JP3030952B2 - Magnetic polishing method - Google Patents

Magnetic polishing method

Info

Publication number
JP3030952B2
JP3030952B2 JP3200740A JP20074091A JP3030952B2 JP 3030952 B2 JP3030952 B2 JP 3030952B2 JP 3200740 A JP3200740 A JP 3200740A JP 20074091 A JP20074091 A JP 20074091A JP 3030952 B2 JP3030952 B2 JP 3030952B2
Authority
JP
Japan
Prior art keywords
magnetic
polished
abrasive grains
polishing
ferromagnetic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3200740A
Other languages
Japanese (ja)
Other versions
JPH0542476A (en
Inventor
和博 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3200740A priority Critical patent/JP3030952B2/en
Publication of JPH0542476A publication Critical patent/JPH0542476A/en
Application granted granted Critical
Publication of JP3030952B2 publication Critical patent/JP3030952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はNC工作機械等に切削工
具の替わりに磁気研磨ツールを取り付け、切削加工等の
形状出し加工後の金型等の仕上げ、自動研磨や、金属
製、セラミックス製等の製品の鏡面研磨、加工変質層除
去研磨等に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method in which a magnetic polishing tool is mounted on an NC machine tool in place of a cutting tool, and finishing of a mold or the like after shaping processing such as cutting processing, automatic polishing, metal or ceramics. It is used for mirror-polishing of products such as, and polishing for removing affected layers.

【0002】[0002]

【従来の技術】従来は図2に示すごとく、数100μm
の粒径の強磁性材粒子1の表面に数μmの酸化アルミニ
ウム等の研磨砥粒2を金属結合状態で付着させ、研磨砥
粒2と強磁性材粒子1が一体となった磁性研磨砥粒とな
っていた。
2. Description of the Related Art Conventionally, as shown in FIG.
Magnetic abrasive grains in which the abrasive grains 2 and the ferromagnetic material particles 1 are integrated with the abrasive grains 2 of aluminum oxide or the like having a thickness of several μm adhered to the surface of the ferromagnetic material particles 1 having a particle size of Had become.

【0003】[0003]

【発明が解決しようとする課題】従来のように、研磨砥
粒2を強磁性材粒子1の表面に、ある厚さで結合させた
磁性研磨砥粒は、図1に示す磁気研磨装置及び、図3に
示す被研磨物周辺の部分拡大図に示すように、磁極6と
被研磨物7間に詰め込まれた場合、表面の酸化アルミニ
ウムは強磁性材でないため、透磁率が鉄の数1000分
の1と小さく、磁気回路としての磁気抵抗が非常に大き
くなってしまう。そのため、励磁コイルの巻数及びコイ
ルに流す電流が同じでも、磁気回路に発生する磁界の強
さが小さく、しかも表面の酸化アルミニウム等の研磨砥
粒層2の厚さがバラつくと、その厚さに反比例して磁界
の強さが弱くなるため、研磨量の制御が非常に困難で、
しかも、必要な磁界を発生するための励磁コイル4の巻
数及び印加する電流を多く必要としたため、装置が大型
になってしまうといった課題があった。また、同じ装置
の場合は研磨時間が数10倍かかってしまうといった課
題があった。
As in the prior art, the magnetic polishing abrasive grains in which the abrasive grains 2 are bonded to the surface of the ferromagnetic material particles 1 at a certain thickness are composed of a magnetic polishing apparatus shown in FIG. As shown in the partial enlarged view around the object to be polished shown in FIG. 3, when the magnetic material is packed between the magnetic pole 6 and the object to be polished 7, the aluminum oxide on the surface is not a ferromagnetic material, so that the magnetic permeability is several thousand minutes of iron. Therefore, the magnetic resistance of the magnetic circuit becomes very large. Therefore, even if the number of turns of the exciting coil and the current flowing through the coil are the same, if the strength of the magnetic field generated in the magnetic circuit is small and the thickness of the polishing abrasive grain layer 2 of aluminum oxide or the like on the surface varies, the thickness becomes large. Since the strength of the magnetic field weakens in inverse proportion to, it is very difficult to control the amount of polishing,
Moreover, since the number of turns of the exciting coil 4 and the applied current for generating the required magnetic field are required to be large, there is a problem that the device becomes large. Further, in the case of the same apparatus, there is a problem that the polishing time is several tens times.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
に、本発明の磁気研磨方法は、ヨーク、励磁コイル、電
源、被研磨物と対面する磁極、強磁性体粒子、常温では
固体の油脂で固められた研磨砥粒より構成され、励磁コ
イルに電圧を印加し、被研磨物と対面する磁極間に磁界
を発生させながら、被研磨物と磁極を相対的に回転ある
いは揺動させる磁気研磨方法において、常温では固体の
油脂で強磁性体粒子と混合した研磨砥粒を、強磁性体粒
子と別々に磁極と被研磨物との間に充填するか、または
強磁性体粒子、研磨砥粒、および前記油脂を混合し、磁
極と被研磨物との間隙に充填または補給したことを特徴
とする
In order to solve the above problems SUMMARY OF THE INVENTION The magnetic polishing method of the present invention, the yoke, the exciting coil, power supply, magnetic poles facing the object to be polished, ferromagnetic particles, at room temperature
It consists of abrasive grains solidified with solid oils and fats.Applying a voltage to the excitation coil to generate a magnetic field between the magnetic poles facing the workpiece and rotate or swing the workpiece and the magnetic pole relatively. In the magnetic polishing method, the solid
Abrasive grains mixed with ferromagnetic particles with oils and fats
Between the magnetic pole and the object to be polished separately from the probe, or
Mix ferromagnetic particles, abrasive grains, and the fat and oil
It is characterized by filling or replenishing the gap between the pole and the workpiece
And

【0005】[0005]

【作用】このように、強磁性体でない研磨砥粒2で覆わ
れた磁性研磨砥粒の替わりに、強磁性体粒子と研磨力の
ある粒子を分け、しかもそれを油性ワックス等で保持さ
せることにより、鉄またはニッケル系の強磁性体粒子8
どうしが接触するため、酸化アルミニウム等の非磁性材
でできた研磨砥粒2が間に入らず、磁気回路に発生す
る磁界の強さを従来の数倍から数十倍に高めることがで
きる。
As described above, instead of the magnetic abrasive grains covered with the abrasive grains 2 which are not ferromagnetic, the ferromagnetic particles and the abrasive particles are separated and held by an oil wax or the like. The iron or nickel-based ferromagnetic particles 8
Non-magnetic materials such as aluminum oxide because they come into contact with each other
The abrasive grains 2 made of the material do not intervene, and the intensity of the magnetic field generated in the magnetic circuit can be increased several times to several tens times as compared with the related art.

【0006】以下に、磁気回路にはたらく磁気抵抗の大
きさを、従来の、磁性材料の外周部を非磁性の研磨砥粒
2で覆った磁性研磨材と、本発明の強磁性体粒子8のみ
の場合を比較し、磁気回路に働く磁界の強さの違いを説
明をする。
The magnitude of the magnetic resistance acting on the magnetic circuit will be described below by using only a conventional magnetic abrasive in which the outer periphery of a magnetic material is covered with nonmagnetic abrasive grains 2, and only the ferromagnetic particles 8 of the present invention. The difference in the strength of the magnetic field acting on the magnetic circuit will be described by comparing the case of FIG.

【0007】図7のように磁性研磨材1が磁極6と被研
磨物7の間に1列に並んでいる場合で考えると、磁性研
磨材1の粒径を立方体で仮定し、一辺の長さを a、研
磨砥粒2の膜厚を b、磁極6と被研磨物7の間隙を
G、とすると、間隙 Gの間に磁性研磨材1は G/a
個、直列に並ぶ。研磨砥粒2は強磁性体ではないから透
磁率は小さく、空隙部と考えても差し支えない。
Assuming that the magnetic abrasives 1 are arranged in a line between the magnetic pole 6 and the workpiece 7 as shown in FIG. 7, the particle size of the magnetic abrasive 1 is assumed to be a cube, and the length of one side is assumed. A, the thickness of the abrasive grains 2 b, and the gap between the magnetic pole 6 and the workpiece 7
G, the magnetic abrasive 1 is G / a between the gaps G.
Pieces are arranged in series. Since the abrasive grains 2 are not ferromagnetic, they have low magnetic permeability and may be considered as voids.

【0008】研磨砥粒部の、磁束の流れる方向15の長
さの総和を Lbとすると Lb =2b・G/a これに対し、強磁性材部1の長さの総和 La は La =(a−2b)・G/a となり、強磁性体粒子1の透磁率を μa、非磁性体の研
磨砥粒2の透磁率を μb、強磁性体粒子1の磁界と垂直
な断面積を S=a2とすると、非磁性材の透磁率μb
は μb=μa/1000 程度であるから、G の間の磁気抵抗 Rは R=La/μa・S+Lb/μb・S =(a+1998b)・G/μa・a3 となる。ここでa=200μm、b=5μm程度である
から上式( )内のaに対し1998bの大きさは、約
50倍と、磁気抵抗に及ぼす磁性研磨材の酸化アルミニ
ウム等の非磁性研磨砥粒2の大きさの要因が非常に大き
いことがわかる。すなわち表面を酸化アルミニウム等の
非磁性研磨砥粒2で覆われた磁性研磨材1を磁気研磨に
使った場合と、強磁性体粒子8と研磨砥粒9を分けた場
合では磁気回路に発生する磁界の強さが数10倍違うこ
とがわかる。
Assuming that the sum of the lengths of the abrasive grains in the direction 15 in which the magnetic flux flows is Lb, Lb = 2b · G / a. On the other hand, the sum La of the lengths of the ferromagnetic material portions 1 is La = (a −2b) · G / a, where the magnetic permeability of the ferromagnetic particles 1 is μa, the magnetic permeability of the non-magnetic abrasive grains 2 is μb, and the cross-sectional area perpendicular to the magnetic field of the ferromagnetic particles 1 is S = a. If 2 , the magnetic permeability of the non-magnetic material μb
Is approximately μb = μa / 1000, and the magnetic resistance R between G is R = La / μa · S + Lb / μb · S = (a + 1998b) · G / μa · a 3 . Here, since a = 200 μm and b = 5 μm, the size of 1998b is about 50 times as large as a in the above formula (), and the non-magnetic abrasive grains such as aluminum oxide of a magnetic abrasive that affects the magnetic resistance It can be seen that the factor of size 2 is very large. That is, when the magnetic abrasive 1 whose surface is covered with non-magnetic abrasive grains 2 such as aluminum oxide is used for magnetic polishing, and when the ferromagnetic particles 8 and the abrasive abrasive grains 9 are separated, a magnetic circuit is generated. It can be seen that the strength of the magnetic field differs by several tens of times.

【0009】[0009]

【実施例】以下に、実施例に基づいて説明する。Embodiments will be described below based on embodiments.

【0010】図3は、円筒状の被研磨物7の周囲にパラ
フィン系の常温で固体状のワックス10で覆われた研磨
砥粒9を塗り付け、フェライト製の粒径100μm〜5
00μmの強磁性体粒子8を磁極6と被研磨物7の間隙
3mmの間に充填させ、ヨーク3に磁界をかけて、被研磨
物7を回転及び軸方向に揺動させた磁気研磨方法であ
る。
[0010] Figure 3 is para to the periphery of the cylindrical workpiece 7
Abrasive abrasive grains 9 covered with solid wax 10 at room temperature of a fin system are applied and ferrite particles having a particle size of 100 μm to 5 μm.
A magnetic polishing method in which a ferromagnetic particle 8 of 00 μm is filled in a gap of 3 mm between the magnetic pole 6 and the object 7 to be polished, and a magnetic field is applied to the yoke 3 to rotate and oscillate the object 7 to be polished in the axial direction. is there.

【0011】この場合、最初は、研磨砥粒9とパラフィ
ン系ワックス10が被研磨物7の上を覆っているだけで
全く研磨されないが、被研磨物7の回転と揺動による摩
擦熱でパラフィンが溶け、研磨砥粒9が強磁性体粒子8
の外周部に付着し出して被研磨物7の表面の研磨を開始
する。研磨砥粒9の被研磨物7に押し付けられる応力
は、磁気回路に発生する磁界の強さに比例し、従来の、
表面を研磨砥粒2で覆われた磁性研磨材1、を使用した
場合と比べ数十倍の力を発生し、研磨力が飛躍的に増大
する。
In this case, at first, the abrasive grains 9 and the paraffin-based wax 10 only cover the workpiece 7 and are not polished at all. Melts and the abrasive grains 9 become ferromagnetic particles 8
And starts polishing the surface of the object 7 to be polished. The stress of the abrasive grains 9 pressed against the workpiece 7 is proportional to the strength of the magnetic field generated in the magnetic circuit.
As compared with the case where the magnetic abrasive 1 whose surface is covered with the abrasive grains 2, a force several tens of times higher is generated, and the polishing power is greatly increased.

【0012】図4は、同様に、円筒物の研磨においてパ
ラフィン系ワックス10、5μm〜10μmの粒子径の
研磨砥粒9、及び、100μm〜500μmの粒子径の
強磁性体粒子8を混合した研磨材を、磁極6と被研磨物
7の間隙に充填させて、被研磨物7を揺動及び回転させ
た例である。この場合も、摩擦熱でパラフィン系ワック
ス10が溶けることにより、強磁性体粒子8が磁極6と
被研磨物7との間に磁気的な間隙を作らず密着して磁力
線に沿って直列に並ぶため、磁気回路に非常に大きな磁
界を発生し、図3と同様の効果を出す。
FIG. 4 is a view showing a mixture obtained by mixing a paraffin-based wax 10, abrasive grains 9 having a particle diameter of 5 μm to 10 μm, and ferromagnetic particles 8 having a particle diameter of 100 μm to 500 μm. This is an example in which a material is filled in the gap between the magnetic pole 6 and the object 7 to be polished, and the object 7 is oscillated and rotated. Again, by paraffin wax 10 melts by the frictional heat, ferromagnetic particles 8 in close contact without creating magnetic gap between the pole 6 and the object to be polished 7 force
Since they are arranged in series along the line, a very large magnetic field is generated in the magnetic circuit, and the same effect as in FIG. 3 is obtained.

【0013】図5は、凹凸のある被研磨物11の表面
に、あらかじめパラフィン系のワックス10で固めた研
磨砥粒9を塗布しておき、回転及び揺動する磁極12と
被研磨物11との間に磁界をかけ、5mmの間隙に10
0μm〜500μmの粒径の強磁性体粒子8を充填さ
せ、金型等の凹凸の有る被研磨物11を研磨した例であ
る。この場合は、NCフライス等で形状を作った後、同
じ加工機を使って、先端のエンドミルに替えて磁気研磨
用磁極を装填し、引き続き金型研磨を同じNCソフトを
使って行うことも出来る。また、仕上げのレベルに応じ
て研磨材の種類を、研削力のあるものから、研削力はや
や落ちるが鏡面つや出しが可能なものへ替えることによ
り、同じ加工機で連続して鏡面仕上げまで可能となっ
た。
FIG. 5 shows that the abrasive grains 9, which have been previously hardened with paraffin wax 10, are applied to the surface of the polished object 11 having irregularities, and the rotating and oscillating magnetic pole 12 and the polished object 11 are coated. Between the 5mm gap
This is an example in which ferromagnetic particles 8 having a particle size of 0 μm to 500 μm are filled, and an object to be polished 11 having irregularities such as a mold is polished. In this case, after forming the shape with an NC milling machine or the like, using the same processing machine, the magnetic pole for magnetic polishing can be loaded instead of the end mill at the tip, and the mold polishing can be subsequently performed using the same NC software. . In addition, by changing the type of abrasive from one with grinding power to one with a slightly reduced grinding power but capable of mirror polishing according to the level of finishing, it is possible to continuously perform mirror finishing with the same processing machine. became.

【0014】図6は、パラフィン系ワックス10で固め
た研磨砥粒9をあらかじめ塗布した平板状被研磨物13
を、2個の向かい合った磁極6の間に、左右等間隔の、
1mm〜3mmの間隙をもたせセットし、その間隙に2
00μm〜300μmの粒径の強磁性体粒子8を充填さ
せ、磁極6間に磁界をかけ被研磨物13を上下左右に摺
動させて研磨した例である。この場合も前記の例と同様
に、研磨のレベルに合わせた研磨砥粒を選択することが
できる。
FIG. 6 is a plan view showing a plate-like object 13 to which polishing abrasive grains 9 hardened with a paraffin wax 10 are applied in advance.
Between two opposing magnetic poles 6 at equal intervals on the left and right,
Set with a gap of 1 mm to 3 mm, and
This is an example in which ferromagnetic particles 8 having a particle size of 00 μm to 300 μm are filled, and a magnetic field is applied between the magnetic poles 6 so that the object 13 is slid up, down, left and right. In this case as well, similarly to the above-described example, it is possible to select the abrasive grains according to the polishing level.

【0015】[0015]

【発明の効果】以上の実施例からわかるように、本発明
は磁気研磨装置の磁気回路を全て強磁性材料にて構成す
ることにより、磁気回路に発生する磁界が従来の数10
倍と大きくなるため、励磁コイルの巻数を少なくでき、
印加する電流を少なくできる。これにより、従来、数1
0Kgの銅線で励磁コイルを構成しなければならなかっ
たのが、数Kgで済み研磨装置の小型化が計れた。ま
た、従来は研磨砥粒層の厚さのばらつきにより研磨量の
制御が困難であり均一な研磨ができにくかったが、本発
明は強磁性体粒子と研磨砥粒を別体にしたことにより、
磁気回路に発生する磁界が安定するため、制御が容易に
なり、均一な研磨が可能となった。また、磁極と被研磨
物との間隙が大きくても磁気回路に生ずる磁界は従来ほ
ど変化しないため、凹凸の有る物の研磨も、均一な研磨
面を得ることができる。又、強磁性体粒子と研磨砥粒を
別体にしたことにより、従来は時間の経過で研磨能力が
劣化した時、磁性研磨材を全て交換しなければならなか
ったが、本発明の方法によれば、ワックスと混合した研
磨砥粒または研磨砥粒のみを加工中に補給することがで
きるため、時間の経過によって研磨量が低下することが
なく、しかも、切削加工から研磨まで被研磨物を機械か
ら着脱することなくできるため、加工時間の短縮が計れ
た。以上、本発明は優れた効果を有するものである。
As can be seen from the above embodiments, according to the present invention, since the magnetic circuit of the magnetic polishing apparatus is entirely made of a ferromagnetic material, the magnetic field generated in the magnetic circuit is several tens of the conventional magnetic circuit.
Because it is twice as large, the number of turns of the exciting coil can be reduced,
The applied current can be reduced. As a result, conventionally, Equation 1
The excitation coil had to be composed of 0 Kg of copper wire, but was reduced to several Kg, and the size of the polishing apparatus was reduced. In addition, conventionally, it was difficult to control the amount of polishing due to the variation in the thickness of the polishing abrasive layer, and it was difficult to perform uniform polishing.However, the present invention separates the ferromagnetic particles and the polishing abrasive particles,
Since the magnetic field generated in the magnetic circuit is stabilized, control is facilitated, and uniform polishing is possible. Further, even if the gap between the magnetic pole and the object to be polished is large, the magnetic field generated in the magnetic circuit does not change as much as in the past, so that a uniform polished surface can be obtained when polishing an object having irregularities. In addition, by separating the ferromagnetic particles and the abrasive grains separately, conventionally, when the polishing ability deteriorated with the passage of time, all the magnetic abrasives had to be replaced. According to this, since the polishing abrasive grains mixed with the wax or only the polishing abrasive grains can be replenished during the processing, the polishing amount does not decrease over time, and moreover, the object to be polished from the cutting processing to the polishing can be removed. Since it can be done without removing it from the machine, the processing time was reduced. As described above, the present invention has excellent effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気研磨方法の代表的な装置の全体側
面図。
FIG. 1 is an overall side view of a typical apparatus of a magnetic polishing method according to the present invention.

【図2】従来の磁気研磨方法で使用した磁性研磨材粒子
の断面図。
FIG. 2 is a cross-sectional view of magnetic abrasive particles used in a conventional magnetic polishing method.

【図3】本発明の磁気研磨方法の図1に示す装置の研磨
部分の拡大側面図で、ワックスで固めた研磨砥粒を、被
研磨物に塗布した場合の図。
FIG. 3 is an enlarged side view of a polishing portion of the apparatus shown in FIG. 1 in the magnetic polishing method of the present invention, in which polishing abrasive grains hardened with wax are applied to a workpiece.

【図4】本発明の磁気研磨方法の、強磁性体粒子をワッ
クス及び研磨砥粒と混合し、円筒を研磨している部分拡
大斜視図。
FIG. 4 is a partially enlarged perspective view of the magnetic polishing method of the present invention, in which ferromagnetic particles are mixed with wax and abrasive grains to polish a cylinder.

【図5】本発明の磁気研磨方法で凹凸の有る金型等に、
ワックスで固めた研磨砥粒を塗布し、強磁性体粒子で研
磨している部分拡大斜視図。
FIG. 5 is a view showing a method for forming a metal mold having irregularities by the magnetic polishing method of the present invention.
FIG. 4 is a partially enlarged perspective view in which abrasive grains hardened with wax are applied and polished with ferromagnetic particles.

【図6】本発明の磁気研磨方法の、平板両面研磨の部分
拡大斜視図。
FIG. 6 is a partially enlarged perspective view of flat-plate double-side polishing in the magnetic polishing method of the present invention.

【図7】本発明の磁気研磨方法の磁界の強さを説明する
磁極と被研磨物間の従来方法の部分拡大断面図。
FIG. 7 is a partially enlarged cross-sectional view of a conventional method between a magnetic pole and an object to be polished for explaining the strength of a magnetic field in the magnetic polishing method of the present invention.

【符号の説明】[Explanation of symbols]

1.磁性研磨材の強磁性体粒子 2.強磁性体粒子と金属結合した研磨砥粒 3.ヨーク 4.励磁コイル 5.電源 6.磁極 7.円筒状被研磨物 8.フェライトまたはパーマロイ等の強磁性体粒子 9.研磨砥粒 10.油性またはパラフィン系ワックス 11.凹凸のある被研磨物 12.回転する磁極 13.平板状被研磨物 14.被研磨物の回転または揺動方向 15.磁界の方向 a.磁性研磨材の粒径 b.研磨砥粒の粒径 G.磁極と被研磨物の間隙 1. 1. Ferromagnetic particles of magnetic abrasive 2. Abrasive grains metal-bonded to ferromagnetic particles York 4. Excitation coil 5. Power supply 6. Magnetic pole 7. 7. Cylindrical object to be polished 8. Ferromagnetic particles such as ferrite or permalloy Polishing abrasive grains 10. 10. Oily or paraffinic wax Polished object with irregularities Rotating magnetic pole 13. Flat object to be polished 14. 14. Rotation or swing direction of the object to be polished Magnetic field direction a. Particle size of magnetic abrasive b. G. Particle size of abrasive grains Gap between magnetic pole and workpiece

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ヨーク、励磁コイル、電源、被研磨物と対
面する磁極、強磁性体粒子、常温では固体の油脂で固め
られた研磨砥粒より構成され、励磁コイルに電圧を印加
し、被研磨物と対面する磁極間に磁界を発生させなが
ら、被研磨物と磁極を相対的に回転あるいは揺動させる
磁気研磨方法において、被研磨物表面に前記油脂で固め
た研磨砥粒を塗布し、強磁性体粒子を研磨砥粒と別々に
磁極と被研磨物との間隙に充填したことを特徴とする磁
気研磨方法。
1. A yoke, an excitation coil, a power supply, a magnetic pole facing a workpiece to be polished, ferromagnetic particles, and polishing abrasive grains solidified with a fat or oil at room temperature. While generating a magnetic field between the magnetic poles facing the polished object, in the magnetic polishing method of relatively rotating or swinging the magnetic pole and the object to be polished, apply the abrasive grains solidified with the oil and fat on the surface of the object to be polished, A magnetic polishing method characterized in that ferromagnetic particles are separately filled with abrasive grains into a gap between a magnetic pole and an object to be polished.
【請求項2】ヨーク、励磁コイル、電源、被研磨物と対
面する磁極、強磁性体粒子、常温では固体の油脂で固め
られた研磨砥粒より構成され、励磁コイルに電圧を印加
し、被研磨物と対面する磁極間に磁界を発生させなが
ら、被研磨物と磁極を相対的に回転あるいは揺動させる
磁気研磨方法において、強磁性体粒子、研磨砥粒、およ
び前記油脂を混合し、磁極と被研磨物との間隙に充填し
たことを特徴とする磁気研磨方法。
2. A pair of a yoke, an exciting coil, a power supply, and an object to be polished.
Faced magnetic poles, ferromagnetic particles, solidified at room temperature with solid fat
A voltage is applied to the excitation coil
While generating a magnetic field between the magnetic poles facing the workpiece.
Then, rotate or swing the workpiece and the magnetic pole relatively.
A magnetic polishing method comprising mixing ferromagnetic particles, abrasive grains, and the oil and fat, and filling the mixture between a magnetic pole and an object to be polished.
【請求項3】請求項1又は2に記載の磁気研磨方法にお
いて、前記研磨砥粒と前記油脂の少なくともどちらか一
方を研磨途中に磁極と被研磨物との間隙に補給したこと
を特徴とする請求項1又は2に記載の磁気研磨方法。
3. The magnetic polishing method according to claim 1, wherein
And at least one of the abrasive grains and the fat or oil.
The magnetic polishing method according to claim 1 or 2, wherein the other is supplied to a gap between the magnetic pole and the object to be polished during polishing.
JP3200740A 1991-08-09 1991-08-09 Magnetic polishing method Expired - Fee Related JP3030952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200740A JP3030952B2 (en) 1991-08-09 1991-08-09 Magnetic polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200740A JP3030952B2 (en) 1991-08-09 1991-08-09 Magnetic polishing method

Publications (2)

Publication Number Publication Date
JPH0542476A JPH0542476A (en) 1993-02-23
JP3030952B2 true JP3030952B2 (en) 2000-04-10

Family

ID=16429383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200740A Expired - Fee Related JP3030952B2 (en) 1991-08-09 1991-08-09 Magnetic polishing method

Country Status (1)

Country Link
JP (1) JP3030952B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732215B2 (en) * 1994-02-22 1998-03-25 鈴木 清 Magnetic polishing of non-magnetic materials

Also Published As

Publication number Publication date
JPH0542476A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
Mulik et al. Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives
JP3030952B2 (en) Magnetic polishing method
EP0118126B1 (en) Magnetic attraction system grinding method
Qian et al. Precision internal grinding with a metal-bonded diamond grinding wheel
Iqbal et al. Nanofinishing of freeform surfaces using BEMRF
JPH0550377A (en) Magnetogrinding method
US5100045A (en) Method of reconditioning brazed diamond abrasive tools
JP2005153106A (en) Polishing tool, polishing tool manufacturing method, polishing method, and polishing device
JP4890992B2 (en) Surface processing apparatus and surface processing method
JPS6239172A (en) Magnetic polishing machine
JPS62102969A (en) Magnetic polishing method
JP4471197B2 (en) Polishing method that does not require processing pressure control
JP3846052B2 (en) Magnetic polishing apparatus and magnetic polishing method
WO1998018597A1 (en) A method and device for magneto-abrasive machining
JP2000061810A (en) Magnetic grinding method and magnetic grinding device
JP2008254140A (en) Dressing device for thin blade grinding wheel, dressing method, manufacturing method of semiconductor and manufacturing method of precision part
JP2016137553A (en) Polishing apparatus and polishing method
Khairy et al. Some aspects of magnetoabrasive finishing process
JP3686652B2 (en) A grindstone that can control the distribution and arrangement of abrasive grains by an electric field, its manufacturing method, and surface finishing method
JP2020116722A (en) Fluid polishing device and fluid polishing method
Hameed The Effect of Operating Parameters of MAF Process on the Surface Roughness for Ferromagnetic Materials
JP2732215B2 (en) Magnetic polishing of non-magnetic materials
Sharma et al. Detailed review of ball end magnetorheological fluid finishing process
Gill et al. Comparison of the performance of sintered abrasives to glued abrasives using a rotating magnetic field finishing setup
JP2006088283A (en) Method and device for polishing and coating mirror surface

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees