JPH0549730B2 - - Google Patents

Info

Publication number
JPH0549730B2
JPH0549730B2 JP60208098A JP20809885A JPH0549730B2 JP H0549730 B2 JPH0549730 B2 JP H0549730B2 JP 60208098 A JP60208098 A JP 60208098A JP 20809885 A JP20809885 A JP 20809885A JP H0549730 B2 JPH0549730 B2 JP H0549730B2
Authority
JP
Japan
Prior art keywords
powder
metals
iron group
rare earth
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60208098A
Other languages
Japanese (ja)
Other versions
JPS6270550A (en
Inventor
Kenichi Hijikata
Kazuyuki Sato
Hitoshi Maruyama
Ryoko Furuhashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP60208098A priority Critical patent/JPS6270550A/en
Publication of JPS6270550A publication Critical patent/JPS6270550A/en
Publication of JPH0549730B2 publication Critical patent/JPH0549730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、希土類金属と鉄族金属からなる光
磁気記録薄膜をスパツタリングにより形成する際
に用いられる焼結ターゲツト材の製造法に関する
ものである。 〔従来の技術〕 先に同一出願人は、特願昭59−219227号(特開
昭61−99640号公報)として、Gd、Tb、Dy、
Ho、Tm、およびErのうちの1種または2種以
上で構成された希土類金属粉末:30〜50重量%
と、Fe,Co、およびNiのうちの1種または2種
以上で構成された鉄族金属粉末:残りからなる混
合粉末に、真空中または不活性ガス雰囲気中、前
記混合粉末を構成する金属成分系の共晶点未満の
温度で熱間成形を施すことにより、希土類金属単
体と鉄族金属単体とが、これら両金属の金属間化
合物を介して接合された組織を有し、かつスパツ
タリングによる光磁気記録薄膜の形成に用いられ
る焼結ターゲツト材を製造する方法を提案した。 〔発明が解決しようとする問題点〕 しかし、上記の先願発明の方法で製造された焼
結ターゲツト材においては、上記の通り希土類金
属単体と鉄族金属単体とこれら両金属の金属間化
合物からなる組織をもつため、スパツタリングに
際して、相対的にスパツタリング速度がより速い
希土類金属単体の方が鉄族金属単体および金属間
化合物よりも優先的にスパツタされてしまうこと
から、形成される薄膜の組成が経時的に変化して
しまい、組成の安定した薄膜の形成が困難であ
る。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、先願発明の方法で製造された焼結ターゲツト
材のもつ問題点を解決すべく研究を行なつた結
果、上記の先願発明の方法で製造された、希土類
金属単体と、鉄族金属単体とが、これら両金属の
金属間化合物を介して接合された組織を有する焼
結ターゲツト材に、真空中または不活性ガス雰囲
気中、前記焼結ターゲツト材を構成する金属成分
系の液相発生温度以上の温度に短時間保持の加熱
反応処理を施して、上記焼結ターゲツト材におけ
る希土類金属単体のすべてを鉄族金属単体と反応
させて金属間化合物を形成し、もつて前記金属間
化合物からなる素地に鉄族金属単体が分散分布し
た組織をもつものとすると、前記金属間化合物と
鉄族金属単体のスパツタリング速度はほぼ同等で
あることから、スパツタリングにより形成される
薄膜の組成が経時的に安定するようになるという
研究結果を得たのである。 この発明は、上記の研究結果にもとづいてなさ
れたものであつて、 (a) まず、原料粉末として、Gd粉末、Tb粉
末、Dy粉末、Ho粉末、Tm粉末、およびEr粉
末、さらにこれらの2種以上の金属の合金粉末
のうち1種以上からなる希土類金属粉末と、
Fe粉末、Co粉末、およびNi粉末、さらにこれ
らの2種以上の金属の合金粉末のうちの1種以
上からなる鉄族金属粉末を用意し、これら原料
粉末を、 希土類金属粉末:30〜50重量%、 鉄族金属粉末:残り、 の配合組成に配合し、例えばボールミルにて混
合し、 (b) この混合粉末に、一般に圧力:0.1〜
10-6torrの真空中、またはArガスなどの不活性
ガス雰囲気中、上記混合粉末を構成する金属成
分系の液相発生温度未満の温度、例えば前記金
属成分系の共晶点よりも30〜500℃低い温度で、
熱間パツク圧延、ホツトプレス、熱間静水圧プ
レス(HIP)、あるいは熱間鍛造からなる熱間
加工を施して、前記混合粉末中の金属粉末の塑
性変形、希土類金属粉末と鉄族金属粉末の部分
的固相拡散、この結果としてのこれら両粉末の
界面における金属間化合物の形成と接合をはか
ることによつて、希土類金属単体と鉄族金属単
体とこれら両金属の金属間化合物からなる組織
を有し、かつ論理密度比で95〜100%を有する
緻密で高強度の1次焼結体を形成し、 (c) ついで、上記1次焼結体に、同じく真空
中、あるいは不活性ガス雰囲気中、上記1次焼
結体を構成する金属成分系の液相発生温度以上
の温度、例えば前記金属成分系の共晶点〜前記
共晶点+200℃の範囲内の所定温度に短時間保
持の加熱反応処理、望ましくは高周波加熱によ
る急速かつ短時間の加熱反応処理や、電子ビー
ムの照射走査による急速かつ短時間の加熱反応
処理を施して、上記1次焼結体における希土類
金属単体のすべてを鉄族金属単体と反応させて
金属間化合物とすること、 以上(a)〜(c)の基体工程によりスパツタリングに
よる光磁気記録薄膜形成用焼結ターゲツト材を製
造する方法に特徴を有するものである。 なお、この発明の方法において、上記(a)工程に
おける鉄族金属粉末は、その平均粒径を50〜
300μmとするのが望ましく、これはその平均粒径
が50μm未満ではターゲツト材の素地中に分散分
布する鉄族金属単体の粒径が1μm未満に細かくな
りりすぎて所望の強度を確保することができず、
一方その平均粒径300μmを超えると、均一混合を
行なうものが困難になるばかりでなく、ターゲツ
ト材の素地に200μmを超えた粒径の鉄族金属単体
が存在するようになつて、薄膜組成の均一性が損
なわれるようになるという理由によるものであ
り、同じく希土類金属粉末は、その平均粒径を10
〜300μmとするのがよく、これはその平均粒径が
10μm未満では、鉄族金属粉末との間で生ずる混
合むらが顕著となり、一方その平均粒径が、
300μmを超えると、上記(c)工程の熱処理において
すべての希土類金属を金属間化合物に反応せしめ
るのに長時間を必要とするばかりでなく、組成む
らが生じるようになるという理由にもとづくもの
であり、したがつて以上の点を考慮した上で、鉄
族金属粉末と希土類金属粉末は、できるだけ平均
粒径の同じもの同志を使用するのが粉末の均一混
合の点からも望ましい。 加えて、上記鉄族金属粉末も希土類金属粉末も
99重量%以上の高純度をもつのが望ましく、特に
酸素含有量は0.1重量%以下であるのがよい。 また、希土類金属粉末の配合割合を30〜50重量
%と限定したのは(この結果鉄族金属粉末の配合
割合は残りの50〜70重量%となる)、その割合が
30重量%未満でも、あるいは50重量%を超えて
も、光磁気記録薄膜として利用するのに適した磁
気特性を具備せしめることができなくなるという
理由によるものである。 つぎに、上記(b)工程における熱間加工に関し、
これに適用される温度は、上記の通り混合粉末を
構成する金属成分系の液相発生温度未満にするの
が望ましく、これは、その温度が液相発生温度以
上の温度になると、熱間加工中に発生した液相に
よつて金属が酸化されやすくなり、この結果焼結
ターゲツト材の酸素含有量が0.5重量%以上に上
昇するようになるほか液相だけが流動するように
なるトラブルを防止するためであり、例えば前記
金属成分系がFe−Tbの場合は840℃、Fe−Co−
Tbの場合は695℃、Fe−Tb−Gdの場合は830℃、
Co−Gdの場合は630℃が液相発生温度である。 ホツトプレスは、通常、圧力:100〜200Kg/
cm2、温度:上記の液相発生温度未満、保持時間:
2時間以上の条件で行なわれる。 また、熱間パツク圧延は、希土類金属粉末と鉄
族金属粉末の混合粉末に対して拡散を起しにくい
金属、例えばステンレス鋼でできた容器内に前記
混合粉末を充填し、前記容器内を10-5torr以上の
真空度になるまで真空引きして真空パツクし、つ
いで、これに前記混合粉末を構成する金属成分系
の液相発生温度未満の温度で、1回当りの圧下
率:3〜10%の条件で熱間圧延を施し、この場合
圧下率が10%を超えると、割れが発生し易くなる
ものであり、このようにして後の熱処理工程にお
ける急速な温度上昇によつて割れが発生しないよ
うにするために理論密度比で95%以上の1次焼結
体を形成し、最終的に前記1次焼結体から容器を
旋盤やシエーバを用いて除去することにより行な
われる。 さらに上記(c)工程の短時間の加熱反応処理は、
上記の通り高周波加熱や電子ビーム照射加熱を利
用するのが望ましく、高周波加熱による場合に
は、例えば、高周波加熱炉内の黒鉛製あるいはア
ルミナ製の治具上に上記1次焼結体を載せ、10-5
〜10-6torrの真空中、あるいは圧力:0.01〜1torr
のArガス雰囲気中、10〜40℃/秒の昇温速度で、
液相発生温度以上の温度である900〜1200℃に加
熱し、この温度に10〜900秒保持後、不活性ガス
の吹付けなどにより急冷することにより行なわ
れ、また電子ビーム照射加熱による場合には、例
えば1×10-5torr以上の真空度に保持された電子
ビーム溶解炉中で、水冷銅ハース上に置かれた1
次焼結体に、出力:6×10-2〜3×10-1kw、回
転速度:0.5〜15mm/秒の条件で電子ビームを照
射し、この照射を1次焼結体の全面に亘つて1〜
5回走査し、急冷することにより行なわれる。 〔実施例〕 つぎに、この発明の方法を実施例により具体的
に説明する。 原料粉末として、いずれも50〜150μmの平均粒
径、および99.9重量%以上の純度を有する、Gd
粉末、Tb粉末、Dy粉末、Ho粉末、Tm粉末、Er
粉末、Gd−Ho合金(Ho:51重量%含有)粉末、
Tb−Dy合金(Dy:49重量%含有)粉末、Tb−
Ho−Er合金(Ho:19重量%、Er:18重量%含
有)粉末、Gd−Td−Tm−Er合金(Td:31重量
%、Tm:16重量%、Er:15重量%含有)粉末、
Fe粉末、Co粉末、Ni粉末、Fe−Co合金(Co:
11重量%含有)粉末、Fe−Ni合金(Ni:11重量
%含有)粉末、Ni−Co合金(Co:50重量%含
有)粉末、およびFe−Co−Ni合金(Co:26重量
%、Ni:26重量%含有)粉末を用意し、これら
原料粉末を第1表に示される配合組成に配合し、
ボールミル中で、30分間湿式混合し、乾燥した
後、これらの混合粉末に対して、第1表に示され
る条件にて熱間加工を施して、いずれも希土類金
属単体と鉄族金属単体がこれら両金属の金属間化
合物によつて結合した組織、並びに直径:130mm
×厚さ:22mmの寸法をもつた1次焼結体を形成
し、引続いてこれに同じく第1表に示される条件
で、前記1次焼結体中に存在する希土類金属単体
のすべてを鉄族金属単体と反応せしめて、これを
金属間化合物とする加熱反応処理を施すことによ
り本発明法1〜12を実施し、金属間化合物の素地
に鉄族金属単体が分散分布した組織を有し、かつ
液相発生によつて理論密度化がほぼ100%と
[Industrial Field of Application] The present invention relates to a method for producing a sintered target material used in forming a magneto-optical recording thin film made of rare earth metals and iron group metals by sputtering. [Prior Art] Previously, the same applicant had filed a patent application No. 59-219227 (Japanese Unexamined Patent Publication No. 61-99640) on Gd, Tb, Dy,
Rare earth metal powder composed of one or more of Ho, Tm, and Er: 30 to 50% by weight
and an iron group metal powder composed of one or more of Fe, Co, and Ni: the remaining metal components constituting the mixed powder in a vacuum or an inert gas atmosphere. By performing hot forming at a temperature below the eutectic point of the system, a rare earth metal element and an iron group metal element form a structure in which they are bonded via an intermetallic compound of these two metals. We proposed a method for manufacturing sintered target materials used in the formation of magnetic recording thin films. [Problems to be Solved by the Invention] However, in the sintered target material manufactured by the method of the prior invention, as described above, the sintered target material is made of rare earth metals, iron group metals, and intermetallic compounds of both metals. During sputtering, rare earth metals, which have a relatively faster sputtering speed, are preferentially sputtered than iron group metals and intermetallic compounds, so the composition of the thin film formed is It changes over time, making it difficult to form a thin film with a stable composition. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors conducted research to solve the problems of the sintered target material produced by the method of the prior invention. As a result, a sintered target material having a structure in which an elemental rare earth metal and an elemental iron group metal are bonded via an intermetallic compound of these two metals, which was manufactured by the method of the prior invention described above, was subjected to vacuum treatment. All of the elemental rare earth metals in the sintering target material are subjected to a heating reaction treatment in a medium or inert gas atmosphere for a short time at a temperature higher than the liquid phase generation temperature of the metal component system constituting the sintering target material. is reacted with an elemental iron group metal to form an intermetallic compound, and if the matrix consisting of the intermetallic compound has a structure in which the elemental iron group metal is dispersed, then the intermetallic compound and the elemental iron group metal Since the sputtering speeds of the two materials are almost the same, the research results show that the composition of the thin film formed by sputtering becomes stable over time. This invention was made based on the above research results. (a) First, as raw material powders, Gd powder, Tb powder, Dy powder, Ho powder, Tm powder, and Er powder, and these two rare earth metal powder consisting of one or more kinds of alloy powders of more than one kind of metal;
Prepare iron group metal powder consisting of one or more of Fe powder, Co powder, Ni powder, and alloy powder of two or more of these metals, and combine these raw powders with rare earth metal powder: 30 to 50 weight %, iron group metal powder: the remainder, and mix it in a ball mill, for example, (b) to this mixed powder, generally under pressure: 0.1~
In a vacuum of 10 -6 torr or in an inert gas atmosphere such as Ar gas, the temperature is lower than the liquid phase generation temperature of the metal component system constituting the mixed powder, for example, 30 to 30°C higher than the eutectic point of the metal component system. At a temperature 500℃ lower,
Hot processing consisting of hot pack rolling, hot pressing, hot isostatic pressing (HIP), or hot forging is performed to plastically deform the metal powder in the mixed powder, and to form a portion of the rare earth metal powder and iron group metal powder. As a result, by aiming at the formation and bonding of intermetallic compounds at the interface of these two powders, a structure consisting of rare earth metals, iron group metals, and intermetallic compounds of these two metals is created. (c) Next, the primary sintered body is heated in a vacuum or in an inert gas atmosphere. , heating for a short period of time at a temperature higher than the liquid phase generation temperature of the metal component system constituting the primary sintered body, for example, at a predetermined temperature within the range of the eutectic point of the metal component system to the eutectic point + 200 ° C. By performing a reaction treatment, preferably a rapid and short-time heating reaction treatment using high-frequency heating or a rapid and short-time heating reaction treatment using electron beam irradiation scanning, all of the rare earth metal elements in the above primary sintered body are converted to iron. The present invention is characterized by a method for producing a sintered target material for forming a magneto-optical recording thin film by sputtering by reacting with a simple substance of a group metal to form an intermetallic compound. In addition, in the method of this invention, the iron group metal powder in the above step (a) has an average particle size of 50 to 50.
It is desirable to set it to 300 μm, because if the average particle size is less than 50 μm, the particle size of the iron group metal alone dispersed in the base of the target material becomes too fine to less than 1 μm, making it difficult to secure the desired strength. I can't do it,
On the other hand, if the average particle size exceeds 300 μm, not only will it be difficult to achieve uniform mixing, but the elemental iron group metal with a particle size exceeding 200 μm will be present in the base material of the target material, and the thin film composition will change. This is because the uniformity becomes impaired, and rare earth metal powders also have an average particle size of 10
~300 μm, which means that the average particle size is
If the particle size is less than 10 μm, the unevenness of mixing with the iron group metal powder becomes noticeable, while the average particle size
This is because if it exceeds 300 μm, not only will it take a long time to react all the rare earth metals into intermetallic compounds in the heat treatment in step (c) above, but also compositional unevenness will occur. Therefore, in consideration of the above points, it is desirable to use iron group metal powder and rare earth metal powder that have the same average particle size as much as possible from the viewpoint of uniform mixing of the powders. In addition, both the above iron group metal powder and rare earth metal powder
It is desirable to have a high purity of 99% by weight or more, and in particular, the oxygen content is preferably 0.1% by weight or less. In addition, the reason why the proportion of rare earth metal powder is limited to 30 to 50% by weight (as a result, the proportion of iron group metal powder is the remaining 50 to 70% by weight) is that
This is because if the amount is less than 30% by weight or even if it exceeds 50% by weight, it will not be possible to provide magnetic properties suitable for use as a magneto-optical recording thin film. Next, regarding the hot working in step (b) above,
As mentioned above, the temperature applied to this process is desirably lower than the liquid phase generation temperature of the metal component system constituting the mixed powder. The metal is easily oxidized by the liquid phase generated inside, and as a result, the oxygen content of the sintering target material increases to 0.5% by weight or more, and the problem of only the liquid phase flowing can be prevented. For example, when the metal component system is Fe-Tb, the temperature is 840℃, Fe-Co-
695℃ for Tb, 830℃ for Fe-Tb-Gd,
In the case of Co-Gd, the liquid phase generation temperature is 630°C. Hot press usually has pressure: 100-200Kg/
cm2 , temperature: below the above liquid phase generation temperature, retention time:
It is carried out for more than 2 hours. In addition, in hot pack rolling, the mixed powder is filled into a container made of a metal that does not easily cause diffusion of the mixed powder of rare earth metal powder and iron group metal powder, such as stainless steel, and the inside of the container is filled with Vacuum packing is carried out by evacuation to a degree of vacuum of -5 torr or more, and then the mixture is heated at a temperature below the liquid phase generation temperature of the metal component system constituting the mixed powder at a rolling reduction rate of 3 to 3. Hot rolling is carried out under conditions of 10%, and in this case, if the rolling reduction exceeds 10%, cracks are likely to occur, and in this way, cracks are likely to occur due to the rapid temperature rise in the subsequent heat treatment process. In order to prevent this from occurring, a primary sintered body having a theoretical density ratio of 95% or more is formed, and the container is finally removed from the primary sintered body using a lathe or a shaver. Furthermore, the short heating reaction treatment in step (c) above,
As mentioned above, it is desirable to use high frequency heating or electron beam irradiation heating. In the case of high frequency heating, for example, the primary sintered body is placed on a graphite or alumina jig in a high frequency heating furnace, 10 -5
~10 -6 torr vacuum or pressure: 0.01 to 1 torr
At a heating rate of 10 to 40℃/sec in an Ar gas atmosphere of
This is done by heating to 900-1200℃, which is above the liquid phase generation temperature, holding this temperature for 10-900 seconds, and then rapidly cooling it by blowing inert gas, etc., or by heating by electron beam irradiation. For example, in an electron beam melting furnace maintained at a vacuum level of 1 × 10 -5 torr or more, a melting plate placed on a water-cooled copper hearth is used.
The secondary sintered body is irradiated with an electron beam under the conditions of output: 6 × 10 -2 ~ 3 × 10 -1 kW, rotation speed: 0.5 ~ 15 mm/sec, and this irradiation is applied over the entire surface of the primary sintered body. Tsute 1~
This is done by scanning five times and rapidly cooling. [Example] Next, the method of the present invention will be specifically explained with reference to Examples. As a raw material powder, Gd has an average particle size of 50 to 150 μm and a purity of 99.9% by weight or more.
Powder, Tb powder, Dy powder, Ho powder, Tm powder, Er
Powder, Gd-Ho alloy (Ho: 51% by weight content) powder,
Tb-Dy alloy (Dy: 49% by weight) powder, Tb-
Ho-Er alloy (contains Ho: 19% by weight, Er: 18% by weight) powder, Gd-Td-Tm-Er alloy (contains Td: 31% by weight, Tm: 16% by weight, Er: 15% by weight) powder,
Fe powder, Co powder, Ni powder, Fe-Co alloy (Co:
Fe-Ni alloy (containing 11 wt% Ni) powder, Ni-Co alloy (containing 50 wt% Co) powder, and Fe-Co-Ni alloy (containing 26 wt% Co, Ni : 26% by weight) powder was prepared, and these raw material powders were blended into the composition shown in Table 1,
After wet mixing in a ball mill for 30 minutes and drying, these mixed powders were subjected to hot processing under the conditions shown in Table 1, and both rare earth metals and iron group metals were Structure bonded by intermetallic compounds of both metals and diameter: 130mm
x Thickness: A primary sintered body with dimensions of 22 mm is formed, and then all of the rare earth metal elements present in the primary sintered body are sintered under the same conditions shown in Table 1. Methods 1 to 12 of the present invention are carried out by reacting with an elemental iron group metal and subjecting it to a heating reaction treatment to form an intermetallic compound. Moreover, the theoretical densification is almost 100% due to liquid phase generation.

【表】 なつた焼結ターゲツト材1〜12(以下、本発明焼
結ターゲツト材1〜12という)をそれぞれ製造し
た。 なお、第1図のaおよびb、並びに第2図のa
およびbには、代表して本発明法1および2で製
造された本発明焼結ターゲツト材1(第1図)お
よび2(第2図)の金属顕微鏡による組織写真を
示した。また第1図のcおよび第2図のcには、
理解を容易にするために前記組織を模式図で示し
た。 ついで、この結果得られた本発明焼結ターゲツ
ト材1〜12、並びに上記の先願発明の方法で製造
された焼結ターゲツト材に相当する上記の1次焼
結体(以下、先行焼結ターゲツト材1〜12とい
う)を用い、これにAr分圧が5×10-2torrのAr
雰囲気中で30〜60秒間のプリスパツタリングを施
した後、バイアス電圧を0V、スパツタ電力を
75Wと一定に保ち、上記焼結ターゲツト材を3r.
p.m.の速さで回転させながら、この焼結ターゲツ
ト材から70mm離して直上に設置したスライドガラ
ス基体の表面に、マグネトロンスパツタリングに
よる
[Table] Natsuta sintered target materials 1 to 12 (hereinafter referred to as sintered target materials 1 to 12 of the present invention) were manufactured, respectively. Note that a and b in Figure 1 and a in Figure 2
Figures 1 and 2b show photographs of the structures of sintered target materials 1 (FIG. 1) and 2 (FIG. 2) of the present invention produced by methods 1 and 2 of the present invention, as representative examples, taken with a metallurgical microscope. Also, in c of Fig. 1 and c of Fig. 2,
The structure is shown schematically for ease of understanding. Next, the sintered target materials 1 to 12 of the present invention obtained as a result, as well as the above-mentioned primary sintered bodies (hereinafter referred to as sintered target materials) corresponding to the sintered target materials produced by the method of the prior invention described above, were added. (referred to as materials 1 to 12 ), and Ar
After pre-sputtering for 30 to 60 seconds in an atmosphere, set the bias voltage to 0V and the sputtering power to
Keeping the power constant at 75W, the above sintered target material was heated at 3r.
While rotating at a speed of pm, the surface of the slide glass substrate was placed directly above the sintered target material at a distance of 70 mm, using magnetron sputtering.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第2表に示される結果から、本発明焼結ターゲ
ツト材1〜12を用いて形成された薄膜は、希土類
金属の含有量に経時的変化がほとんど現われず、
安定した組成をもつのに対して、先行焼結ターゲ
ツト材1〜12を用いて形成される薄膜には、希土
類金属含有量の経時的変化が顕著に現われること
が明らかである。 上述のように、この発明の方法によれば、希土
類金属単体と鉄族金属単体の金属間化合物からな
る素地に鉄族金属単体が分散分布した組織を有す
る焼結ターゲツト材を製造することができ、した
がつてこれをスパツタリングによる光磁気記録薄
膜の形成に用いれば、前記金属間化合物と前記鉄
族金属単体とはスパツタリング速度がほぼ同等な
ので、形成される薄膜の組成が経時的に安定し、
これによつて特性の一定した光磁気記録薄膜の形
成が可能になるなど工業上有用な効果がもたらさ
れるのである。
From the results shown in Table 2, the thin films formed using the sintered target materials 1 to 12 of the present invention show almost no change over time in the rare earth metal content;
It is clear that while the thin films formed using the pre-sintered target materials 1 to 12 have stable compositions, the rare earth metal content changes significantly over time. As described above, according to the method of the present invention, it is possible to produce a sintered target material having a structure in which elemental iron group metals are dispersed in a base material made of an intermetallic compound of elemental rare earth metals and elemental iron group metals. Therefore, if this is used to form a magneto-optical recording thin film by sputtering, since the sputtering speed of the intermetallic compound and the iron group metal alone is almost the same, the composition of the formed thin film will be stable over time.
This brings about industrially useful effects such as making it possible to form a magneto-optical recording thin film with constant characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図のaおよびb、並びに第2図のaおよび
bは本発明焼結ターゲツト材1(第1図)および
2(第2図)の金属顕微鏡による組織写真であ
り、第1図のcおよび第2図のcは前記組織を模
式的に示した図である。
a and b in Fig. 1 and a and b in Fig. 2 are microstructure photographs taken by a metallurgical microscope of sintered target materials 1 (Fig. 1) and 2 (Fig. 2) of the present invention; and c in FIG. 2 is a diagram schematically showing the above-mentioned structure.

Claims (1)

【特許請求の範囲】 1 (a) 原料粉末として、Gd粉末、Tb粉末、
Dy粉末、Ho粉末、Tm粉末、およびEr粉末、
さらにこれらの2種以上の金属の合金粉末のう
ちの1種以上からなる希土類金属粉末と、Fe
粉末、Co粉末、およびNi粉末、さらにこれら
の2種以上の金属の合金粉末のうちの1種以上
からなる鉄族金属粉末を用意し、これら原料粉
末を、 希土類金属粉末:30〜50重量%、 鉄族金属粉末:残り の配合組成に配合し、混合した後、 (b) この混合粉末に、真空中または不活性ガス雰
囲気中、上記混合粉末を構成する金属成分系の
液相発生温度未満の温度で、熱間パツク圧延、
ホツトプレス、熱間静水圧プレス、あるいは熱
間鍛造からなる熱間加工を施して、希土類金属
単体、鉄族金属単体、およびこれら両金属の金
属間化合物からなる組織を有する高密度の1次
焼結体を形成し、 (c) ついで、上記1次焼結体に、同じく真空中ま
たは不活性ガス雰囲気中、上記1次焼結体を構
成する金属成分系の液相発生温度以上の温度に
短時間保持の加熱反応処理を施して、上記1次
焼結体における希土類金属単体のすべてを鉄族
金属単体と反応させて金属間化合物とすること
により前記金属間化合物からなる素地に鉄族金
属単体が分散分布した組織とすること、 を特徴とするスパツタリングによる光磁気記録薄
膜形成用焼結ターゲツト材の製造法。
[Claims] 1 (a) As raw material powder, Gd powder, Tb powder,
Dy powder, Ho powder, Tm powder, and Er powder,
Furthermore, rare earth metal powder consisting of one or more of these two or more metal alloy powders and Fe
Prepare an iron group metal powder consisting of one or more of powder, Co powder, Ni powder, and alloy powder of two or more of these metals, and combine these raw material powders with rare earth metal powder: 30 to 50% by weight. , Iron group metal powder: After blending and mixing with the remaining composition, (b) Add to this mixed powder in vacuum or in an inert gas atmosphere a temperature below the liquid phase generation temperature of the metal component system constituting the mixed powder. hot pack rolling at a temperature of
A high-density primary sintered product with a structure consisting of rare earth metals, iron group metals, and intermetallic compounds of both metals is formed by hot processing such as hot pressing, hot isostatic pressing, or hot forging. (c) Then, the primary sintered body is heated to a temperature higher than the liquid phase generation temperature of the metal component system constituting the primary sintered body, also in a vacuum or an inert gas atmosphere. A time-retained heating reaction treatment is performed to react all of the elemental rare earth metals in the primary sintered body with the elemental iron group metals to form intermetallic compounds, thereby forming the elemental iron group metals into the matrix made of the intermetallic compounds. 1. A method for producing a sintered target material for forming a magneto-optical recording thin film by sputtering, characterized in that the target material has a structure in which the target material has a dispersed distribution.
JP60208098A 1985-09-20 1985-09-20 Material for target Granted JPS6270550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60208098A JPS6270550A (en) 1985-09-20 1985-09-20 Material for target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208098A JPS6270550A (en) 1985-09-20 1985-09-20 Material for target

Publications (2)

Publication Number Publication Date
JPS6270550A JPS6270550A (en) 1987-04-01
JPH0549730B2 true JPH0549730B2 (en) 1993-07-27

Family

ID=16550601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208098A Granted JPS6270550A (en) 1985-09-20 1985-09-20 Material for target

Country Status (1)

Country Link
JP (1) JPS6270550A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118028A (en) * 1986-11-06 1988-05-23 Hitachi Metals Ltd Rare earth element-transition metal element target and its production
JPS63250429A (en) * 1987-04-06 1988-10-18 Seiko Instr & Electronics Ltd Production of ytterbium-transition metal alloy
JPH0768612B2 (en) * 1987-04-20 1995-07-26 日立金属株式会社 Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
JPS63274764A (en) * 1987-04-30 1988-11-11 Sumitomo Metal Mining Co Ltd Alloy target for magneto-optical recording
DE3885690T2 (en) * 1987-09-17 1994-06-09 Seiko Epson Corp A method of manufacturing a sputtering target for use in the manufacture of a magneto-optical recording medium.
US4824481A (en) * 1988-01-11 1989-04-25 Eaastman Kodak Company Sputtering targets for magneto-optic films and a method for making
US5439500A (en) * 1993-12-02 1995-08-08 Materials Research Corporation Magneto-optical alloy sputter targets
JP4351212B2 (en) 2003-08-05 2009-10-28 日鉱金属株式会社 Sputtering target and manufacturing method thereof
EP1813694B1 (en) 2004-11-15 2018-06-20 JX Nippon Mining & Metals Corporation Sputtering target for production of metallic glass film and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139637A (en) * 1984-12-12 1986-06-26 Hitachi Metals Ltd Target for sputter and its manufacture
JPS61229314A (en) * 1985-04-03 1986-10-13 Hitachi Metals Ltd Target material and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139637A (en) * 1984-12-12 1986-06-26 Hitachi Metals Ltd Target for sputter and its manufacture
JPS61229314A (en) * 1985-04-03 1986-10-13 Hitachi Metals Ltd Target material and manufacture thereof

Also Published As

Publication number Publication date
JPS6270550A (en) 1987-04-01

Similar Documents

Publication Publication Date Title
US4620872A (en) Composite target material and process for producing the same
JP4388263B2 (en) Iron silicide sputtering target and manufacturing method thereof
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
US5896553A (en) Single phase tungsten-titanium sputter targets and method of producing same
KR0129795B1 (en) Target for magneto optical recording media & method for production the same
JPH0549730B2 (en)
JPS61139637A (en) Target for sputter and its manufacture
JPH0119448B2 (en)
JPH0784656B2 (en) Alloy target for magneto-optical recording
JP2988021B2 (en) High strength target material for forming magneto-optical recording thin films with low magnetic permeability
JPH0119447B2 (en)
JPS62274033A (en) Manufacture of rare earth-transition metal alloy target
JPS6195788A (en) Compound target material and its production
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JPH0119449B2 (en)
JPH01242733A (en) Manufacture of alloy powder for rare earth metal-transition metal target and manufacture of rare earth metal-transition metal target
JP3368764B2 (en) Sputtering target for optical recording protective film formation with less generation of particles
CN111793823B (en) High-purity gadolinium hexaboride polycrystal and preparation method thereof
JPH0791637B2 (en) Sputtering alloy target and manufacturing method thereof
JPH11323538A (en) Sputtering sintered target material for forming ge-si thin film of semiconductor device
JPH0766585B2 (en) Tb-Fe based sintered sputtering target material for forming magneto-optical recording medium
JP2001226764A (en) Sintered compact for sputtering target material, its manufacturing method, and sputtering target
JPS6256543A (en) Manufacture of sintered compact of rare-earth alloy
JPH01159373A (en) Target for sputtering
JPH0784657B2 (en) Alloy target for magneto-optical recording

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees