと同様な構造とすれば良
い。
【0043】尚、以上の様々な元素の置換法は、必要で
あればこれらの2つ以上の方法を同時に組合わせるよう
にしても良い。例えばYBCO系超伝導体膜の場合を例
に採れば、第1図(B) と第1図(C) の置換法を同時に組
合わせることが挙げられる。
【0044】第5図はYBCO系超伝導体からなる薄膜
素子における従来のヘテロエピタキシャル成長例を示し
たもので、図においてBaOの間にヘテロ界面が形成さ
れる。
【0045】実施例1 酸素分圧3×10-4torrの雰囲気下において、SrTiO
3 (001)基板の面上に、電子ビーム蒸着と抵抗加熱によ
りYBCO系酸化物超伝導体膜を以下のように作製し
た。
【0046】即ち、各膜厚の制御を印加パワーと時間及
び水晶振動式膜厚モニターにより膜厚を検知しつつ、シ
ャッター開閉によりBaO層をまず一層分基板上に蒸着
し、次いでこの上にCuを一層分蒸着し、更にBaO,
Cu,Y2 3 ,Cu,BaOの順に順次蒸着を行い、
これを30回繰返すことにより、YBa2 Cu3 x の膜
を作製した。尚、基板温度は 700℃、各層の蒸着速度は
10A/ minとした。
【0047】その後、酸素分圧 100torrにて5時間保持
し、次いで50℃/ minで室温まで冷却した。
【0048】得られた薄膜は87Kでゼロ抵抗を示し、ま
たX線回析により良好なC軸配向膜となっていることが
判った。
【0049】次に上記と同じ方法でまず30格子分からな
るYBa2 Cu3 x を作製し、次にCuのかわりにC
0.5Cu 0.5を用いてこの上に同様な蒸着による成膜
を5周期分繰返し、YBa(Cu 0.5Co 0.53 x
を得た。
【0050】次に再びBaO、Y2 3 、Cuを用いて
20格子分の蒸着を繰返し、YBa2 Cu3 x を得た。
【0051】この膜を上記と同様に酸素分圧 100torrに
て5時間保持した後50℃/ minで室温まで冷却した。得
られた膜の膜面内の抵抗を測定した所、87Kでゼロ抵抗
となることが判った。
【0052】またX線回析により良好なC軸配向性も確
かめられた。これによりCoが両側の超伝導部に拡散せ
ず、良好な特性の薄膜素子が得られたことが判る。
【0053】実施例2 実施例1と同じ条件で、SrTiO3 (001)基板の面上
にYBa2 CuO7 ,YBa2 CuO7 のYを(Pr
0.5 0.5 )に変えた(Pr0.50.5 )Ba2 CuO
7 ,並びにYBa2 CuO7 を順次滞積して、本発明の
薄膜素子を得た。
【0054】この膜を実施例1に同じく酸素分圧 100to
rrにて5時間保持した後50℃/ minで室温まで冷却し、
得られた膜の膜面内の抵抗測定,並びにX線回析を行っ
たところ、実施例1と同様に特性の良好な薄膜素子であ
った。
【0055】
【発明の効果】以上のようにこの発明によれば、前記従
来技術のような問題がなく、作動温度が高くて良好な特
性の薄膜素子を得ることができる。
【0056】図面および図面の簡単な説明は原出願と同
一。
【図面の簡単な説明】
【図1】(A) はc軸配向を有するYBCO系の酸化物超
伝導体の基本構造を示した説明図、(B) 〜(D) は同じく
本発明の構造を示した説明図
【図2】(A) はa軸配向を有するYBCO系の酸化物超
伝導体の基本構造を示した説明図、(B) 〜(C) は同じく
本発明の構造を示した説明図
【図3】(A) はBi2 Sr2 CaCu2 2n+4+δの基
本構造を示した説明図、(B) はこの構造でCuをCuM
に置換した例を示した説明図、(C) は同じくCaをCa
Yで置換した例を示した説明図
【図4】本発明の薄膜素子の積層構造の一例の説明図
【図5】YBCO系の酸化物超伝導体における従来のヘ
テロエピタキシャル成長例を示した説明図である。
【符号の説明】
S1 ,S2 …超伝導体層 D…変調層

Claims (9)

    【特許請求の範囲】
  1. 【請求項1】 基板上に酸化物超伝導体膜を形成してな
    る薄膜素子であって、該酸化物超伝導体膜は、酸化物超
    伝導体を構成する原子の少なくとも一つからなる原子の
    単層が基板に対して実質的に垂直方向に酸化物超伝導体
    の格子構造に従って周期性をもって積層されたものであ
    り、且つその中間部において酸化物超伝導体構成原子の
    少なくとも一部が他の元素に置換されて非超伝導体中間
    層が形成されており、酸化物超伝導体の格子構造に従う
    積層の周期性が超伝導体層と非超伝導体中間層との間の
    界面を横切って維持されていることを特徴とする薄膜素
    子。
  2. 【請求項2】 酸化物超伝導体を構成する原子の少なく
    とも一つからなる原子の層が順次蒸着することにより形
    成されたことを特徴とする請求項1記載の薄膜素子。
  3. 【請求項3】 酸化物超伝導体膜がCu−O層を含む酸
    化物超伝導体膜であることを特徴とする請求項1記載の
    薄膜素子。
  4. 【請求項4】 Cu−O層を含む酸化物超伝導体膜がL
    2 Cu3 7-δ(L:希土類元素,B:アルカリ土金
    属),TlBa2-n Can-1+x Cun 2n+1(n:1,
    2,3)またはBi2 Srx Cay Cun 2n+4(n:
    1,2,3、x+y≒n+1)であることを特徴とする
    請求項3記載の薄膜素子。
  5. 【請求項5】 酸化物超伝導体膜がCu−O層を含む酸
    化物超伝導体膜であり、酸化物超伝導体膜の中間部にお
    いて、Cuの一部または全部が他の元素で置換されてい
    ることを特徴とする請求項1記載の薄膜素子。
  6. 【請求項6】 他の元素が、周期表II族b亜族元素,周
    期表III 族b亜族元素あるいはCu以外の遷移元素であ
    ることを特徴とする請求項5記載の薄膜素子。
  7. 【請求項7】 酸化物超伝導体膜がLB2 Cu3 7-δ
    (L:希土類元素、B:アルカリ土金属)からなり、酸
    化物超伝導体膜の中間部においてLの一部または全部が
    他の希土類元素またはアルカリ土金属元素で置換されて
    いることを特徴とする請求項1記載の薄膜素子。
  8. 【請求項8】 酸化物超伝導体膜がTlBa2-n Ca
    n-1+x Cun 2n+1(n:1,2,3)またはBi2
    x Cay Cun 2n+4(n:1,2,3、x+y≒n
    +1)からなり、酸化物超伝導体膜の中間部においてC
    aの一部または全部が他のアルカリ土金属元素,または
    3価の希土類元素で置換されていることを特徴とする請
    求項1記載の薄膜素子。
  9. 【請求項9】 酸化物超伝導体膜の膜厚方向に電流を流
    すジョセフソン素子であることを特徴とする請求項1記
    載の薄膜素子。
JP3137754A 1990-06-11 1991-06-10 薄膜素子 Pending JPH0555645A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137754A JPH0555645A (ja) 1990-06-11 1991-06-10 薄膜素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-152178 1990-06-11
JP15217890 1990-06-11
JP3137754A JPH0555645A (ja) 1990-06-11 1991-06-10 薄膜素子

Publications (1)

Publication Number Publication Date
JPH0555645A true JPH0555645A (ja) 1993-03-05

Family

ID=15534757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137754A Pending JPH0555645A (ja) 1990-06-11 1991-06-10 薄膜素子

Country Status (4)

Country Link
US (1) US5422338A (ja)
EP (1) EP0461592B1 (ja)
JP (1) JPH0555645A (ja)
DE (1) DE69121792T2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2078540A1 (en) * 1991-09-17 1993-03-18 So Tanaka Superconducting thin film formed of oxide superconductor material, superconducting device utilizing the superconducting thin film
EP0579018B1 (de) * 1992-07-02 1998-09-30 Balzers Aktiengesellschaft Verfahren zur Herstellung einer Metalloxidschicht, Vakuumbehandlungsanlage hierfür sowie mit mindestens einer Metalloxidschicht beschichteter Teil
JPH08288563A (ja) * 1995-04-17 1996-11-01 Sumitomo Electric Ind Ltd 超電導電界効果型素子およびその作製方法
JP3579690B2 (ja) * 2000-09-01 2004-10-20 独立行政法人 科学技術振興機構 複合酸化物系薄膜の作製方法及びその装置並びにそれにより作製した複合酸化物系薄膜。
WO2013114588A1 (ja) * 2012-02-01 2013-08-08 古河電気工業株式会社 超電導線材の製造方法及び超電導線材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160273A (ja) * 1986-12-23 1988-07-04 Fujitsu Ltd 高速半導体装置
US5034374A (en) * 1988-06-13 1991-07-23 Fujitsu Limited Method of producing high temperature superconductor Josephson element
JPH0259403A (ja) * 1988-08-26 1990-02-28 Hitachi Ltd 酸化物超電導材料の製造法とイオンビーム・スパツタ装置及び電子素子
JPH0283986A (ja) * 1988-09-20 1990-03-26 Fujitsu Ltd 超伝導ダイオード
JPH02177381A (ja) * 1988-09-22 1990-07-10 Semiconductor Energy Lab Co Ltd 超伝導体のトンネル接合素子
JPH02114576A (ja) * 1988-10-24 1990-04-26 Sharp Corp 超電導電磁波検出素子
JPH0368180A (ja) * 1989-08-07 1991-03-25 Nippon Telegr & Teleph Corp <Ntt> 超伝導接合素子
JPH03151231A (ja) * 1989-10-13 1991-06-27 Internatl Business Mach Corp <Ibm> 多層ひずみ格子銅酸化物ペロブスカイト構造体
JPH03166776A (ja) * 1989-11-27 1991-07-18 Sumitomo Electric Ind Ltd トンネル接合素子とその作製方法
JPH04285012A (ja) * 1991-03-15 1992-10-09 Fujitsu Ltd 酸化物超伝導体薄膜の形成方法

Also Published As

Publication number Publication date
DE69121792D1 (de) 1996-10-10
EP0461592A3 (en) 1992-04-08
DE69121792T2 (de) 1997-02-13
EP0461592B1 (en) 1996-09-04
US5422338A (en) 1995-06-06
EP0461592A2 (en) 1991-12-18

Similar Documents

Publication Publication Date Title
US5106823A (en) Josephson junctions made with thin superconductive layers
EP0327493B1 (en) Epitaxial arrangement of high tc superconductors on silicon
US6157044A (en) Tunnel junction type josephson device
US20090197770A1 (en) Bismuth based oxide superconductor thin films and method of manufacturing the same
US5428005A (en) Superconducting thin film of compound oxide and a process of preparing the same
JPH0555645A (ja) 薄膜素子
JPH03259576A (ja) ジョセフソン接合
US5354734A (en) Method for manufacturing an artificial grain boundary type Josephson junction device
US5296458A (en) Epitaxy of high Tc superconducting films on (001) silicon surface
US5629267A (en) Superconducting element having an intermediate layer with multiple fluorite blocks
EP0494830B1 (en) Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
Uchiyama et al. Preparation of superconductive Y-Ba-Cu-O/Bi-Sr-Ca-Cu-O heteroepitaxial bilayer films by Nd: YAG laser ablation
US5234901A (en) Process for depositing a different thin film on an oxide superconductor
JP2517085B2 (ja) 超電導薄膜
JP2797186B2 (ja) 超電導体層を有する半導体基板
EP0459906A2 (en) Process for preparing superconducting junction of oxide superconductor
JPH06302872A (ja) 酸化物超電導薄膜上に上層の薄膜を積層する方法
JP2741277B2 (ja) 薄膜超電導体およびその製造方法
US5420103A (en) A-axis superconductor on a yttrium oxide film
JPH0297073A (ja) トンネル型ジョセフソン接合素子
Chrisey Progress in the first ten years of HTS film growth
US6699819B2 (en) Mercury-containing copper oxide superconductor
JP2931779B2 (ja) 超電導素子
JP2871892B2 (ja) トンネル型ジョセフソン素子
JP2663856B2 (ja) エッジ型ジョセフソン接合を用いる超伝導回路およびその製造方法