JPH0550377A - Magnetogrinding method - Google Patents

Magnetogrinding method

Info

Publication number
JPH0550377A
JPH0550377A JP3209343A JP20934391A JPH0550377A JP H0550377 A JPH0550377 A JP H0550377A JP 3209343 A JP3209343 A JP 3209343A JP 20934391 A JP20934391 A JP 20934391A JP H0550377 A JPH0550377 A JP H0550377A
Authority
JP
Japan
Prior art keywords
magnetic
polishing
polished
abrasive grains
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3209343A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tsuchiya
和博 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3209343A priority Critical patent/JPH0550377A/en
Publication of JPH0550377A publication Critical patent/JPH0550377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To miniaturize a gringing attachment as well as to automate a grinding process by applying an abrasive grain, hardened with oil wax or the like, on a workpiece surface, and filling up a ferromagnetic grain in a gap between a permanent magnet and a workpiece, separately from the abrasive grain, in a magnetogrinding method by means of a numerically controlled machine tool. CONSTITUTION:An abrasive grain 6 covered with paraffin wax 7 is applied to the circumference of a cylindrical workpiece 2. In addition, a ferromagnetic grain 3 of about 100mum-500mum in ferrite grain size is filled up in a gap between a permanent magnet 1 and the workpiece 2. Then, the workpiece 2 is rotated and rocked in the axial direction, thus it is ground by means of magnetogrinding. With this constitution, paraffin is melted by frictional heating, and the abrasive grain 6 is stuck to an outer circumferential part of the ferromagnetic grain 3, through which a surface of the workpiece 2 is ground.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はNC工作機械等に切削工
具の替わりに磁気研磨ツールを取り付け、切削加工等の
形状出し加工後の金型等の仕上げ、自動研磨や、金属
製、セラミックス製等の製品の鏡面研磨、加工変質層除
去研磨等に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to attach a magnetic polishing tool to an NC machine tool or the like instead of a cutting tool to finish a die or the like after shape forming processing such as cutting, automatic polishing, metal or ceramics. It is used for mirror polishing of products such as, polishing for removal of work-affected layer, etc.

【0002】[0002]

【従来の技術】従来は図2に示すごとく、数100μm
の粒径の強磁性材粒子4の表面に数μmの酸化アルミニ
ウム等の研磨砥粒5を金属結合状態で付着させ、研磨砥
粒5と強磁性材粒子4が一体となった磁性研磨砥粒とな
っていた。
2. Description of the Related Art Conventionally, as shown in FIG.
Magnetic abrasive grains in which the abrasive grains 5 and the ferromagnetic material particles 4 are integrated with each other by adhering the abrasive grains 5 of aluminum oxide or the like of several μm in a metal-bonded state to the surface of the ferromagnetic material particles 4 of It was.

【0003】[0003]

【発明が解決しようとする課題】従来のように、研磨砥
粒5を強磁性材粒子4の表面に、ある厚さで結合させた
磁性研磨砥粒は、図1に示す磁気研磨装置及び、図3に
示す被研磨物周辺の部分拡大図に示すように、永久磁石
1と被研磨物2間に詰め込まれた場合、表面の酸化アル
ミニウムは強磁性材でないため、透磁率が鉄の数100
0分の1と小さく、磁気回路としての磁気抵抗が非常に
大きくなってしまう。そのため、磁気回路に発生する磁
界の強さが小さく、しかも表面の酸化アルミニウム等の
研磨砥粒層5の厚さがバラつくと、その厚さに反比例し
て磁界の強さが弱くなるため、研磨量の制御が非常に困
難で、しかも、必要な磁界を発生するため永久磁石を強
力で非常に大きな物を必要としたため、装置が大型にな
ってしまうといった課題があった。また、同じ装置の場
合は研磨時間が数10倍かかってしまうといった課題が
あった。
As in the prior art, the magnetic polishing abrasive grains in which the polishing abrasive grains 5 are bonded to the surface of the ferromagnetic material particles 4 with a certain thickness are provided by the magnetic polishing apparatus shown in FIG. As shown in a partially enlarged view of the periphery of the object to be polished shown in FIG. 3, when the permanent magnet 1 and the object to be polished 2 are packed, the aluminum oxide on the surface is not a ferromagnetic material, so that the magnetic permeability is several hundreds of iron.
It is as small as 1/0, and the magnetic resistance as a magnetic circuit becomes very large. Therefore, the strength of the magnetic field generated in the magnetic circuit is small, and when the thickness of the polishing abrasive grain layer 5 such as aluminum oxide on the surface varies, the strength of the magnetic field weakens in inverse proportion to the thickness. It is very difficult to control the amount of polishing, and the permanent magnet requires a strong and very large object to generate a necessary magnetic field, which causes a problem that the device becomes large. Further, in the case of the same apparatus, there is a problem that the polishing time is several tens of times longer.

【0004】[0004]

【課題を解決するための手段】前記、課題を解決するた
めに、本発明の磁気研磨方法は、被研磨物と対面する永
久磁石、強磁性体粒子、油性ワックス等で固められた研
磨砥粒、より構成され、被研磨物と永久磁石を相対的に
回転あるいは揺動させる磁気研磨方法において、被研磨
物に塗布するかまたは、強磁性体粒子と油性ワックス等
で混合する研磨砥粒を、強磁性体粒子と別体で充填し、
または補給したことを特徴とする。
In order to solve the above-mentioned problems, the magnetic polishing method of the present invention is a polishing abrasive grain hardened with a permanent magnet, ferromagnetic particles, oily wax or the like facing an object to be polished. In the magnetic polishing method in which the object to be polished and the permanent magnet are relatively rotated or oscillated, the polishing abrasive particles applied to the object to be polished or mixed with the ferromagnetic particles and the oily wax, Filled with a separate body from the ferromagnetic particles,
Alternatively, it is characterized by being replenished.

【0005】[0005]

【作用】このように、強磁性体でない研磨砥粒5で覆わ
れた磁性研磨砥粒の替わりに、強磁性体粒子と研磨力の
ある粒子を分け、しかもそれを油性ワックス等で保持さ
せることにより、鉄またはニッケル系の強磁性体粒子3
どうしが接触するため、酸化アルミニウム等の非磁性材
材料でできた研磨砥粒5が間に入らず、磁気回路に発生
する磁界の強さを従来の数倍から数十倍に高めることが
できる。
As described above, in place of the magnetic polishing abrasive grains covered with the non-ferromagnetic polishing abrasive grains 5, the ferromagnetic particles and the particles having polishing ability are separated and held by oil wax or the like. According to, iron or nickel-based ferromagnetic particles 3
Since the two are in contact with each other, the abrasive grains 5 made of a non-magnetic material such as aluminum oxide do not intervene, and the strength of the magnetic field generated in the magnetic circuit can be increased from several times to several tens of times of the conventional one. ..

【0006】以下に、磁気回路にはたらく磁気抵抗の大
きさを、従来の、磁性材料の外周部を非磁性の研磨砥粒
5で覆った磁性研磨材と、本発明の強磁性体粒子3のみ
の場合を比較し、磁気回路に働く磁界の強さの違いを説
明をする。
Below, the magnitude of the magnetic resistance acting on the magnetic circuit is determined only by the conventional magnetic abrasive material in which the outer peripheral portion of the magnetic material is covered with non-magnetic abrasive grains 5 and the ferromagnetic particles 3 of the present invention. The difference in the strength of the magnetic field acting on the magnetic circuit will be explained by comparing the cases.

【0007】図7のように磁性研磨材4が永久磁石1と
被研磨物2の間に1列に並んでいる場合で考えると、磁
性研磨材4の粒径を立方体で仮定し、一辺の長さを
a、研磨砥粒5の膜厚を b、永久磁石1と被研磨物2
の間隙を G、とすると、間隙Gの間に磁性研磨材4は
G/a個、直列に並ぶ。研磨砥粒5は強磁性体ではな
いから透磁率は小さく、空隙部と考えても差し支えな
い。
Assuming that the magnetic abrasives 4 are arranged in a line between the permanent magnet 1 and the object to be polished 2 as shown in FIG. 7, the particle size of the magnetic abrasives 4 is assumed to be a cube, and one side of the magnetic abrasive 4 is assumed. Length
a, the thickness of the abrasive grains 5 is b, the permanent magnet 1 and the object to be polished 2
If the gap G is G, the magnetic abrasives 4 are arranged in series in the gap G by G / a. Since the abrasive grains 5 are not a ferromagnetic substance, they have a low magnetic permeability and can be considered as voids.

【0008】研磨砥粒部の、磁束の流れる方向12の長
さの総和を Lbとすると Lb =2b・G/a これに対し、強磁性材部4の長さの総和 La は La =(a−2b)・G/a となり、強磁性体粒子4の透磁率を μa、非磁性体の研
磨砥粒5の透磁率を μb、強磁性体粒子4の磁界と垂直
な断面積を S=a2とすると、非磁性材の透磁率 μb
は μb=μa/1000 程度であるから、G の間の磁気抵抗 Rは R=La/μa・S+Lb/μb・S =(a+1998b)・G/μa・a3 となる。ここでa=200μm、b=5μm程度である
から上式( )内のaに対し1998bの大きさは、約
50倍と、磁気抵抗に及ぼす磁性研磨材の酸化アルミニ
ウム等の非磁性研磨砥粒5の大きさの要因が非常に大き
いことがわかる。すなわち表面を酸化アルミニウム等の
非磁性研磨砥粒5で覆われた磁性研磨材4を磁気研磨に
使った場合と、強磁性体粒子3と研磨砥粒6を分けた場
合では磁気回路に発生する磁界の強さが数10倍違うこ
とがわかる。
Let Lb be the total length of the polishing abrasive grains in the direction 12 in which the magnetic flux flows. Lb = 2b · G / a On the other hand, the total length La of the ferromagnetic material portion 4 is La = (a -2b) · G / a, the magnetic permeability of the ferromagnetic particles 4 is μa, the magnetic permeability of the non-magnetic abrasive grains 5 is μb, and the cross-sectional area perpendicular to the magnetic field of the ferromagnetic particles 4 is S = a. When set to 2 , the magnetic permeability of non-magnetic material μb
Is about μb = μa / 1000, the magnetic resistance R between G is R = La / μa · S + Lb / μb · S = (a + 1998b) · G / μa · a 3 . Since a = 200 μm and b = 5 μm, the size of 1998b is about 50 times that of a in the above formula (), which is about 50 times as large as that of non-magnetic abrasive grains such as aluminum oxide, which is a magnetic abrasive that affects the magnetic resistance. It can be seen that the factor of 5 is very large. That is, when the magnetic polishing material 4 whose surface is covered with the non-magnetic polishing abrasive grains 5 such as aluminum oxide is used for the magnetic polishing, and when the ferromagnetic particles 3 and the polishing abrasive grains 6 are separated, they occur in the magnetic circuit. It can be seen that the magnetic field strength is several tens of times different.

【0009】[0009]

【実施例】以下に、実施例に基づいて説明する。Embodiments will be described below based on embodiments.

【0010】図3は、円筒状の被研磨物2の周囲にパラ
フィン系のワックス7で覆われた研磨砥粒6を塗り付
け、フェライト製の粒径100μm〜500μmの強磁
性体粒子3を永久磁石1と被研磨物2の間隙3mmの間
に充填させ、被研磨物2を回転及び軸方向に揺動させた
磁気研磨方法である。
In FIG. 3, abrasive grains 6 covered with paraffin wax 7 are applied to the periphery of a cylindrical object 2 to be polished, and ferromagnetic particles 3 made of ferrite and having a particle size of 100 μm to 500 μm are permanently applied. This is a magnetic polishing method in which the magnet 1 and the object to be polished 2 are filled in a gap of 3 mm and the object to be polished 2 is rotated and swung in the axial direction.

【0011】この場合、最初は、研磨砥粒6とパラフィ
ン系ワックス7が被研磨物2の上を覆っているだけで全
く研磨されないが、被研磨物2の回転と揺動による摩擦
熱でパラフィンが溶け、研磨砥粒6が強磁性体粒子3の
外周部に付着し出して被研磨物2の表面の研磨を開始す
る。研磨砥粒6の被研磨物2に押し付けられる応力は、
磁気回路に発生する磁界の強さに比例し、従来の、表面
を研磨砥粒5で覆われた磁性研磨材4、を使用した場合
と比べ数十倍の力を発生し、研磨力が飛躍的に増大す
る。
In this case, at first, the abrasive grains 6 and the paraffin wax 7 cover only the object to be polished 2 and are not polished at all, but the paraffin is generated by the frictional heat generated by the rotation and swing of the object 2 to be polished. Melts and the abrasive grains 6 adhere to the outer periphery of the ferromagnetic particles 3 to start polishing the surface of the object to be polished 2. The stress of the abrasive grains 6 pressed against the object to be polished 2 is
In proportion to the strength of the magnetic field generated in the magnetic circuit, a force of several tens of times is generated as compared with the case of using the conventional magnetic polishing material 4 whose surface is covered with polishing abrasive grains 5, and the polishing power is dramatically increased. Increase.

【0012】図4は、同様に、円筒物の研磨においてパ
ラフィン系ワックス7、5μm〜10μmの粒子径の研
磨砥粒6、及び、100μm〜500μmの粒子径の強
磁性体粒子3を混合した研磨材を、永久磁石1と被研磨
物2の間隙に充填させて、被研磨物2を揺動及び回転さ
せた例である。この場合も、摩擦熱でパラフィン系ワッ
クス7が溶けることにより、強磁性体粒子3が永久磁石
1と被研磨物2との間に間隙を作らず密着して直列に並
ぶため、磁気回路に非常に大きな磁界を発生し、図3の
例と同様の効果を出す。
Similarly, FIG. 4 shows a mixture of a paraffin wax 7, a polishing abrasive grain 6 having a particle diameter of 5 μm to 10 μm, and a ferromagnetic particle 3 having a particle diameter of 100 μm to 500 μm. In this example, the material is filled in the gap between the permanent magnet 1 and the object to be polished 2 and the object to be polished 2 is swung and rotated. Also in this case, because the paraffin wax 7 is melted by frictional heat, the ferromagnetic particles 3 are closely arranged in series without forming a gap between the permanent magnet 1 and the object 2 to be polished, which is very important in the magnetic circuit. A large magnetic field is generated, and the same effect as the example of FIG. 3 is obtained.

【0013】図5は、凹凸のある被研磨物8の表面に、
あらかじめパラフィン系のワックス7で固めた研磨砥粒
6を塗布しておき、回転及び揺動する永久磁石9と凹凸
のある被研磨物8との間に磁界をかけ、5mmの間隙に
100μm〜500μmの粒径の強磁性体粒子3を充填
させ、金型等の凹凸の有る被研磨物8を研磨した例であ
る。この場合は、NCフライス等で形状を作った後、同
じ加工機を使って、先端のエンドミルに替えて磁気研磨
用永久磁石を装填し、引き続き金型研磨を同じNCソフ
トを使って行うことも出来る。また、仕上げのレベルに
応じて研磨材の種類を、研削力のあるものから、研削力
はやや落ちるが鏡面つや出しが可能なものへ替えること
により、同じ加工機で連続して鏡面仕上げまで可能とな
った。
FIG. 5 shows the surface of the object to be polished 8 having irregularities,
The abrasive grains 6 hardened with a paraffin wax 7 are applied in advance, and a magnetic field is applied between the rotating and oscillating permanent magnet 9 and the uneven object 8 to be polished, and a gap of 5 mm is 100 μm to 500 μm. This is an example in which the ferromagnetic particles 3 having a particle size of 1 are filled and the object 8 having irregularities such as a mold is polished. In this case, after making a shape with an NC milling machine, etc., using the same processing machine, replace the end mill at the tip with a permanent magnet for magnetic polishing, and then perform die polishing with the same NC software. I can. Also, depending on the finishing level, the type of abrasive material can be changed from one with grinding power to one with a slightly lower grinding power but with a mirror-like finish, which allows continuous mirror finishing with the same processing machine. became.

【0014】図6は、パラフィン系ワックス7で固めた
研磨砥粒6をあらかじめ塗布した平板状被研磨物10
を、2個の向かい合った永久磁石1の間に、左右等間隔
の、1mm〜3mmの間隙をもたせセットし、その間隙
に200μm〜300μmの粒径の強磁性体粒子3を充
填させ、永久磁石1間に平板状被研磨物10を上下左右
に摺動させて研磨した例である。この場合も前記の例と
同様に、研磨のレベルに合わせた研磨砥粒を選択するこ
とができる。
FIG. 6 shows a plate-shaped object 10 to be polished, to which abrasive grains 6 hardened with paraffin wax 7 have been applied in advance.
Between the two facing permanent magnets 1 with a left-right equidistant gap of 1 mm to 3 mm set, and the gap is filled with ferromagnetic particles 3 having a particle diameter of 200 μm to 300 μm. This is an example in which the flat object 10 to be polished is slid vertically and horizontally between 1 and 1, and is polished. Also in this case, similar to the above-mentioned example, it is possible to select the polishing abrasive grains according to the polishing level.

【0015】[0015]

【発明の効果】以上の実施例からわかるように、本発明
は磁気研磨装置の磁気回路を全て強磁性材料にて構成す
ることにより、磁気回路に発生する磁界が従来の数10
倍と大きくでき研磨装置の小型化が計れた。また、従来
は研磨砥粒層の厚さのばらつきにより研磨量の制御が困
難であり均一な研磨ができにくかったが、本発明は強磁
性体粒子と研磨砥粒を別体にしたことにより、磁気回路
に発生する磁界が安定するため、制御が容易になり、均
一な研磨が可能となった。また、永久磁石と被研磨物と
の間隙が大きくても磁気回路に生ずる磁界は従来ほど変
化しないため、凹凸の有る物の研磨も、均一な研磨面を
得ることができる。又、強磁性体粒子と研磨砥粒を別体
にしたことにより、従来は時間の経過で研磨能力が劣化
した時、磁性研磨材を全て交換しなければならなかった
が、本発明の方法によれば、ワックスと混合した研磨砥
粒または研磨砥粒のみを加工中に補給することができる
ため、時間の経過によって研磨量が低下することがな
く、しかも、切削加工から研磨まで被研磨物を機械から
着脱することなくできるため、加工時間の短縮が計れ
た。以上、本発明は優れた効果を有するものである。
As can be seen from the above embodiments, according to the present invention, since the magnetic circuit of the magnetic polishing apparatus is entirely made of a ferromagnetic material, the magnetic field generated in the magnetic circuit is equal to that of the conventional one.
The size was doubled and the polishing machine was downsized. Further, conventionally it was difficult to control the amount of polishing due to the variation in the thickness of the polishing abrasive grain layer, it was difficult to perform uniform polishing, the present invention, by making the ferromagnetic particles and polishing abrasive grains separate, Since the magnetic field generated in the magnetic circuit is stable, control is easy and uniform polishing is possible. Further, even if the gap between the permanent magnet and the object to be polished is large, the magnetic field generated in the magnetic circuit does not change as much as in the conventional case, so that even with the object having irregularities, a uniform polished surface can be obtained. Further, since the ferromagnetic particles and the abrasive grains are separated, conventionally, when the polishing ability deteriorated with the passage of time, it was necessary to replace all the magnetic abrasives. According to this, since the polishing abrasive grains mixed with wax or only the polishing abrasive grains can be replenished during the processing, the polishing amount does not decrease with the passage of time, and moreover, the workpiece to be polished from cutting processing to polishing Since it can be done without attaching and detaching from the machine, the processing time was shortened. As described above, the present invention has excellent effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気研磨方法の代表的な装置の全体側
面図。
FIG. 1 is an overall side view of a typical apparatus for a magnetic polishing method of the present invention.

【図2】従来の磁気研磨方法で使用した磁性研磨材粒子
の断面図。
FIG. 2 is a cross-sectional view of magnetic abrasive particles used in a conventional magnetic polishing method.

【図3】本発明の磁気研磨方法の図1に示す装置の研磨
部分の拡大側面図で、ワックスで固めた研磨砥粒を、被
研磨物に塗布した場合の図。
3 is an enlarged side view of a polishing portion of the apparatus shown in FIG. 1 of the magnetic polishing method of the present invention, showing a case where polishing abrasive grains hardened with wax are applied to an object to be polished.

【図4】本発明の磁気研磨方法の、強磁性体粒子をワッ
クス及び研磨砥粒と混合し、円筒を研磨している部分拡
大斜視図。
FIG. 4 is a partially enlarged perspective view of a magnetic polishing method of the present invention in which ferromagnetic particles are mixed with wax and abrasive grains to polish a cylinder.

【図5】本発明の磁気研磨方法で凹凸の有る金型等に、
ワックスで固めた研磨砥粒を塗布し、強磁性体粒子で研
磨している部分拡大斜視図。
FIG. 5 shows a mold or the like having irregularities by the magnetic polishing method of the present invention,
FIG. 4 is a partially enlarged perspective view of applying abrasive grains hardened with wax and polishing with ferromagnetic particles.

【図6】本発明の磁気研磨方法の、平板両面研磨の部分
拡大斜視図。
FIG. 6 is a partially enlarged perspective view of flat plate double-side polishing in the magnetic polishing method of the present invention.

【図7】本発明の磁気研磨方法の磁界の強さを説明する
永久磁石と被研磨物間の従来方法の部分拡大断面図。
FIG. 7 is a partially enlarged cross-sectional view of a conventional method for explaining the strength of a magnetic field of the magnetic polishing method of the present invention between a permanent magnet and an object to be polished.

【符号の説明】[Explanation of symbols]

1.永久磁石 2.円筒状被研磨物 3.フェライトまたはパーマロイ等の強磁性体粒子 4.磁性研磨材の強磁性体粒子 5.強磁性体粒子と金属結合した研磨砥粒 6.研磨砥粒 7.油性またはパラフィン系ワックス 8.凹凸のある被研磨物 9.回転する永久磁石 10.平板状被研磨物 11.被研磨物の回転または揺動方向 12.磁界の方向 a.磁性研磨材の粒径 b.研磨砥粒の粒径 G.永久磁石と被研磨物の間隙 1. Permanent magnet 2. Cylindrical object to be polished 3. Ferromagnetic particles such as ferrite or permalloy 4. 4. Ferromagnetic particles of magnetic abrasives 5. Abrasive grains that are metal-bonded with ferromagnetic particles. Abrasive grain 7. Oily or paraffin wax 8. Object to be polished 9. Rotating permanent magnet 10. Flat object to be polished 11. Rotation or swing direction of the object to be polished 12. Direction of magnetic field a. Particle size of magnetic abrasive b. Grain size of abrasive grains G. Gap between permanent magnet and object to be polished

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被研磨物と対面する永久磁石、強磁性体粒
子、油性ワックス等で固められた研磨砥粒、より構成さ
れ、被研磨物と永久磁石を相対的に回転あるいは揺動さ
せる磁気研磨方法において、被研磨物表面に油性ワック
ス等で固めた研磨砥粒を塗布し、強磁性体粒子を研磨砥
粒と別体で、永久磁石と被研磨物との間隙に充填したこ
とを特徴とする磁気研磨方法。
1. A magnetic field comprising a permanent magnet facing an object to be polished, ferromagnetic particles, abrasive grains hardened with oily wax, etc., for rotating or rocking the object to be polished and the permanent magnet relatively. In the polishing method, polishing abrasive particles hardened with an oily wax or the like are applied to the surface of the object to be polished, and the ferromagnetic particles are separate from the abrasive particles and are filled in the gap between the permanent magnet and the object to be polished. And magnetic polishing method.
【請求項2】前記、磁気研磨方法において、請求項1記
載の強磁性体粒子と研磨砥粒を別体で油性ワックス等と
混合し、永久磁石と被研磨物との間隙に充填したことを
特徴とする、請求項1記載の磁気研磨方法。
2. In the magnetic polishing method, the ferromagnetic particles according to claim 1 and the abrasive grains are separately mixed with oil wax or the like, and the mixture is filled in the gap between the permanent magnet and the object to be polished. The magnetic polishing method according to claim 1, which is characterized in that:
【請求項3】前記、磁気研磨方法において、請求項1叉
は2の研磨途中または初期において、請求項1記載の研
磨砥粒または油性ワックス等で固めた研磨砥粒を永久磁
石と被研磨物との間隙に補給したことを特徴とする、請
求項1記載の磁気研磨方法。
3. In the above magnetic polishing method, the polishing abrasive grains according to claim 1 or the polishing abrasive grains hardened with oily wax or the like during the polishing or the initial stage of polishing according to claim 1 or a permanent magnet and an object to be polished. The magnetic polishing method according to claim 1, wherein the magnetic polishing is replenished in a gap between
JP3209343A 1991-08-21 1991-08-21 Magnetogrinding method Pending JPH0550377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209343A JPH0550377A (en) 1991-08-21 1991-08-21 Magnetogrinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209343A JPH0550377A (en) 1991-08-21 1991-08-21 Magnetogrinding method

Publications (1)

Publication Number Publication Date
JPH0550377A true JPH0550377A (en) 1993-03-02

Family

ID=16571383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209343A Pending JPH0550377A (en) 1991-08-21 1991-08-21 Magnetogrinding method

Country Status (1)

Country Link
JP (1) JPH0550377A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052123A (en) * 2008-08-29 2010-03-11 Utsunomiya Univ Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JP2019014004A (en) * 2017-07-06 2019-01-31 日本特殊陶業株式会社 Production method for ceramic product
JP2019030924A (en) * 2017-08-07 2019-02-28 国立大学法人宇都宮大学 Magnetic polishing method and magnetic polishing device
US11940683B2 (en) 2019-06-26 2024-03-26 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052123A (en) * 2008-08-29 2010-03-11 Utsunomiya Univ Ultraprecise magnetic polishing method and polishing slurry for ultraprecise magnetic polishing
JP2019014004A (en) * 2017-07-06 2019-01-31 日本特殊陶業株式会社 Production method for ceramic product
JP2019030924A (en) * 2017-08-07 2019-02-28 国立大学法人宇都宮大学 Magnetic polishing method and magnetic polishing device
US11940683B2 (en) 2019-06-26 2024-03-26 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
US11940682B2 (en) 2019-06-26 2024-03-26 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays

Similar Documents

Publication Publication Date Title
Jain et al. Force analysis of magnetic abrasive nano-finishing of magnetic and non-magnetic materials
JPS6034264A (en) Magnetic finishing method and device thereof
JPS6247150B2 (en)
JPH0550377A (en) Magnetogrinding method
JP3719780B2 (en) Truing method for superabrasive wheels
JP2005001027A (en) Probe needle grinding device
US5569061A (en) Method and device for magneto-abrasive machining of parts
JP2005153106A (en) Polishing tool, polishing tool manufacturing method, polishing method, and polishing device
JP3030952B2 (en) Magnetic polishing method
JP3846052B2 (en) Magnetic polishing apparatus and magnetic polishing method
JPS6239172A (en) Magnetic polishing machine
KR100323065B1 (en) A poplshing apparatus based on the magnetic field forming principale of electromagnet
JP4471197B2 (en) Polishing method that does not require processing pressure control
JP2008254140A (en) Dressing device for thin blade grinding wheel, dressing method, manufacturing method of semiconductor and manufacturing method of precision part
JP2010214505A (en) Method for increasing form restoring force of particle dispersion type mixture functional fluid using varied magnetic field and polishing method and polishing device using the same
JP3081912B2 (en) Arrangement method of non-magnetic material
JP2000061810A (en) Magnetic grinding method and magnetic grinding device
JP2732215B2 (en) Magnetic polishing of non-magnetic materials
JP2005186239A (en) Grinding method using magnetic abrasive grain, and grinder
JP2005219169A (en) Grinding wheel and its manufacturing method
JP2005014148A (en) Polishing tool, polishing method using the polishing tool and polishing device
JP2021133450A (en) Fixed abrasive polishing method applying magnetism-assisted processing method and polishing apparatus
JPS61125762A (en) Tool grinding method
JPS6339007Y2 (en)
JP3947824B2 (en) Processing method and apparatus using magnetic powder