JPH0551648A - Manufacture of electric resistance-welded tube - Google Patents

Manufacture of electric resistance-welded tube

Info

Publication number
JPH0551648A
JPH0551648A JP25653591A JP25653591A JPH0551648A JP H0551648 A JPH0551648 A JP H0551648A JP 25653591 A JP25653591 A JP 25653591A JP 25653591 A JP25653591 A JP 25653591A JP H0551648 A JPH0551648 A JP H0551648A
Authority
JP
Japan
Prior art keywords
cooling
weight
less
electric resistance
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25653591A
Other languages
Japanese (ja)
Inventor
Motoaki Itaya
元晶 板谷
Asao Narimoto
朝雄 成本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25653591A priority Critical patent/JPH0551648A/en
Publication of JPH0551648A publication Critical patent/JPH0551648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture an electric resistance-welded tube excellent in low temp. toughness in a welding zone by continuously forming a steel strip, executing electric resistance seam welding, heating the welding zone to a specified temp., thereafter stepwise executing specified forced cooling from an outer surface. CONSTITUTION:A continuously formed steel strip 1 is welded by a welding electrode 3 and a squeeze roll 4. As for the compsn. of the steel strip 1, the one, e.g. contg., by weight, 0.01 to 0.10% C, <=0.5% Si, 0.5 to 2.0% Mn, <=0.030% P, <=0.008% S, <=0.01% N, <=0.06% Al and one or more kinds from among <=0.1% Nb, <=0.1% V and <=0.05% Ti are preferably used. The welding zone 2 of the electric resistance-welded tube 11 obtd. by it is heated to the AC3 point to 1050 deg.C by induction heating devices 5 and 6 and is subjected to forced cooling from the outer surface by a water cooled device 9. At this time, the cooling is executed at >=10 deg.C/sec as well as the cooling rate of the precipitation of ferrite from 800 to (500 to 400 deg.C) outside surface temp. Thereafter, the cooling is strengthened, and it is cooled to <=200 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接部の低温靭性が優
れた高張力電縫鋼管の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength electric resistance welded steel pipe having excellent low temperature toughness at a welded portion.

【0002】[0002]

【従来の技術】電縫鋼管の溶接部の靭性を向上させるた
めに、従来一般的に行われていたノルマライジング処理
に代えて、焼鈍後に急冷する方法が例えば特公昭57−
8848号公報あるいは特開昭59−35629号公報
に開示されている。また焼入れ焼戻しをする方法が例え
ば特開昭59−43827号公報あるいは特開昭59−
153839号公報等に開示されている。さらに焼入れ
に続いて2相域加熱する方法が特開平3−31423号
公報に、焼入れに続いて2相域焼入れした後焼戻しする
方法が特開平2−305923号公報に開示されてい
る。これらの熱処理はいずれも、基本的には焼入れによ
る結晶粒の微細化を狙ったものであり、微細なフェライ
ト組織を得ることによって靭性の向上を図るものであ
る。このような熱処理方法に対して従来技術では加熱温
度、冷却開始温度及び冷却速度によって熱処理の条件の
みが規定されている。加熱温度に関しては一般的にミル
ラインに直列に配置した誘導加熱装置を用いるためその
出力調整により、また冷却開始温度に関しては冷却開始
位置の調整により容易に実現可能である。しかしながら
焼入れ時の冷却速度に関しては、発明者らの検討によれ
ば、実際的な冷却方法としては管外面側一方向からの冷
却になることから、外面側と内面側で冷却速度の差が生
じてしまい板厚方向に均一な冷却速度は得られず、従っ
て目標とする微細なフェライト組織が板厚方向で均一に
得られないことが明らかになった。
2. Description of the Related Art In order to improve the toughness of a welded portion of an electric resistance welded steel pipe, a method of quenching after annealing is used instead of the normalizing treatment which has been generally performed conventionally.
It is disclosed in JP-A-8848 or JP-A-59-35629. A method of quenching and tempering is disclosed, for example, in JP-A-59-43827 or JP-A-59-
It is disclosed in Japanese Patent No. 153839. Further, a method of heating the two-phase region subsequent to the quenching is disclosed in Japanese Patent Application Laid-Open No. 3-31423, and a method of quenching the two-phase region followed by tempering is disclosed in the Japanese Patent Application Laid-Open No. 2-305923. All of these heat treatments are basically aimed at refining crystal grains by quenching, and are intended to improve toughness by obtaining a fine ferrite structure. With respect to such a heat treatment method, in the prior art, only the heat treatment conditions are defined by the heating temperature, the cooling start temperature and the cooling rate. Since the heating temperature is generally an induction heating device arranged in series with the mill line, it can be easily realized by adjusting its output, and the cooling start temperature by adjusting the cooling start position. However, regarding the cooling rate at the time of quenching, according to the study of the inventors, since the cooling is performed from one direction on the outer surface side of the pipe as a practical cooling method, a difference in cooling rate occurs between the outer surface side and the inner surface side. It was found that a uniform cooling rate cannot be obtained in the plate thickness direction, and therefore the target fine ferrite structure cannot be obtained uniformly in the plate thickness direction.

【0003】従来技術では、たとえ冷却速度を呈示して
いたとしても、その具体的な冷却方法が示されていな
い。一般的には通常の冷却方法では板厚方向に均一な冷
却速度は得られない。特に板厚が10mmを越える場
合、管内面側の冷却速度を確保するため冷却水量を多く
すれば管外面側の冷却速度が過大となり、管外面側にベ
ーナイト組織が生じて靭性が劣化する。一方管外面側の
冷却速度を抑えるため冷却水量を絞れば、管内面側の冷
却速度が過小となり、組織の微細化が十分に行われず、
やはり靭性が劣化する。このように通常の冷却方法では
板厚方向に冷却速度の差があり、内外面で組織の不均一
が生じ、その結果靭性の劣化を招くという悪影響があ
る。
The prior art does not show a specific cooling method, even if the cooling rate is presented. Generally, a normal cooling method cannot obtain a uniform cooling rate in the plate thickness direction. In particular, when the plate thickness exceeds 10 mm, if the cooling water amount is increased in order to secure the cooling rate on the inner surface side of the tube, the cooling rate on the outer surface side of the tube becomes excessively high, and a bainite structure is generated on the outer surface side of the tube to deteriorate the toughness. On the other hand, if the amount of cooling water is reduced in order to suppress the cooling rate on the outer surface of the tube, the cooling rate on the inner surface of the tube will be too small, and the tissue will not be sufficiently refined.
After all, toughness deteriorates. As described above, in the normal cooling method, there is a difference in the cooling rate in the plate thickness direction, which causes nonuniformity of the structure on the inner and outer surfaces, resulting in deterioration of toughness.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは上記の点
に関して、種々の板厚の電縫管について実験を行い、冷
却速度の均一化について検討を加えた結果、次の(1)
〜(3)の知見を得るに至った。 (1) 管内面側は主に管外面側の温度が下がることに
より熱伝導によって冷却されるため、管内面側では冷却
速度が小さく、また管外面側とは冷却に時間差がある。
With respect to the above points, the present inventors have conducted experiments on electric resistance welded pipes of various plate thicknesses and studied the equalization of the cooling rate. As a result, the following (1)
The knowledge of (3) was obtained. (1) The inner surface of the tube is cooled by heat conduction mainly due to the temperature decrease on the outer surface of the tube. Therefore, the cooling rate is low on the inner surface of the tube and there is a time difference in cooling from the outer surface of the tube.

【0005】(2) Ar1 変態点付近の500℃より
低い温度域であれば冷却速度が組織に及ぼす影響はほと
んどない。 (3) 上記(1)のことから管外面側が500℃の時
点でも、肉厚の中央や、管内面側はそれ以上の温度にな
っており、ここで冷却水量を増やして外面温度を速く下
げればその分、肉厚の中央部や管内面側は冷却速度が大
きくなり、管外面側の冷却速度に近づく。
(2) In the temperature range below 500 ° C. near the Ar 1 transformation point, the cooling rate has almost no effect on the structure. (3) From the above (1), even at the temperature of 500 ° C on the outer surface of the pipe, the center of the wall thickness and the inner surface of the pipe are at temperatures higher than that, and the amount of cooling water can be increased here to quickly lower the outer surface temperature. As a result, the cooling rate increases at the central portion of the wall thickness and on the pipe inner surface side, and approaches the cooling rate on the pipe outer surface side.

【0006】本発明は上記知見に基いて完成されたもの
で、電縫管の溶接部の冷却過程に改善を加えることによ
って、溶接部の肉厚方向の組織を適正化し、溶接部の靭
性を向上させることを目的とする。
The present invention has been completed based on the above findings. By improving the cooling process of the welded portion of the electric resistance welded pipe, the structure in the thickness direction of the welded portion is optimized and the toughness of the welded portion is improved. The purpose is to improve.

【0007】[0007]

【課題を解決するための手段】本発明は上記知見に基づ
いてなされたものであって、次の技術手段から構成され
ている。すなわち、連続的に成形した帯鋼を電縫溶接
し、これに引き続いて溶接部をAc3 変態点以上、10
50℃以下に加熱し、外表面から強制冷却する過程を含
む熱処理において、前記冷却を溶接部外表面温度が80
0℃から500℃〜400℃までを10℃/sec以上
かつフェライトが析出する範囲の冷却速度で冷却し、該
溶接部外表面温度が500℃〜400℃に到達した時点
で冷却を強化して外表面が200℃以下になるまで冷却
することを特徴とする電縫鋼管の製造方法である。
The present invention has been made on the basis of the above findings, and comprises the following technical means. That is, continuously formed band steel is electric resistance welded, and subsequently, the welded portion is made to have an Ac 3 transformation point or higher, 10 or higher.
In a heat treatment including a process of heating to 50 ° C. or less and forcibly cooling from the outer surface, the cooling is performed at a weld outer surface temperature of 80.
Cooling from 0 ° C to 500 ° C to 400 ° C at a cooling rate of 10 ° C / sec or more and a range in which ferrite precipitates, and strengthen the cooling when the outer surface temperature of the weld reaches 500 ° C to 400 ° C. A method for producing an electric resistance welded steel pipe, which comprises cooling the outer surface to 200 ° C. or lower.

【0008】この場合に、上記鋼帯の化学組成が、 C:0.01〜0.10重量%、 Si:0.5重量%以下、 Mn:0.5〜2.0重量%、 P:0.030重量%以下、 S:0.008重量%以下、 N:0.01重量%以下、 Al:0.06重量%以下 を含み、かつ Nb:0.1重量%以下、 V:0.1重量%以下、 Ti:0.05重量%以下 のうちの一種以上を含有し、残部Fe及び不可避的不純
物よりなる鋼帯とすれば、低温靭性の優れた高張力電縫
鋼管を製造することができ、さらに上記鋼帯の化学組成
がさらに Cr:0.1〜1.0重量%、 Mo:0.1〜1.0重量%、 Cu:0.1〜0.6重量%、 Ni:0.1〜0.6重量% のうちの一種以上、又はこれらの代りに、あるいはこれ
らにさらに加えて、 Ca:0.0005〜0.0050重量% を含有すると一層好ましい。
In this case, the chemical composition of the steel strip is C: 0.01 to 0.10% by weight, Si: 0.5% by weight or less, Mn: 0.5 to 2.0% by weight, P: 0.030 wt% or less, S: 0.008 wt% or less, N: 0.01 wt% or less, Al: 0.06 wt% or less, and Nb: 0.1 wt% or less, V: 0. 1% by weight or less, Ti: 0.05% by weight or less, a steel strip containing at least one of Fe and unavoidable impurities, and producing a high-strength electric resistance welded steel pipe excellent in low-temperature toughness. In addition, the chemical composition of the steel strip is as follows: Cr: 0.1 to 1.0% by weight, Mo: 0.1 to 1.0% by weight, Cu: 0.1 to 0.6% by weight, Ni: One or more of 0.1 to 0.6% by weight, or instead of these or in addition thereto, Ca: 0 More preferably containing from 0,005 to 0.0050 wt%.

【0009】また熱処理としては上記200℃以下まで
の冷却の後に、溶接部を400℃以上800℃以下に再
加熱して焼戻すか、又は溶接部をAc1 点以上(Ac3
点−50℃)以下に再加熱し、650℃から200℃の
温度範囲内まで冷却速度10℃/sec以上で冷却する
か又は、溶接部をAc1 点以上(Ac3 点−50℃)以
下に再加熱し、200℃以下まで冷却速度10℃/se
c以上で冷却し、その後400℃以上800℃以下に再
再加熱して焼戻す処理を付加すると一層好ましい低温靭
性の優れた高張力電縫鋼管を製造することができる。
As the heat treatment, after cooling to 200 ° C. or less, the welded portion is reheated to 400 ° C. or more and 800 ° C. or less to be tempered, or the welded portion is Ac 1 point or more (Ac 3
Reheat to less than -50 ° C) and cool it within a temperature range of 650 ° C to 200 ° C at a cooling rate of 10 ° C / sec or more, or weld the Ac 1 point or more (Ac 3 point-50 ° C) or less. Reheated to 200 ℃, cooling rate 10 ℃ / se
A high-strength electric resistance welded steel pipe having excellent low-temperature toughness can be manufactured by cooling at c or higher, and then reheating to 400 ° C. or higher and 800 ° C. or lower and tempering.

【0010】本発明において「冷却を強化する」とは、
抜熱速度を高めることをいい、冷却水などの冷却媒体量
を増加することを指称する。
In the present invention, "intensify cooling" means
It means increasing the heat removal rate, and indicates increasing the amount of cooling medium such as cooling water.

【0011】[0011]

【作用】以下この発明について作用と共に詳細に説明す
る。本発明は電縫管の溶接部を焼入れすることを含む熱
処理において、焼入れの際の冷却を2段に分け、前段を
緩冷、後段を急冷とする制御冷却を行い、板厚方向の冷
却速度を均一化することにより、溶接部低温靭性の向上
を達成するものである。
The operation of the present invention will be described in detail below. The present invention, in a heat treatment including quenching a welded portion of an electric resistance welded pipe, cooling during quenching is divided into two stages, control cooling is performed such that the first stage is slow cooling and the second stage is rapid cooling. By homogenizing the, the low temperature toughness of the welded part is improved.

【0012】以下この発明について詳細に説明する。ま
ず素材成分の限定理由について説明する。Cは強度を確
保するための元素であるが、含有量が増えると靭性が劣
化するため0.01〜0.10重量%とした。Siも強
度確保のための必要元素であるが、0.5重量%を超え
ると溶接部にペネトレータが発生しやすくなり靭性が劣
化するため0.5重量%以下規定とした。
The present invention will be described in detail below. First, the reasons for limiting the material components will be described. C is an element for ensuring strength, but if the content increases, the toughness deteriorates, so 0.01 to 0.10% by weight was set. Si is also a necessary element for securing strength, but if it exceeds 0.5% by weight, penetrators are easily generated in the welded portion and the toughness deteriorates, so 0.5% by weight or less is specified.

【0013】Mnも強度を保つための必要元素である
が、0.5重量%未満では必要強度が得られず、2.0
重量%を超えるとSiと同様に溶接部にペネトレータが
発生しやすくなるため0.5〜2.0重量%とした。P
は偏析を生じて靭性を劣化させる元素なので低い方が望
ましく、0.030重量%以下とした。さらに耐サワー
性を考慮する場合には、Pは0.010重量%以下が望
ましい。
Mn is also a necessary element for maintaining the strength, but if it is less than 0.5% by weight, the necessary strength cannot be obtained, and 2.0
If it exceeds 5% by weight, a penetrator is likely to be generated in the welded portion like Si, so the content is set to 0.5 to 2.0% by weight. P
Is an element that causes segregation and deteriorates toughness, so a lower content is desirable and the content was made 0.030% by weight or less. Further, in consideration of sour resistance, P is preferably 0.010% by weight or less.

【0014】SはMnSの介在物が靭性に悪影響を及ぼ
すため低い方が望ましく、0.008重量%以下とし
た。さらにMnSはHICの起点となるので、Sは耐サ
ワー性確保の点からは極力低く押さえて、0.003重
量%以下が望ましい。Nはサイジング工程で加工を受け
た際、歪時効による靭性劣化の原因となるため低いほう
がよく、0.01重量%以下とした。
Since MnS inclusions adversely affect the toughness, it is desirable that the content of S be as low as 0.008% by weight or less. Further, since MnS becomes a starting point of HIC, S is preferably kept as low as possible from the viewpoint of ensuring sour resistance, and is preferably 0.003% by weight or less. When N is processed in the sizing step, it causes toughness deterioration due to strain aging, so N is preferably low and is set to 0.01% by weight or less.

【0015】AlはAlNとしてオーステナイト粒を細
粒化する効果が大きいが、0.06重量%を超えると介
在物が増加し欠陥の原因となるため0.06重量%以下
とした。Nb,V,Tiについては、強度確保及び結晶
粒微細化のために必要な元素であり、Nb,Vは0.1
重量%以下、Tiは0.05重量%以下とした。
Al has a great effect as AlN for refining austenite grains, but if it exceeds 0.06% by weight, inclusions increase and cause defects, so the content was made 0.06% by weight or less. Nb, V and Ti are elements necessary for securing strength and refining crystal grains, and Nb and V are 0.1
Weight% or less and Ti were 0.05 weight% or less.

【0016】Cr,Mo,Cu,Niについては強度、
靭性あるいは耐食性を改善する元素であり、それぞれの
成分の限定理由は以下の通りである。Cr,Moは強度
の向上に効果があるが、0.10重量%未満では効果が
得られず、1.0重量%を超えると靭性に悪影響を与え
るので0.10〜1.0重量%とした。
For Cr, Mo, Cu and Ni, strength,
It is an element that improves toughness or corrosion resistance, and the reasons for limiting each component are as follows. Cr and Mo are effective in improving the strength, but if less than 0.10% by weight, no effect is obtained, and if over 1.0% by weight, the toughness is adversely affected. did.

【0017】Cuは強度及び耐食性の向上に効果がある
が、0.1重量%未満ではその効果が少なく、0.6重
量%を超えると熱間加工性を損なうので0.1〜0.6
重量%とした。Niは強度、靭性の向上ならびに耐食性
の向上に効果があり、またCuによる熱間加工性の低下
を防ぐためにも必要な元素であるが、0.1重量%未満
では効果がなく、0.6重量%を超えると硫化物応力腐
食が発生しやすくなるため0.1〜0.6重量%とし
た。
Cu has the effect of improving strength and corrosion resistance, but if it is less than 0.1% by weight, its effect is small, and if it exceeds 0.6% by weight, hot workability is impaired.
It was made into the weight%. Ni is an element that is effective in improving strength and toughness and corrosion resistance, and is also necessary for preventing the deterioration of hot workability due to Cu. If the content exceeds 10% by weight, sulfide stress corrosion tends to occur, so the content was set to 0.1 to 0.6% by weight.

【0018】Caは硫化物系介在物を球状化し、靭性及
び耐HIC性を向上させる元素であり、その効果を得る
ためには0.0005重量%以上必要であるが、0.0
050重量%を超えるとCa系の介在物が増加し、靭性
及び耐HIC性を低下させるため0.0005〜0.0
050重量%とした。次に、熱処理条件について説明す
る。
Ca is an element that makes the sulfide-based inclusions spherical and improves toughness and HIC resistance. To obtain the effect, 0.0005% by weight or more is necessary, but 0.0
If it exceeds 050% by weight, Ca-based inclusions increase and the toughness and HIC resistance are lowered, so 0.0005-0.0
It was 050% by weight. Next, heat treatment conditions will be described.

【0019】加熱温度をAc3 以上、1050℃以下の
範囲に限定したのは、電縫溶接直後の靭性の劣化した急
冷組織を消去するためAc3 変態点以上に加熱してオー
ステナイト組織にする必要があるが、誘導加熱などによ
る外面側一方向からの急速加熱の場合、加熱温度がAc3
未満では内面側まで十分焼きならしができず、一方加熱
温度が1050℃を超えると結晶粒が粗大化し靭性が劣
化するためである。
The heating temperature is limited to a range from Ac 3 to 1050 ° C. in order to eliminate the quenched structure with deteriorated toughness immediately after electric resistance welding and to heat it to the Ac 3 transformation point or higher to form an austenite structure. However, in the case of rapid heating from one direction on the outer surface due to induction heating, the heating temperature is A c3
This is because if the temperature is less than the above range, normalizing cannot be sufficiently performed to the inner surface side, while if the heating temperature exceeds 1050 ° C., the crystal grains become coarse and the toughness deteriorates.

【0020】その後の冷却条件について、Ac3変態点以
上の温度から冷却を開始し、溶接部外表面温度が800
℃から500〜400℃までを、10℃/sec以上か
つフェライトが析出する範囲の冷却速度で冷却すること
としたのは、冷却開始温度がAc3変態点より低くなると
組織の整流均一化が行われず急冷の効果がなくなるから
であり、また、冷却速度が10℃/secより遅いと結
晶粒が粗大化してしまい、靭性が劣化するためであり、
また冷却速度が例えば図8に示すようなCCT曲線(連
続冷却変態曲線)で決るフェライトが析出する範囲の冷
却速度を越えると外面側がベーナイトあるいはマルテン
サイトの脆化組織となり好ましくないためである。
With respect to the subsequent cooling conditions, cooling is started from a temperature above the A c3 transformation point, and the outer surface temperature of the weld is 800
It was decided to cool from 500 to 400 ° C. at a cooling rate of 10 ° C./sec or more and a range in which ferrite is precipitated, because the rectification and homogenization of the structure is performed when the cooling start temperature becomes lower than the Ac 3 transformation point. If the cooling rate is slower than 10 ° C./sec, the crystal grains become coarse and the toughness deteriorates.
Also, if the cooling rate exceeds the cooling rate in the range where ferrite precipitates, which is determined by the CCT curve (continuous cooling transformation curve) as shown in FIG. 8, for example, the outer surface side becomes unfavorably a brittle structure of bainite or martensite.

【0021】このような冷却を外面側が500〜400
℃に到達するまで実施するのは、この温度になると、管
の外面側が変態をほぼ完了するからである。500℃を
越える温度で冷却を強化すると、脆化組織が混在し靭性
が劣化する。一方400℃未満まで冷却すると管の外面
側以外の部分も変態を完了してしまいその後冷却を強化
しても細粒化の効果がなくなる。
Such cooling is performed on the outer surface side by 500 to 400.
The process is carried out until the temperature reaches 0 ° C., because at this temperature, the transformation of the outer surface side of the pipe is almost completed. If the cooling is strengthened at a temperature exceeding 500 ° C, the embrittlement structure is mixed and the toughness deteriorates. On the other hand, if it is cooled to less than 400 ° C., the transformation of parts other than the outer surface side of the tube is completed, and even if the cooling is strengthened thereafter, the effect of grain refining is lost.

【0022】その後、冷却を強化した状態で管外表面側
が200℃以下になるまで冷却するのは、板厚方向の内
外面温度差を考慮した上で内面側を十分に変態完了させ
るためである。次に200℃以下まで冷却した後に際加
熱焼入れ焼戻しする場合について説明する。
Thereafter, the cooling is strengthened until the outer surface of the pipe is cooled down to 200 ° C. or lower in order to sufficiently complete the transformation of the inner surface in consideration of the temperature difference between the inner surface and the outer surface in the plate thickness direction. .. Next, a case where the material is cooled to 200 ° C. or lower and then hot-quenched and tempered will be described.

【0023】再加熱温度を400〜800℃の範囲に限
定したのは、400℃未満では焼戻し効果が得られず、
一方800℃を超えると結晶粒が粗大化して直前の加熱
急冷処理によって得た微細組織が消失し靭性が劣化する
ためである。また、焼入れに続いて2相域加熱する場
合、再加熱温度をAc1 点以上、(Ac3 点−50℃)
以下の範囲に限定したのは、上記の処理によって得られ
た微細フェライト組織をさらに微細化するべく、オース
テナイト・フェライト2相域に加熱するためである。そ
の後の冷却条件で、650℃から200℃の温度範囲内
までを10℃/sec以上で冷却しその後空冷すること
にしたのは、650℃を超える温度で冷却を停止すると
組織が粗大化して靭性が劣化し、一方200℃未満まで
該冷却を実施するとマルテンサイト等の脆化組織が生成
して靭性が劣化するためであり、またこの冷却速度が1
0℃未満の場合、十分に微細な組織が得られないためで
ある。
The reason for limiting the reheating temperature to the range of 400 to 800 ° C. is that the tempering effect cannot be obtained below 400 ° C.
On the other hand, if the temperature exceeds 800 ° C., the crystal grains become coarse and the fine structure obtained by the immediately preceding heating and quenching treatment disappears, and the toughness deteriorates. Also, when heating in the two-phase region following quenching, the reheating temperature is Ac 1 point or higher (Ac 3 points-50 ° C).
The reason for limiting the range to the following is to heat the austenite-ferrite two-phase region in order to further refine the fine ferrite structure obtained by the above treatment. Under the subsequent cooling conditions, the temperature range of 650 ° C to 200 ° C was cooled at 10 ° C / sec or more and then air-cooled. The reason is that when cooling is stopped at a temperature higher than 650 ° C, the structure becomes coarse and the toughness increases. On the other hand, when the cooling is carried out to less than 200 ° C., an embrittlement structure such as martensite is generated and the toughness deteriorates, and the cooling rate is 1
This is because if the temperature is lower than 0 ° C, a sufficiently fine structure cannot be obtained.

【0024】さらに、焼入れに続いて2相焼入れした後
焼戻しする場合、再加熱温度をAc 1 点以上、(Ac3
点−50℃)以下の範囲に限定したのは、上記の処理に
よって得られた微細フェライト組織をさらに微細化する
べく、オーステナイト・フェライト2相域に加熱するた
めである。その後の冷却条件で、200℃以下の温度ま
でを10℃/sec以上で冷却することにしたのは、2
00℃を超える温度で該冷却を停止すると組織が十分細
粒化されず靭性が劣化するためであり、また該冷却の冷
却速度が10℃未満の場合、十分に微細な組織が得られ
ないためである。さらに、再再加熱温度を400〜80
0℃の範囲に限定したのは、400℃未満では焼戻し効
果が得られず、一方800℃を超えるとフェライト結晶
粒が粗大化して靭性が劣化するためである。
After further quenching, followed by two-phase quenching
When tempering, set the reheating temperature to Ac 1 Above the point, (Ac3 
The point below -50 ° C) is limited to the above treatment.
Further refine the obtained fine ferrite structure
In order to heat the austenite-ferrite two-phase region
It is. Under subsequent cooling conditions, temperatures up to 200 ° C
It was decided that the cooling at 10 ℃ / sec or more is 2
If the cooling is stopped at a temperature above 00 ° C, the tissue will become fine enough.
This is because the toughness deteriorates without being granulated.
If the rejection rate is less than 10 ° C, a sufficiently fine structure can be obtained.
Because there is no. Furthermore, the reheating temperature is set to 400 to 80.
The tempering effect is limited to less than 400 ° C in the range of 0 ° C.
No fruit is obtained, while ferrite crystals are produced when the temperature exceeds 800 ° C.
This is because the grains become coarse and the toughness deteriorates.

【0025】[0025]

【実施例】本発明を実施する電縫管製造設備の概略を図
1、図2に示す。連続的に成形された鋼帯1のエッジを
溶接電極3で加熱し、スクイズロール4で加圧、接合
し、電縫溶接部2をもつ電縫管11を製造する。この電
縫溶接部2を誘導加熱装置5,6によって所定温度まで
加熱した後、水冷装置9により外面側から所定の方法で
所定温度まで冷却する。さらに、その後焼入れ焼戻しを
施す場合は、図1の装置を用い誘導加熱装置7で再加熱
し、焼戻し処理を施す。また焼入れに続いて2相域加熱
する場合は、誘導加熱装置7で再加熱し、水冷装置10
で冷却する。さらに、焼入れに続いて2相域焼入れした
後焼戻しする場合は、誘導加熱装置7で再加熱し、水冷
装置10で冷却し、その後再び誘導加熱装置8で加熱し
て焼戻し処理を施す。
EXAMPLE An outline of an electric resistance welded pipe manufacturing facility for carrying out the present invention is shown in FIGS. The edge of the continuously formed steel strip 1 is heated by the welding electrode 3, pressed and joined by the squeeze roll 4, and the electric resistance welded pipe 11 having the electric resistance welded portion 2 is manufactured. After the electric resistance welded portion 2 is heated to a predetermined temperature by the induction heating devices 5 and 6, it is cooled from the outer surface side to a predetermined temperature by a predetermined method by the water cooling device 9. Furthermore, when quenching and tempering is applied thereafter, the induction heating device 7 is used to reheat the device of FIG. 1 to perform tempering. When heating in the two-phase region following quenching, the induction heating device 7 reheats the water and the water cooling device 10
Cool with. Further, when quenching is performed after quenching in the two-phase region, the material is reheated by the induction heating device 7, cooled by the water cooling device 10, and then heated again by the induction heating device 8 to perform tempering treatment.

【0026】次に本発明の実施例を板厚12.7mmの
場合について説明する。図4に一例として水量密度11
00リットル/min・m2 で一定の場合の管内外面の
冷却曲線を示した。この場合管外面の冷却速度は125
℃/sec、管内面の冷却速度は30℃/secで、管
外面の冷却速度はフェライトが析出する限界冷却速度を
越えており、また管の内外面の冷却速度の差が95℃/
secと非常に大きい。
Next, an embodiment of the present invention will be described for the case where the plate thickness is 12.7 mm. As an example, in FIG.
The cooling curves of the inner and outer surfaces of the tube when the rate was constant at 00 liter / min · m 2 are shown. In this case, the cooling rate of the outer surface of the pipe is 125
C./sec, the cooling rate on the inner surface of the tube was 30.degree. C./sec, the cooling rate on the outer surface of the tube exceeded the critical cooling rate at which ferrite was precipitated, and the difference between the cooling rates on the inner and outer surfaces of the tube was 95.degree.
It is very large at sec.

【0027】そこで図3に示すように、まず冷却の初期
では水量密度400リットル/min・m2 で管外面側
の冷却速度を臨界冷却速度以下の40℃/sec程度と
し、管外面の温度が500℃となる時点で、水量密度を
2000リットル/min・m2 に上げて冷却を強化す
れば、管外面側の温度がより早く下がる。この時点で肉
厚の中央部、管内面側の温度はまだ500℃以上であ
る。したがって、熱伝導による冷却で肉厚の中央部、管
内面側の冷却速度が上がり、500℃までの管内面側の
冷却速度が25℃/sec程度となる。従って、このよ
うな冷却パターンで冷却を行えば、800℃〜500℃
の冷却速度は管外面側が40℃/sec、管内面側が2
5℃/secとなり、管内外面の冷却速度の差が15℃
/secで通常の場合に比べて著しく小さくなる。
Therefore, as shown in FIG. 3, in the initial stage of cooling, the cooling rate on the outer surface of the pipe is set to about 40 ° C./sec which is less than the critical cooling rate at a water density of 400 liter / min · m 2 , and the temperature on the outer surface of the pipe is When the temperature reaches 500 ° C., if the water volume density is increased to 2000 liters / min · m 2 to strengthen the cooling, the temperature on the outer surface side of the pipe will decrease more quickly. At this point, the temperature at the central portion of the wall thickness and the inner surface of the pipe is still 500 ° C. or higher. Therefore, the cooling rate at the central portion of the wall thickness and the inner surface of the tube is increased by cooling by heat conduction, and the cooling rate on the inner surface of the tube up to 500 ° C. is about 25 ° C./sec. Therefore, if cooling is performed in such a cooling pattern, 800 ° C to 500 ° C
The cooling rate is 40 ° C / sec on the outer surface of the tube and 2 on the inner surface of the tube.
5 ° C / sec, the difference in cooling rate between the inside and outside of the pipe is 15 ° C
/ Sec is significantly smaller than in the normal case.

【0028】以上で述べたような冷却パターンにより、
管の内外面の冷却速度の差が減少し板厚方向の冷却速度
が均一化される。ここで冷却を強化するパターンとして
図3に示した2段ステップ状に水量を増やすパターンの
他、例えば図5に示すように多段ステップ状に水量を増
やすパターン、あるいは図6に示すように連続的に水量
を増やすパターンがあり、これらのいずれのパターンと
してもよい。
By the cooling pattern as described above,
The difference in cooling rate between the inner and outer surfaces of the tube is reduced, and the cooling rate in the plate thickness direction is made uniform. Here, as a pattern for strengthening cooling, in addition to the pattern of increasing the water amount in a two-step manner shown in FIG. 3, for example, a pattern of increasing the water amount in a multi-step manner as shown in FIG. 5 or continuously as shown in FIG. There is a pattern for increasing the amount of water, and any of these patterns may be used.

【0029】発明者らの研究によれば、図7に示すよう
に板厚方向の冷却速度の均一化により組織の均一性が向
上し、特に板厚方向の冷却速度の差を20℃/sec以
下にすれば靭性が非常に向上することが判明している。
表1、表2、表3に示される化学成分組成の鋼を用い、
図1に概略を示す装置で電縫溶接を行い、次いで表4、
表5、表6、表7、表8、表9、表10、表11に示す
各条件で熱処理を施し、外径508mmφ、肉厚12.
7mmの電縫鋼管を製造した。また表12に示す化学成
分、外径、肉厚の電縫鋼管を表13に示す条件で熱処理
を行った。なお、表4、表5、表6、表7、表8、表1
0には合せてフェライトが析出する臨界冷却速度も示し
てある。ここで図1の水冷装置9の下流側に配設されて
いる誘導加熱装置7,8や水冷装置10は熱処理の種類
に応じて使い分けた。表4、5は、1回の強制冷却の場
合の例を示し、表6、7;表13は、強制冷却後2回目
の加熱冷却を施した場合の例を示し、表8、9;表1
0、11はさらに3回目の加熱冷却を施した例を示した
ものである。
According to the research conducted by the inventors, as shown in FIG. 7, the uniformity of the structure is improved by making the cooling rate uniform in the plate thickness direction. Particularly, the difference in the cooling rate in the plate thickness direction is 20 ° C./sec. It has been found that the toughness is significantly improved by the following.
Using steel having the chemical composition shown in Table 1, Table 2 and Table 3,
Electric resistance welding was performed with the apparatus outlined in FIG.
Heat treatment was performed under the conditions shown in Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, and Table 11 to obtain an outer diameter of 508 mmφ and a wall thickness of 12.
A 7 mm electric resistance welded steel pipe was manufactured. Further, the electric resistance welded steel pipe having the chemical composition, outer diameter and wall thickness shown in Table 12 was heat-treated under the conditions shown in Table 13. In addition, Table 4, Table 5, Table 6, Table 7, Table 8, and Table 1
In addition, the critical cooling rate at which ferrite is precipitated is also shown in 0. Here, the induction heating devices 7 and 8 and the water cooling device 10 arranged on the downstream side of the water cooling device 9 in FIG. 1 were used properly according to the type of heat treatment. Tables 4 and 5 show examples in the case of one forced cooling, Tables 6 and 7; Table 13 show examples in the case of performing the second heating and cooling after the forced cooling, and Tables 8 and 9; 1
Nos. 0 and 11 show examples in which the third heating and cooling were performed.

【0030】次に、このようにして製造された電縫鋼管
の溶接部から10mm×10mm、2Vノッチのシャル
ピー試験片を切り出して衝撃試験を実施し、シャルピー
遷移曲線から破面遷移温度を調査した。表4、表5、表
6、表7、表9、表11、表13に溶接部の熱処理条件
とともに破面遷移温度を示す。本発明例では管外面側、
管内面側の冷却速度はいずれも臨界冷却速度以下であ
り、かつ10℃/sec以上で、本発明の条件を満たし
ている。表4、表5、表6、表7、表12の結果から明
らかなように、本発明法により従来法に比べて溶接部低
温靭性が非常に優れた電縫鋼管の製造が可能である。
Next, a Charpy test piece of 10 mm × 10 mm, 2V notch was cut out from the welded portion of the electric resistance welded steel pipe manufactured in this way, an impact test was carried out, and the fracture surface transition temperature was investigated from the Charpy transition curve. . Table 4, Table 5, Table 6, Table 7, Table 9, Table 11, and Table 13 show the fracture surface transition temperature together with the heat treatment conditions of the welded portion. In the present invention example, the pipe outer surface side,
All of the cooling rates on the inner surface of the tube are below the critical cooling rate and above 10 ° C./sec, which satisfies the conditions of the present invention. As is clear from the results of Table 4, Table 5, Table 6, Table 7, and Table 12, the method of the present invention makes it possible to manufacture an electric resistance welded steel pipe having excellent low-temperature toughness at the welded portion as compared with the conventional method.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【表7】 [Table 7]

【0038】[0038]

【表8】 [Table 8]

【0039】[0039]

【表9】 [Table 9]

【0040】[0040]

【表10】 [Table 10]

【0041】[0041]

【表11】 [Table 11]

【0042】[0042]

【表12】 [Table 12]

【0043】[0043]

【表13】 [Table 13]

【0044】[0044]

【発明の効果】本発明によれば、電縫管の溶接部の管厚
方向の組織の均一化を図ることができ、溶接部の靭性を
向上させることができる。
According to the present invention, the structure of the welded portion of the electric resistance welded pipe in the pipe thickness direction can be made uniform, and the toughness of the welded portion can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する電縫鋼管製造設備の概略図で
ある。
FIG. 1 is a schematic view of an electric resistance welded steel pipe manufacturing facility for carrying out the present invention.

【図2】本発明を実施する電縫鋼管製造設備の概略図で
ある。
FIG. 2 is a schematic diagram of an electric resistance welded pipe manufacturing facility for carrying out the present invention.

【図3】本発明法の冷却パターンと内外面の冷却カーブ
である。
FIG. 3 is a cooling pattern of the method of the present invention and a cooling curve of inner and outer surfaces.

【図4】従来法の冷却パターンと内外面の冷却カーブで
ある。
FIG. 4 is a cooling pattern of a conventional method and a cooling curve of inner and outer surfaces.

【図5】本発明に含まれる別の冷却パターンを示す図で
ある。
FIG. 5 is a diagram showing another cooling pattern included in the present invention.

【図6】本発明に含まれる別の冷却パターンを示す図で
ある。
FIG. 6 is a diagram showing another cooling pattern included in the present invention.

【図7】本発明の効果を示すグラフである。FIG. 7 is a graph showing the effect of the present invention.

【図8】CCT曲線の例を示す図である。FIG. 8 is a diagram showing an example of a CCT curve.

【符号の説明】[Explanation of symbols]

1 鋼帯 2 電縫溶
接部 3 溶接電極 4 スクイ
ズロール 5,6,7,8 誘導加熱装置 9,10
水冷装置 11 電縫管
1 Steel Strip 2 ERW Welding Part 3 Welding Electrode 4 Squeeze Roll 5, 6, 7, 8 Induction Heating Device 9, 10
Water cooling device 11 ERW pipe

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 連続的に成形した帯鋼を電縫溶接し、こ
れに引き続いて溶接部をAc3 変態点以上、1050℃
以下に加熱し、外表面から強制冷却する過程を含む熱処
理において、前記冷却を溶接部外表面温度が800℃か
ら500℃〜400℃までを10℃/sec以上かつフ
ェライトが析出する範囲の冷却速度で冷却し、該溶接部
外表面温度が500℃〜400℃に到達した時点で冷却
を強化して外表面が200℃以下になるまで冷却するこ
とを特徴とする電縫鋼管の製造方法。
1. A continuously formed strip steel is electric resistance welded, and subsequently, the welded portion is at or above the Ac 3 transformation point, 1050 ° C.
In the heat treatment including the process of heating to the following and forcibly cooling from the outer surface, the cooling is performed at a cooling rate in the range where the outer surface temperature of the welded portion is 800 ° C to 500 ° C to 400 ° C at 10 ° C / sec or more and ferrite is precipitated. The method for producing an electric resistance welded steel pipe, comprising: cooling at a temperature of 500 ° C. to 400 ° C. and cooling until the outer surface becomes 200 ° C. or lower.
【請求項2】 請求項1記載の鋼帯が、 C:0.01〜0.10重量%、 Si:0.5重量%以下、 Mn:0.5〜2.0重量%、 P:0.030重量%以下、 S:0.008重量%以下、 N:0.01重量%以下、 Al:0.06重量%以下 を含み、かつ Nb:0.1重量%以下、 V:0.1重量%以下、 Ti:0.05重量%以下 のうちの一種以上を含有し、残部Fe及び不可避的不純
物よりなる鋼帯であることを特徴とする低温靭性の優れ
た高張力電縫鋼管の製造方法。
2. The steel strip according to claim 1, wherein C: 0.01 to 0.10% by weight, Si: 0.5% by weight or less, Mn: 0.5 to 2.0% by weight, P: 0. 0.030% by weight or less, S: 0.008% by weight or less, N: 0.01% by weight or less, Al: 0.06% by weight or less, and Nb: 0.1% by weight or less, V: 0.1 Manufacture of a high-strength electric resistance welded steel pipe having excellent low temperature toughness, characterized in that it is a steel strip containing at least one of Ti: 0.05 wt% or less and the balance Fe and unavoidable impurities. Method.
【請求項3】 請求項2記載の鋼帯がさらに Cr:0.1〜1.0重量%、 Mo:0.1〜1.0重量%、 Cu:0.1〜0.6重量%、 Ni:0.1〜0.6重量% のうちの一種以上を含有する鋼帯であることを特徴とす
る低温靭性の優れた高張力電縫鋼管の製造方法。
3. The steel strip according to claim 2, further comprising: Cr: 0.1 to 1.0% by weight, Mo: 0.1 to 1.0% by weight, Cu: 0.1 to 0.6% by weight, A method for producing a high-strength electric resistance welded steel pipe having excellent low-temperature toughness, which is a steel strip containing one or more of Ni: 0.1 to 0.6% by weight.
【請求項4】 請求項2又は3記載の鋼帯がさらに Ca:0.0005〜0.0050重量% を含有する鋼帯であることを特徴とする低温靭性の優れ
た高張力電縫鋼管の製造方法。
4. A high-strength ERW steel pipe having excellent low-temperature toughness, characterized in that the steel strip according to claim 2 or 3 is a steel strip further containing Ca: 0.0005 to 0.0050% by weight. Production method.
【請求項5】 200℃以下に冷却の後に、再び該溶接
部を400℃以上800℃以下に再加熱して焼戻すこと
を特徴とする請求項1、2、3又は4記載の低温靭性の
優れた高張力電縫鋼管の製造方法。
5. The low temperature toughness according to claim 1, wherein the welded portion is reheated to 400 ° C. or more and 800 ° C. or less and tempered after being cooled to 200 ° C. or less. An excellent method for manufacturing high-strength ERW steel pipe.
【請求項6】 200℃以下に冷却の後に、該溶接部を
Ac1 点以上、(Ac3 点−50℃)以下に再加熱後、
650℃から200℃の温度範囲内まで冷却速度10℃
/sec以上で冷却することを特徴とする請求項1、
2、3又は4記載の低温靭性の優れた高張力電縫鋼管の
製造方法。
6. After cooling to 200 ° C. or lower, the welded portion is reheated to Ac 1 point or higher and (Ac 3 point −50 ° C.) or lower,
Cooling rate of 10 ℃ from 650 ℃ to 200 ℃
The cooling is performed at a speed of not less than 1 sec / sec.
The method for producing a high-strength electric resistance welded steel pipe excellent in low temperature toughness according to 2, 3, or 4.
【請求項7】 200℃以下に冷却の後に、該溶接部を
Ac1 点以上(Ac 3 点−50℃)以下に再加熱し、再
び200℃以下まで冷却速度10℃/sec以上で冷却
し、その後400℃以上800℃以下に加熱して焼戻す
ことを特徴とする請求項1、2、3又は4記載の低温靭
性の優れた高張力電縫鋼管の製造方法。
7. The welded part is cooled after cooling to 200 ° C. or lower.
Ac1 Above the point (Ac 3 Reheat to below -50 ℃)
And cooling rate up to 200 ° C at a cooling rate of 10 ° C / sec or more
Then heat to 400 ℃ or more and 800 ℃ or less to temper
5. The low temperature toughness according to claim 1, 2, 3 or 4.
A method of manufacturing a high-strength ERW steel pipe with excellent properties.
JP25653591A 1991-06-10 1991-10-03 Manufacture of electric resistance-welded tube Pending JPH0551648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25653591A JPH0551648A (en) 1991-06-10 1991-10-03 Manufacture of electric resistance-welded tube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-136911 1991-06-10
JP13691191 1991-06-10
JP25653591A JPH0551648A (en) 1991-06-10 1991-10-03 Manufacture of electric resistance-welded tube

Publications (1)

Publication Number Publication Date
JPH0551648A true JPH0551648A (en) 1993-03-02

Family

ID=26470374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25653591A Pending JPH0551648A (en) 1991-06-10 1991-10-03 Manufacture of electric resistance-welded tube

Country Status (1)

Country Link
JP (1) JPH0551648A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301574A (en) * 2006-05-09 2007-11-22 Nakajima Steel Pipe Co Ltd Steel tube manufacturing method, and steel tube manufacturing facility
WO2010002269A1 (en) * 2008-06-30 2010-01-07 Efd Induction As In-line weld seam heat treatment method and apparatus with internal selective heating of the welded joint
FR2991213A1 (en) * 2012-06-05 2013-12-06 Alstom Hydro France PROCESS FOR WELDING TWO EDGES OF ONE OR MORE STEEL PARTS TO ONE ANOTHER AND FORCED DRIVEN OBTAINED BY SUCH A METHOD
KR101979019B1 (en) * 2018-09-18 2019-05-15 장근수 Alloy pipe cooling and transporting apparatus
WO2021106577A1 (en) 2019-11-29 2021-06-03 Jfeスチール株式会社 Electric resistance welded steel pipe, and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158822A (en) * 1986-01-07 1987-07-14 Nippon Steel Corp Manufacture of high strength steel tube having low hardness and yield ratio
JPH02305923A (en) * 1989-05-18 1990-12-19 Sumitomo Metal Ind Ltd Production of high tensile electric welded steel pipe having excellent low-temp. toughness
JPH0331423A (en) * 1989-06-29 1991-02-12 Sumitomo Metal Ind Ltd Production of high tensile electric welded steel tube having excellent low temp. toughness
JPH0364415A (en) * 1989-07-31 1991-03-19 Nippon Steel Corp Production of high-toughness seamless low alloy steel tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158822A (en) * 1986-01-07 1987-07-14 Nippon Steel Corp Manufacture of high strength steel tube having low hardness and yield ratio
JPH02305923A (en) * 1989-05-18 1990-12-19 Sumitomo Metal Ind Ltd Production of high tensile electric welded steel pipe having excellent low-temp. toughness
JPH0331423A (en) * 1989-06-29 1991-02-12 Sumitomo Metal Ind Ltd Production of high tensile electric welded steel tube having excellent low temp. toughness
JPH0364415A (en) * 1989-07-31 1991-03-19 Nippon Steel Corp Production of high-toughness seamless low alloy steel tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301574A (en) * 2006-05-09 2007-11-22 Nakajima Steel Pipe Co Ltd Steel tube manufacturing method, and steel tube manufacturing facility
WO2010002269A1 (en) * 2008-06-30 2010-01-07 Efd Induction As In-line weld seam heat treatment method and apparatus with internal selective heating of the welded joint
FR2991213A1 (en) * 2012-06-05 2013-12-06 Alstom Hydro France PROCESS FOR WELDING TWO EDGES OF ONE OR MORE STEEL PARTS TO ONE ANOTHER AND FORCED DRIVEN OBTAINED BY SUCH A METHOD
WO2013182582A1 (en) * 2012-06-05 2013-12-12 Alstom Renewable Technologies Method for welding two edges of one or more steel parts to each other including a heat treatment step after the welding step: penstock obtained with such a method
CN104520060A (en) * 2012-06-05 2015-04-15 阿尔斯通再生能源技术公司 Method for welding two edges of one or more steel parts to each other including heat treatment step after the welding step: penstock obtained with such method
KR101979019B1 (en) * 2018-09-18 2019-05-15 장근수 Alloy pipe cooling and transporting apparatus
WO2021106577A1 (en) 2019-11-29 2021-06-03 Jfeスチール株式会社 Electric resistance welded steel pipe, and method for manufacturing same
KR20220084380A (en) 2019-11-29 2022-06-21 제이에프이 스틸 가부시키가이샤 Electric resistance welded pipe and manufacturing method thereof
EP4043114A4 (en) * 2019-11-29 2022-08-24 JFE Steel Corporation Electric resistance welded steel pipe, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3711896B2 (en) Manufacturing method of steel sheets for high-strength line pipes
JP2008266758A (en) High tensile strength steel having excellent low temperature toughness and reduced strength anisotropy, and method for producing the same
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP2004010991A (en) Method of producing ultrahigh strength cold rolled steel sheet having excellent spot weldability
JP2020504236A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature, and method for producing the same
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP4859618B2 (en) Manufacturing method of hollow stabilizer with excellent delayed fracture resistance
JPH0941088A (en) Production of high toughness steel plate for low temperature use
JPH0941036A (en) Production of high toughness steel sheet for low temperature use
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JPH0551648A (en) Manufacture of electric resistance-welded tube
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JPH08295934A (en) Production of high carbon electric resistance welded tube excellent in wear resistance
JP3823906B2 (en) Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance and toughness
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JPH0313524A (en) Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JPH083636A (en) Production of low yield ratio high toughness steel
JPH05320775A (en) Production of electric resistance welded steel tube excellent in low temperature toughness
JP3666457B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JPH0331423A (en) Production of high tensile electric welded steel tube having excellent low temp. toughness
JPH07122098B2 (en) Manufacturing method of high strength ERW steel pipe excellent in low temperature toughness
JPH07278730A (en) Electric resistance welded tube with 1080 to 1450mpa tensile strength excellent in ductility and toughness and its production
JPH08337815A (en) Production of chromium-molybdenum steel excellent in strength and toughness
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980721