JPH0313524A - Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness - Google Patents

Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness

Info

Publication number
JPH0313524A
JPH0313524A JP14736689A JP14736689A JPH0313524A JP H0313524 A JPH0313524 A JP H0313524A JP 14736689 A JP14736689 A JP 14736689A JP 14736689 A JP14736689 A JP 14736689A JP H0313524 A JPH0313524 A JP H0313524A
Authority
JP
Japan
Prior art keywords
steel plate
toughness
temperature
rolling
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14736689A
Other languages
Japanese (ja)
Inventor
Nobutsugu Takashima
高嶋 修嗣
Masato Shimizu
真人 清水
Kengo Abe
安部 研吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14736689A priority Critical patent/JPH0313524A/en
Publication of JPH0313524A publication Critical patent/JPH0313524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce the thick high-toughness high tensile steel plate having the excellent low-temp. toughness in the central part of the thickness and the surface part of the steel plate by subjecting a steel stock having a specific compsn. to a water cooling at a specific cooling rate between a rough rolling and finish rolling at the time of producing the thick steel plate by subjecting the above-mentioned steel stock to the hot rough rolling, finish rolling and cooling. CONSTITUTION:The slab of a low-carbon steel contg., by weight, 0.01 to 0.10% C, 0.10 to 0.50% Si, 0.5 to 2.0% Mn, <0.015% P, <0.003% S, 0.010 to 0.10% Al, 0.005 to 0.020% Ti, 20 to 70ppm N, or further >=1 kind of <1.5% Cu, <3.0% Ni, <0.03% Nb, and <0.0050% Ca, is heated to the Ac3 point to 1150 deg.C and is roughly rolled at <15% rolling reduction in the temp. range of Ar3 to (Ar3+100 deg.C). The steel plate is then subjected to the finish rolling to >=50mm thickness at >30% rolling reduction in the temp. range of (Ar3 to 50 deg.C) to (Ar3 to 10 deg.C) steel plate surface temp. to >=(Ar3 to 50 deg.C) steel plate surface temp. and is then cooled down to <=500 deg.C at 1 to 20 deg.C/sec cooling rate immediately thereafter. The steel plate is subjected to >=1 times of the water cooling treatment at the cooling rate CR( deg.C/ sec) expressed by inequation between the rough rolling and the finish rolling.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、板厚中央部の靭性が優れ、なお且つ鋼板表面
の靭性にも優れている板厚50mm以上の厚内高靭性高
張力鋼板の製造方法に関する。 (従来の技術及び解決しようとする*題)氷海域海洋構
造物に用いられる鋼板には、溶接時に予熱が不要で、な
お且つ低温靭性の優れた高強度の板厚50III11以
上の厚肉鋼板が要求されている。 このような鋼板の製造には、板厚中央部の靭性向上のた
めの低温圧延、及び炭素当量の低減が可能な加速冷却法
を適用することが有効であることは既に知られている。 すなわち、板厚中央部の靭性向上のための低温圧延に関
しては、板厚中央部においてオーステナイト未再結晶温
度域での相当量の圧下を確保する必要があるが、圧延中
のスラブ中央部の温度が表面温度に比べて高いために、
一般にスラブ表面温度がAr)よりも低い低温域での相
当量の圧下を含む制御圧延が施される。これにより、板
厚中央部において、シャルピー破面遷移温度が一60℃
以下という靭性の非常に優れた厚肉鋼板の製造が可能と
なっている。 しかし、圧延温度がスラブ表面においてはAr。 よりも低いため5表面部には圧延途中の段階において初
析フェライトが生成し、粗大化する現象がみられ、最終
的に製造された鋼板の表面近傍の靭性は、板厚中央部に
比べ劣っているという欠点を有している。 本発明は、か\る従来技術の欠点を解消し、板厚中央部
の靭性が優れ、なお且つ鋼板表面の靭性にも優れている
板厚50++v+以上の厚肉高靭性高張力鋼板の製造方
法を提供することを目的とするものである。 (課題を解決するための手段) 本発明者らは、前記従来技術の問題点を解決すべく鋭意
研究を行った結果、表面部の靭性劣化の原因となる圧延
途中の段階における初析フェライトの生成、粗大化を極
力抑制する方法を見い出し、ここに鋼板表面及び板厚中
央部の靭性の優れた厚肉高靭性高張力鋼板を製造する方
法を開発するに至ったのである。 すなわち、本発明は、C:0.01〜0.10%、Si
:0.10〜0.50%、Mn:0.5〜2.0%、P
:0.015%以下、S:O,003%以下、AQ:0
.010〜0.100%、Ti:0.005〜0.02
0%及びN:20〜70ppmを含有し、必要に応じて
、更にCu: 1 、5%以下、Ni: 3 、0%以
下、Nb:0.03%以下及びCa:O,OO50%以
下のうちの1種又は2種以上を含有し、残部がFe及び
不可避的不純物よりなる鋼をAc)以上、1150℃以
下に加熱後、鋼板表面温度がAr3以上、(Ar2+ 
100℃)以下の温度範囲で15%以上の圧下を含む粗
圧延を行い、その後、鋼板表面温度が(Ar、−10℃
)以下、(Ar、−50℃)以上の温度範囲で圧下量3
0%以上の仕上圧延を行って鋼板表面温度が(Ar、−
50℃)以上で所定の板厚に仕上げ、直ちに550℃以
下の温度域まで1〜bに際し、粗圧延終了温度から仕上
圧延ヒバ始温度までの間に1回以上の間欠的な水冷を行
い、かつ。 この間を次式(1)を満足する平均の冷却速度CR(”
C/ 5ee)で冷却することを特徴とする鋼板表面及
び板厚中央部の靭性の優れた板厚50+s+n以上の厚
肉高靭性高張力鋼板の製造方法を要旨とするものである
。 CR>1.5x(0,166−6,14X10−’t)
・・・(1)ここで、 t:粗圧延完了時のスラブ厚(■■) 以下に本発明を更に詳細に説明する。 (作用) まず、本発明における化学成分の限定理由は以下のとお
りである。 C: Cは強度上昇に有効な元素であり、そのためには0.0
1%以上が必要である。しかし、靭性の確保及び耐溶接
割れ性の低下防止の観点から上限をo、io%に規制す
る必要がある。したがって。 C量は0.01〜0.10%の範囲とする。 Si: Siは脱酸元素であり、0.10%以上の添加が必要で
あるが、過度の添加は靭性を劣化させるために上限を0
.50%とする。このため、Si量は0.10〜0.5
0%の範囲とする。 Mn: Mnは強度上昇に有効であり、そのためには065%以
上が必要であるが、2.0%を超えて添加すると靭性が
劣化する。したがって、Mn量は0.5〜2.0%の範
囲とする。 P : Pは偏析傾向の強い元素であり、母材及び溶接部の靭性
を劣化させる。このため、P量は低く抑える必要があり
、0.015%以下に抑制する。 S: SはA系介在物を形成し、板厚方向の絞り特性、耐ラメ
ラ−ティア−特性、更には靭性を劣化させる。したがっ
て、N量は極力低くする必要があり、0.003%以下
に規制する。 Ti: Tiは難溶性の炭窒化物を形成し、スラブ加熱時又は溶
接時のオーステナイト粒の成長を抑制するため、母材及
び溶接時の靭性を向上させる効果を有する元素である。 そのためには0.005%以上が必要であるが、0.0
20%を超えて添加すると粗大な介在物を形成し、靭性
を劣化させる。 したがって、Ti量は0.005〜0.020%の範囲
とする。 AQ: AQは脱酸元素であり、0.01%以上が必要であるが
、過度の添加は介在物を形成し、靭性を劣化させるため
、上限を0.10%とする。したがって、AQ量は0.
01〜0.10%の範囲とする。 N: NはTiとの間で難溶性の炭窒化物を形成し、母材及び
溶接部の靭性を向上させる効果があり、そのためには2
0ppm以上が必要であるが、70PPMを超える過度
の含有は、逆に母材及び溶接部の靭性を著しく劣化させ
る。したがって、N量は20〜70pp鳳の範囲とする
。 以上の各元素を必須成分とするが、必要ルこ応じて、以
下に示すCu、Ni、Nb及びCaのうちの1種又は2
種以上を適量で添加することができる。 Cu: Cuは固溶強化、析出強化或いは焼入性向上による変態
強化に有効な元素であるが、過度の添加は靭性を劣化さ
せるため、1.5%以下とする。 Nj: Niは低温靭性を改善する効果があるが、高価であるの
で、経済性を考慮して3.0%以下とする。 Nb: Nbは固溶状態でオーステナイトの再結晶を抑制し、制
御圧延の効果を高め、更に圧延後の加速冷却による変態
強化を促進して強度及び靭性の向上に寄与する元素であ
るが、過度の添加は溶接部の靭性を劣化させるため、0
.03%以下とする。 Ca: また、靭性改善の目的でCaを添加することができるが
、過度の添加は逆に靭性を著しく損なうので、Ca量は
0.0050%以下とする。 次に1本発明における上記化学成分を有する鋼に対する
加熱、圧延、冷却条件の限定理由について説明する。 圧延に先立つ加熱は、鋳片全体を完全にオーステナイト
化する必要があり、このためにはAc、以上に加熱する
必要があるが、1150℃よりも高い加熱温度ではオー
ステナイト粒の粗大化による靭性劣化を来たすので望ま
しくない、このため、加熱温度は、Acっ以上、115
0℃以下と規定する。 前記温度範囲に加熱された鋳片を熱間圧延するに際して
は、粗圧延、仕上圧延、及び粗圧延温度から仕上圧延温
度に鋳片の温度を調整する間の鋳片の冷却速度をコント
ロールする必要がある。 まず、厚肉鋼板の板厚中央部の靭性の向上には、板厚中
央部におけるオーステナイト再結晶温度域での圧下及び
オーステナイト未再結晶温度域での圧下が不可欠である
。 この点、本発明で規定した粗圧延温度(Ar、以上、(
Ar、 + 100℃)以下)並びに仕上圧延温度(A
r、 −10℃)以下、(Ar、 −50℃)以上)は
、それぞれ板厚中央部のオーステナイト再結晶温度、並
びにオーステナイト未再結晶温度に相当している。そし
て、板厚中央部で一60℃以下のシャルピー破面遷移温
度を確保するためには、粗圧延。 仕上圧延で各々15%以上、30%以上の圧下量を確保
する必要がある。 また、仕上温度は、その後の加速冷却による強度上昇効
果を確保するために(Ar、−50℃)以上とする。 次に、本発明の最も重要なポイントである鋼板表面の靭
性向上のための手段について説明する。 本発明者らは、低温圧延された鋼板の表面部の靭性劣化
の原因が、圧延途中の段階で生成した初析フェライトの
粗大化によるものであることを見い出したが、更に検討
を重ねた結果、この裏面部初析フェライトの生成、粗大
化が主に粗圧延完了から仕上圧延開始温度まで大気中で
放冷される間に起こっていることを究明した。 そこで、この間の平均冷却速度と裏面部靭性の関係を調
査した結果、第1図に示すように、粗圧延完了時のスラ
ブ厚で、1回以上の間欠的な水冷を実施し、且つ(1)
式を満足する平均の冷却速度CRで冷却す、ることによ
り1表面部の靭性が著しく向上することを発見した。す
なわち1表面部の靭性を向上させるためには、粗圧延完
了から仕上圧延温度開始温度までの間に粗圧延完了時の
スラブ厚で1回以上の間欠的な水冷の実施により、次式
の大気放冷の冷却速度(実験式) CRAC(’C/ 
5ee)CRAC= 0.166−6.14 X 10
−’ tここで、t:粗圧延完了時のスラブ厚(mu)
の1.5倍以上で冷却する必要がある。この間の間欠的
な水冷の実施は、銅板の表面温度を−Hフエライト粒が
成長し易い温度以下に低下させることにより、鋼板表面
部に生成したフェライトの粒成長を著しく抑制するとい
う重要な役割を担っており、本発明の必須の要因である
。 なお、仕上圧延後、550℃以下の温度域まで1〜b 強度を得るためである。冷却停止温度が550℃よりも
高いとこの強度上昇の効果が得られず、また冷却速度が
1℃/sec未満では強度上昇効果が少なく、20℃/
secよりも速いと強度上昇が過大になり靭性の劣化を
きたすため、この範囲に規定する必要がある。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有する鋼につき、第2表に示す
条件で加熱、圧延、冷却して、所定の板厚の鋼板を製造
した。 得られた鋼板について引張強さ、降伏強さ、及び鋼板表
面部(鋼板表面下1■の部位)と板厚中央部のシャルピ
ー破面遷移温度を調べた。その結果を第2表に併記する
。 第2表より以下のように考察される。 試験&3〜Ha 5は加熱、圧延条件が本発明範囲を外
れているため、板厚中央部のシャルピー破面遷移温度(
vTrs)が−60℃以上となっており。 低温用鋼板として適当な性能を有していない。 また、試験NQIO,Mailは、鋼の化学成分が本発
明範囲外であるために、いずれも板厚中央部の靭性が劣
っている。 また、試験Na2.&7、Na9は、板厚中央部の靭性
は低温用鋼板として十分な性能を有しているものの、粗
圧延終了から仕上圧延開始までを大気放冷したために、
鋼板表面部の靭性が板厚中央部に比べて著しく劣ってい
る。 これらの比較例に対して、本発明例の試験&1゜&6、
Na8はいずれも、板厚中央部で優れた低温靭性を有し
ている共に、粗圧延終了から仕上圧延開始までの間を本
発明で規定した適切な冷却速度で冷却したために、鋼板
表面部においても、板厚中央部を遥かに上回る優れた低
温靭性を有している。
(Industrial Application Field) The present invention relates to a method for manufacturing a high-toughness, high-strength steel plate having a thickness of 50 mm or more, which has excellent toughness in the central part of the plate thickness and also has excellent toughness on the surface of the steel plate. (Prior art and the *problem to be solved) Steel plates used for offshore structures in ice-covered areas include high-strength steel plates with a thickness of 50III11 or more that do not require preheating during welding and have excellent low-temperature toughness. requested. It is already known that it is effective to apply low-temperature rolling to improve the toughness of the central part of the sheet thickness and accelerated cooling methods that can reduce carbon equivalent in the production of such steel sheets. In other words, regarding low-temperature rolling to improve the toughness of the central part of the slab, it is necessary to ensure a considerable reduction in the austenite non-recrystallization temperature range at the central part of the slab, but the temperature at the central part of the slab during rolling is is higher than the surface temperature,
Generally, controlled rolling including a considerable amount of reduction is performed in a low temperature range where the slab surface temperature is lower than Ar). As a result, the Charpy fracture surface transition temperature is 160°C at the center of the plate thickness.
It is now possible to manufacture thick steel plates with extremely excellent toughness as shown below. However, when the rolling temperature is Ar on the slab surface. 5, pro-eutectoid ferrite is generated in the surface area during rolling, and a phenomenon of coarsening is observed, and the toughness near the surface of the final manufactured steel plate is inferior to that at the center of the plate thickness. It has the disadvantage of being The present invention eliminates the drawbacks of the prior art and provides a method for manufacturing a thick high-toughness steel plate with a thickness of 50++v+ or more, which has excellent toughness in the central part of the plate thickness and also has excellent toughness on the surface of the steel plate. The purpose is to provide the following. (Means for Solving the Problems) As a result of intensive research to solve the problems of the prior art, the present inventors found that pro-eutectoid ferrite during rolling, which causes deterioration of surface toughness, They found a method to suppress the formation and coarsening as much as possible, and developed a method for manufacturing thick-walled, high-toughness, high-strength steel plates with excellent toughness on the steel plate surface and in the center of the plate thickness. That is, in the present invention, C: 0.01 to 0.10%, Si
:0.10~0.50%, Mn:0.5~2.0%, P
: 0.015% or less, S: O, 003% or less, AQ: 0
.. 010-0.100%, Ti: 0.005-0.02
0% and N: 20 to 70 ppm, and if necessary, further contains Cu: 1, 5% or less, Ni: 3, 0% or less, Nb: 0.03% or less, and Ca: O, OO 50% or less. After heating a steel containing one or more of these and the remainder consisting of Fe and unavoidable impurities to a temperature of Ac) or higher and 1150°C or lower, the steel plate surface temperature is Ar3 or higher, (Ar2+
Rough rolling including a reduction of 15% or more is performed in a temperature range of 100℃ or less, and then the steel plate surface temperature is (Ar, -10℃
) and below, the reduction amount is 3 in the temperature range of (Ar, -50°C) or higher.
After finish rolling of 0% or more, the steel plate surface temperature reaches (Ar, -
50 ° C.) or higher to a predetermined thickness, immediately bring the temperature to a temperature range of 550 ° C. or lower in steps 1 to b, and perform intermittent water cooling one or more times between the rough rolling end temperature and the finish rolling start temperature, and. During this period, the average cooling rate CR(”
The gist of this invention is a method for producing a thick-walled, high-toughness, high-strength steel plate having a thickness of 50+s+n or more, which is characterized by cooling at a temperature of 50+s+n or more and exhibits excellent toughness on the steel plate surface and in the center of the thickness. CR>1.5x (0,166-6,14X10-'t)
...(1) Here, t: Slab thickness at completion of rough rolling (■■) The present invention will be explained in more detail below. (Function) First, the reasons for limiting the chemical components in the present invention are as follows. C: C is an effective element for increasing strength, and for that purpose 0.0
1% or more is required. However, from the viewpoint of ensuring toughness and preventing deterioration of weld cracking resistance, it is necessary to limit the upper limit to o or io%. therefore. The amount of C is in the range of 0.01 to 0.10%. Si: Si is a deoxidizing element and needs to be added in an amount of 0.10% or more, but excessive addition will reduce the upper limit to 0.
.. It shall be 50%. Therefore, the amount of Si is 0.10 to 0.5
The range is 0%. Mn: Mn is effective in increasing strength, and for this purpose, 0.65% or more is required, but if added in excess of 2.0%, toughness deteriorates. Therefore, the amount of Mn is set in the range of 0.5 to 2.0%. P: P is an element with a strong tendency to segregate, and deteriorates the toughness of the base metal and weld zone. Therefore, the amount of P needs to be kept low, and is suppressed to 0.015% or less. S: S forms A-based inclusions and deteriorates drawing properties in the thickness direction, lamellar tear resistance, and further toughness. Therefore, the amount of N needs to be as low as possible, and is regulated to 0.003% or less. Ti: Ti is an element that forms hardly soluble carbonitrides and suppresses the growth of austenite grains during slab heating or welding, so it has the effect of improving the toughness of the base metal and during welding. For that purpose, 0.005% or more is required, but 0.0
When added in an amount exceeding 20%, coarse inclusions are formed and the toughness is deteriorated. Therefore, the amount of Ti is in the range of 0.005 to 0.020%. AQ: AQ is a deoxidizing element and requires 0.01% or more, but excessive addition forms inclusions and deteriorates toughness, so the upper limit is set to 0.10%. Therefore, the AQ amount is 0.
The range is 0.01 to 0.10%. N: N forms a hardly soluble carbonitride with Ti, which has the effect of improving the toughness of the base metal and weld zone.
Although 0 ppm or more is required, excessive content exceeding 70 ppm will conversely significantly deteriorate the toughness of the base metal and weld zone. Therefore, the amount of N is set in the range of 20 to 70 ppp. Each of the above elements is an essential component, but depending on the necessity, one or two of the following elements: Cu, Ni, Nb, and Ca.
Seeds or more can be added in appropriate amounts. Cu: Cu is an effective element for solid solution strengthening, precipitation strengthening, or transformation strengthening by improving hardenability, but excessive addition deteriorates toughness, so it is limited to 1.5% or less. Nj: Ni has the effect of improving low-temperature toughness, but is expensive, so it is set to 3.0% or less in consideration of economic efficiency. Nb: Nb is an element that suppresses recrystallization of austenite in a solid solution state, enhances the effect of controlled rolling, and promotes transformation strengthening by accelerated cooling after rolling, contributing to improvement of strength and toughness. Since the addition of 0 deteriorates the toughness of the weld,
.. 03% or less. Ca: Further, Ca can be added for the purpose of improving toughness, but excessive addition significantly impairs toughness, so the amount of Ca is set to 0.0050% or less. Next, the reasons for limiting the heating, rolling, and cooling conditions for steel having the above chemical components in the present invention will be explained. It is necessary to completely austenite the entire slab in the heating process prior to rolling, and for this purpose it is necessary to heat the slab to a temperature higher than 1150°C, but heating at a temperature higher than 1150°C will cause the austenite grains to coarsen and deteriorate the toughness. This is undesirable because it causes
Defined as 0℃ or below. When hot rolling a slab heated to the above temperature range, it is necessary to control the cooling rate of the slab during rough rolling, finishing rolling, and adjusting the temperature of the slab from the rough rolling temperature to the finishing rolling temperature. There is. First, in order to improve the toughness of the central part of a thick steel plate, reduction in the austenite recrystallization temperature range and reduction in the austenite non-recrystallization temperature range in the central part of the thickness are essential. In this respect, the rough rolling temperature (Ar, or higher, (
(Ar, +100℃) or less) and finish rolling temperature (A
r, −10° C.) or lower, and (Ar, −50° C. or higher) respectively correspond to the austenite recrystallization temperature at the center of the plate thickness and the austenite non-recrystallization temperature. In order to ensure a Charpy fracture surface transition temperature of -60°C or less at the center of the plate thickness, rough rolling is required. It is necessary to ensure a rolling reduction of 15% or more and 30% or more in finish rolling, respectively. Further, the finishing temperature is set at (Ar, -50° C.) or higher to ensure the effect of increasing strength due to subsequent accelerated cooling. Next, a description will be given of means for improving the toughness of the steel plate surface, which is the most important point of the present invention. The present inventors discovered that the cause of the deterioration of toughness on the surface of cold-rolled steel sheets was due to the coarsening of pro-eutectoid ferrite generated during rolling. It was found that the formation and coarsening of pro-eutectoid ferrite on the back surface mainly occurred during cooling in the atmosphere from the completion of rough rolling to the starting temperature of finish rolling. Therefore, as a result of investigating the relationship between the average cooling rate and back surface toughness during this period, we found that, as shown in Figure 1, intermittent water cooling was performed one or more times at the slab thickness at the completion of rough rolling, and )
It has been discovered that the toughness of one surface area can be significantly improved by cooling at an average cooling rate CR that satisfies the formula. In other words, in order to improve the toughness of one surface area, between the completion of rough rolling and the start temperature of finish rolling, intermittent water cooling is performed once or more at the slab thickness at the time of completion of rough rolling, and the atmospheric pressure is reduced by the following formula: Cooling rate of natural cooling (empirical formula) CRAC ('C/
5ee) CRAC= 0.166-6.14 X 10
-' t, where t: slab thickness at completion of rough rolling (mu)
It is necessary to cool the temperature at 1.5 times or more. Intermittent water cooling during this period plays an important role in significantly suppressing the growth of ferrite grains formed on the surface of the steel sheet by lowering the surface temperature of the copper sheet below the temperature at which -H ferrite grains are likely to grow. This is an essential factor of the present invention. This is to obtain a strength of 1 to b up to a temperature range of 550° C. or lower after finish rolling. If the cooling stop temperature is higher than 550°C, this strength-increasing effect cannot be obtained, and if the cooling rate is less than 1°C/sec, the strength-increasing effect is small;
If the speed is faster than sec, the strength will increase too much and the toughness will deteriorate, so it is necessary to set the speed within this range. Next, examples of the present invention will be shown. (Example) A steel having a chemical composition shown in Table 1 was heated, rolled, and cooled under the conditions shown in Table 2 to produce a steel plate having a predetermined thickness. The tensile strength, yield strength, and Charpy fracture surface transition temperature of the steel plate surface (1 inch below the steel plate surface) and the center of the plate thickness were investigated for the obtained steel plate. The results are also listed in Table 2. The following considerations can be made from Table 2. In Tests &3 to Ha5, the heating and rolling conditions were outside the range of the present invention, so the Charpy fracture surface transition temperature (
vTrs) is -60°C or higher. It does not have suitable performance as a steel plate for low temperature use. Further, in both tests NQIO and Mail, the toughness at the center of the plate thickness was poor because the chemical composition of the steel was outside the scope of the present invention. In addition, test Na2. &7, Na9 has sufficient toughness in the center of the plate thickness as a steel plate for low temperature use, but because it was cooled in the atmosphere from the end of rough rolling to the start of finish rolling,
The toughness of the surface of the steel sheet is significantly inferior to that of the center of the sheet thickness. Compared to these comparative examples, the tests of the present invention example &1°&6,
All Na8 has excellent low-temperature toughness at the center of the sheet thickness, and because it is cooled at the appropriate cooling rate specified in the present invention from the end of rough rolling to the start of finish rolling, it has excellent toughness at the surface of the steel sheet. It also has excellent low-temperature toughness that far exceeds that at the center of the plate thickness.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、化学成分を適切
に調整すると共に、適切な加熱、圧延、冷却条件、特に
粗圧延完了から仕上圧延開始までの間においてスラブを
適切な冷却速度で冷却する構成としたので、板厚中央部
及び鋼板表面部のいずれにおいても優れた低温靭性を有
する板厚50Iam以上の厚肉高靭性高張力鋼板の製造
が可能となる。
(Effects of the Invention) As detailed above, according to the present invention, the chemical components are appropriately adjusted and the slab is processed under appropriate heating, rolling, and cooling conditions, especially between the completion of rough rolling and the start of finish rolling. Since the structure is configured to cool at an appropriate cooling rate, it is possible to produce a thick-walled, high-toughness, high-strength steel plate having a thickness of 50 Iam or more and having excellent low-temperature toughness in both the central part of the plate thickness and the surface part of the steel plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は粗圧延完了から仕上圧延開始までのスラブの冷
却速度と鋼板表面部及び板厚中央部のシャルピー破面遷
移温度(vTrs)との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the cooling rate of a slab from the completion of rough rolling to the start of finish rolling and the Charpy fracture surface transition temperature (vTrs) of the surface portion of the steel sheet and the center portion of the sheet thickness.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.01〜0.1
0%、Si:0.10〜0.50%、Mn:0.5〜2
.0%、P:0.015%以下、S:0.003%以下
、Al:0.010〜0.100%、Ti:0.005
〜0.020%及びN:20〜70ppmを含有し、残
部がFe及び不可避的不純物よりなる鋼をAc_3以上
、1150℃以下に加熱後、鋼板表面温度がAr_3以
上、(Ar_3+100℃)以下の温度範囲で15%以
上の圧下を含む粗圧延を行い、その後、鋼板表面温度が
(Ar_3−10℃)以下、(Ar_3−50℃)以上
の温度範囲で圧下量30%以上の仕上圧延を行って鋼板
表面温度が(Ar_3−50℃)以上で所定の板厚に仕
上げ、直ちに550℃以下の温度域まで1〜20℃/s
ecの冷却速度で冷却して鋼板を製造するに際し、粗圧
延終了温度から仕上圧延開始温度までの間に1回以上の
間欠的な水冷を行い、かつ、この間を次式(1)を満足
する平均の冷却速度CR(℃/sec)で冷却すること
を特徴とする鋼板表面及び板厚中央部の靭性の優れた板
厚50mm以上の厚肉高靭性高張力鋼板の製造方法。 CR>1.5×(0.166−6.14×10^−^4
t)・・・(1)ここで、 t:粗圧延完了時のスラブ厚(mm)
(1) In weight% (the same applies hereinafter), C: 0.01 to 0.1
0%, Si: 0.10-0.50%, Mn: 0.5-2
.. 0%, P: 0.015% or less, S: 0.003% or less, Al: 0.010 to 0.100%, Ti: 0.005
After heating a steel containing ~0.020% and N: 20 to 70 ppm, with the balance consisting of Fe and unavoidable impurities to a temperature of Ac_3 or higher and 1150°C or lower, the steel plate surface temperature is Ar_3 or higher and (Ar_3+100°C) or lower. Perform rough rolling with a reduction of 15% or more in the range, and then perform finish rolling with a reduction of 30% or more in a temperature range where the steel plate surface temperature is below (Ar_3-10℃) and above (Ar_3-50℃). Finish the steel plate to the specified thickness when the surface temperature is (Ar_3-50℃) or higher, and immediately heat the plate at 1 to 20℃/s to a temperature range of 550℃ or lower.
When manufacturing a steel plate by cooling at a cooling rate of EC, intermittent water cooling is performed one or more times between the rough rolling end temperature and the finish rolling start temperature, and during this period, the following formula (1) is satisfied. A method for producing a thick-walled, high-toughness, high-strength steel plate having a thickness of 50 mm or more and having excellent toughness on the steel plate surface and in the center of the plate thickness, characterized by cooling at an average cooling rate CR (° C./sec). CR>1.5×(0.166-6.14×10^-^4
t)...(1) Here, t: Slab thickness at completion of rough rolling (mm)
(2)前記鋼が更に、Cu:1.5%以下、Ni:3.
0%以下、Nb:0.03%以下及びCa:0.005
0%以下のうちの1種又は2種以上を含有するものであ
る請求項1に記載の方法。
(2) The steel further contains Cu: 1.5% or less, Ni: 3.
0% or less, Nb: 0.03% or less and Ca: 0.005
The method according to claim 1, wherein the method contains one or more of 0% or less.
JP14736689A 1989-06-10 1989-06-10 Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness Pending JPH0313524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14736689A JPH0313524A (en) 1989-06-10 1989-06-10 Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14736689A JPH0313524A (en) 1989-06-10 1989-06-10 Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness

Publications (1)

Publication Number Publication Date
JPH0313524A true JPH0313524A (en) 1991-01-22

Family

ID=15428593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14736689A Pending JPH0313524A (en) 1989-06-10 1989-06-10 Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness

Country Status (1)

Country Link
JP (1) JPH0313524A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240355A (en) * 1993-02-22 1994-08-30 Sumitomo Metal Ind Ltd Production of high toughness thick tmcp steel plate
JPH0841536A (en) * 1994-07-29 1996-02-13 Kawasaki Steel Corp Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property
WO2009072753A1 (en) * 2007-12-04 2009-06-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
KR100951296B1 (en) * 2007-12-04 2010-04-02 주식회사 포스코 Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
KR101018159B1 (en) * 2008-05-15 2011-02-28 주식회사 포스코 High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
JP2011214116A (en) * 2010-04-01 2011-10-27 Nippon Steel Corp Thick high strength steel plate having excellent brittle crack propagation arresting property, and method for producing the same
CN107012395A (en) * 2017-03-02 2017-08-04 唐山钢铁集团有限责任公司 A kind of method that rough rolling step improves low-alloy special heavy plate center portion quality

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240355A (en) * 1993-02-22 1994-08-30 Sumitomo Metal Ind Ltd Production of high toughness thick tmcp steel plate
JPH0841536A (en) * 1994-07-29 1996-02-13 Kawasaki Steel Corp Production of high tensile strength steel plate small in nonuniformity of hardness in plate thickness direction and excellent in dwtt property
WO2009072753A1 (en) * 2007-12-04 2009-06-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
KR100951296B1 (en) * 2007-12-04 2010-04-02 주식회사 포스코 Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
US8647564B2 (en) 2007-12-04 2014-02-11 Posco High-strength steel sheet with excellent low temperature toughness and manufacturing thereof
KR101018159B1 (en) * 2008-05-15 2011-02-28 주식회사 포스코 High-strength steel sheet with excellent low temperature toughness and manufacturing method thereof
JP2011214116A (en) * 2010-04-01 2011-10-27 Nippon Steel Corp Thick high strength steel plate having excellent brittle crack propagation arresting property, and method for producing the same
CN107012395A (en) * 2017-03-02 2017-08-04 唐山钢铁集团有限责任公司 A kind of method that rough rolling step improves low-alloy special heavy plate center portion quality
CN107012395B (en) * 2017-03-02 2018-06-19 唐山钢铁集团有限责任公司 A kind of method that rough rolling step improves low-alloy special heavy plate center portion quality

Similar Documents

Publication Publication Date Title
KR20000069212A (en) Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JPH0313524A (en) Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness
JPH1180890A (en) High strength hot rolled steel plate and its production
JP3993703B2 (en) Manufacturing method of thin steel sheet for processing
JP2828303B2 (en) Manufacturing method of tough steel plate
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JP3666457B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JPH0331423A (en) Production of high tensile electric welded steel tube having excellent low temp. toughness
JPH06145786A (en) Production of wide flange shape minimal in difference in mechancal property in plate thickness direction
JPH05295432A (en) Production of steel plate having high strength and high toughness by online thermomechanical treatment
JPH1121625A (en) Production of thick steel plate excellent in strength and toughness
JP3666458B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JPS61127814A (en) Manufacture of high tension steel plate having excellent low-temperature toughness
JPH0517286B2 (en)
JPH0366367B2 (en)
KR20240031547A (en) Thick steel plate and method of manufacturing the same
JP3212346B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent toughness
JPH0920921A (en) Production of high toughness steel plate by means of separation
JPH06158160A (en) Production of high tensile strength heat treated steel excellent in cost effectiveness
JPH05255743A (en) Production of high tensile strength steel plate by rapid tempering
JPH01156424A (en) Manufacture of non-tempered high strength steel plate having excellent low temperature toughness
JPS61136633A (en) Manufacture of unnormalized high tensile strength steel