JPH0784657B2 - Alloy target for magneto-optical recording - Google Patents

Alloy target for magneto-optical recording

Info

Publication number
JPH0784657B2
JPH0784657B2 JP63268216A JP26821688A JPH0784657B2 JP H0784657 B2 JPH0784657 B2 JP H0784657B2 JP 63268216 A JP63268216 A JP 63268216A JP 26821688 A JP26821688 A JP 26821688A JP H0784657 B2 JPH0784657 B2 JP H0784657B2
Authority
JP
Japan
Prior art keywords
rare earth
earth element
transition metal
phase
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63268216A
Other languages
Japanese (ja)
Other versions
JPH02118065A (en
Inventor
達夫 名手
敏夫 森本
忍 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63268216A priority Critical patent/JPH0784657B2/en
Priority to DE3935698A priority patent/DE3935698C2/en
Priority to US07/426,710 priority patent/US4992095A/en
Publication of JPH02118065A publication Critical patent/JPH02118065A/en
Publication of JPH0784657B2 publication Critical patent/JPH0784657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光磁気記録媒体をスパッタリング法を用いて
製造するのに好適な合金ターゲットに関する。
The present invention relates to an alloy target suitable for manufacturing a magneto-optical recording medium by a sputtering method.

〔従来の技術〕[Conventional technology]

近年、情報の消去、再記録が容易にできる光磁気メモリ
ーが注目されているが、この光磁気メモリーの材料とし
て、ガーネットなどの単結晶材料、MnBi,PtCoなどの多
結晶材料および希土類元素と遷移金属との合金などの非
晶質材料が知られている。
In recent years, a magneto-optical memory that can easily erase and re-record information has been attracting attention.As materials for this magneto-optical memory, single crystal materials such as garnet, polycrystalline materials such as MnBi and PtCo, and transitions with rare earth elements are used. Amorphous materials such as alloys with metals are known.

これらの中でも希土類元素と遷移金属からなる非晶質合
金(Tb−Fe−Co,Gd−Tb−Feなど)は、記録に必要なエ
ネルギーが少なくてすむこと、粒界ノイズが現われない
こと、さらに比較的容易に大型のものが作成できること
等の多くの利点を持つ。この非晶質合金の薄膜を作成す
る方法として、イオンをターゲットに衝突させてターゲ
ット近くにおかれた基板の上に薄膜を作成するスパッタ
リング法がよく用いられる。このスパッタリング法に使
用されるターゲット材料のうち、(1)割れ難いこと、
(2)組成の均一性が良好であることなどを具備するも
のとして、例えば、希土類元素と遷移金属との金属間化
合物相および遷移金属単体相からなる混合組織であるも
の(特開昭62−70550号)が提案されている。
Among these, amorphous alloys composed of rare earth elements and transition metals (Tb-Fe-Co, Gd-Tb-Fe, etc.) require less energy for recording, no grain boundary noise appears, and It has many advantages such as the ability to create large ones relatively easily. As a method of forming a thin film of this amorphous alloy, a sputtering method in which ions are made to collide with a target to form a thin film on a substrate placed near the target is often used. Among the target materials used in this sputtering method, (1) it is difficult to crack,
(2) What has a good composition uniformity, for example, is a mixed structure composed of an intermetallic compound phase of a rare earth element and a transition metal and a transition metal simple substance phase (JP-A-62- No. 70550) has been proposed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、このターゲット材料は、(1)得られる
膜組成がターゲット組成から大幅にずれる、(2)透磁
率が高く、特にマグネトロンスパッタ装置に用いるとタ
ーゲット表面もれ磁束が小さく、スパッタ効率ひいては
ターゲット利用効率が悪くなる、(3)(2)に関連し
てターゲット表面の形状変化が激しく、膜の組成に経時
変化を生じるなどの問題点を抱えている。
However, this target material has (1) the obtained film composition deviates greatly from the target composition, and (2) has a high magnetic permeability, and particularly when used in a magnetron sputtering device, the target surface leakage magnetic flux is small, and thus the sputtering efficiency and thus the target utilization There are problems that the efficiency deteriorates, the shape of the target surface changes drastically in relation to (3) and (2), and the composition of the film changes over time.

本発明者等は、これらの問題点を解消し、(1)割れ難
い、(2)膜組成の均一性を良好にする、(3)ターゲ
ット−膜の組成ずれの少ない、(4)ターゲット利用効
率の大きい、(5)得られる膜組成に経時変化を生じさ
せないターゲットを提供すべく鋭意研究した結果、ター
ゲットの組織中に遷移金属単位相を実質的に存在させる
ことなく、特定の添加元素を偏在させることによって、
前記目的が達成され得ることを見出し、本発明に到達し
た。
The present inventors solve these problems, (1) it is difficult to crack, (2) the uniformity of the film composition is good, (3) the target-film composition deviation is small, and (4) the target is used. As a result of earnest research to provide a target with high efficiency (5) that does not cause a change in the obtained film composition over time, as a result, a specific additive element can be added without causing the transition metal unit phase to substantially exist in the structure of the target. By uneven distribution,
The inventors have found that the above objects can be achieved and have reached the present invention.

〔課題を解決するための手段および作用〕[Means and Actions for Solving the Problems]

即ち、本発明の光磁気記録用合金ターゲットは、成分、
組成が、Sm,Nd,Gd,Tb,Dy,Ho,Tm,Erの中の少なくとも1
種の希土類元素10〜50原子%、B,Al,Si,P,Ti,V,Cr,Mn,Z
r,Nb,Mo,Hf,Ta,W,Pt,Pb,Biの中の少なくとも1種の添加
元素0.1〜10原子%、残部実質的にCo、Fe、Niの中の少
なくとも1種の遷移金属であり、組織が該希土類元素、
該添加元素および該遷移金属の金属間化合物相、並びに
該希土類元素と該希土類元素および該遷移金属の金属間
化合物との微細混合相からなる混合組織であることを特
徴とするものである。
That is, the magneto-optical recording alloy target of the present invention, the component,
The composition is at least one of Sm, Nd, Gd, Tb, Dy, Ho, Tm, Er.
10 to 50 atomic% of rare earth elements, B, Al, Si, P, Ti, V, Cr, Mn, Z
At least one additive element of at least one of r, Nb, Mo, Hf, Ta, W, Pt, Pb and Bi, and the balance of at least one transition metal of substantially Co, Fe and Ni And the structure is the rare earth element,
It is characterized by having a mixed structure consisting of an intermetallic compound phase of the additive element and the transition metal, and a fine mixed phase of the rare earth element and the intermetallic compound of the rare earth element and the transition metal.

また、他の本発明の光磁気記録用合金ターゲットは、成
分、組成が、Sm,Nd,Gd,Tb,Dy,Ho,Tm,Erの中の少なくと
も1種の希土類元素10〜50原子%、B,Al,Si,P,Ti,V,Cr,
Mn,Zr,Nb,Mo,Hf,Ta,W,Pt,Pb,Biの中の少なくとも1種の
添加元素0.1〜10原子%、残部実質的にCo、Fe、Niの中
の少なくとも1種の遷移金属であり、組織が該希土類元
素、該添加元素および該遷移金属の金属間化合物相、該
希土類元素と該希土類元素および該遷移金属の金属間化
合物との微細混合相、並びに該希土類元素単体相からな
る混合組織であることを特徴とするものである。
Further, another alloy target for magneto-optical recording of the present invention has a composition and composition of 10 to 50 atomic% of at least one rare earth element among Sm, Nd, Gd, Tb, Dy, Ho, Tm and Er. B, Al, Si, P, Ti, V, Cr,
Mn, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Bi at least one additive element 0.1 to 10 atomic%, the balance substantially Co, Fe, at least one of Ni A transition metal having a structure of the rare earth element, the additive element and an intermetallic compound phase of the transition metal, a fine mixed phase of the rare earth element and the rare earth element and an intermetallic compound of the transition metal, and the rare earth element simple substance It is characterized by being a mixed structure composed of phases.

更に、第3の本発明の光磁気記録用合金ターゲットは、
成分、組成が、Sm,Nd,Gd,Tb,Dy,Ho,Tm,Erの中の少なく
とも1種の希土類元素10〜50原子%、B,Al,Si,P,Ti,V,C
r,Mn,Zr,Nb,Mo,Hf,Ta,W,Pt,Pb,Biの中の少なくとも1種
の添加元素0.1〜10原子%、残部実質的にCo,Fe,Niの中
の少なくとも1種の遷移金属であり、組織が該希土類元
素および該遷移金属の金属間化合物相、並びに該希土類
元素と該希土類元素および該遷移金属の金属間化合物と
の微細混合相(該希土類元素と該希土類元素および該遷
移金属の金属間化合物とのうちの少なくとも1つは該添
加元素を含む)からなる混合組織であることを特徴とす
るものであり、第4の本発明の光磁気記録用合金ターゲ
ットは、成分、組成が、Sm,Nd,Gd,Tb,Dy,Ho,Tm,Erの中
の少なくとも1種の希土類元素10〜50原子%、B,Al,Si,
P,Ti,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,W,Pt,Pb,Biの中の少なく
とも1種の添加元素0.1〜100原子%、残部実質的にCo,F
e,Niの中の少なくとも1種の遷移金属であり、組織が該
希土類元素および該遷移金属の金属間化合物相、該希土
類元素と該希土類元素および該遷移金属の金属間化合物
との微細混合相(該希土類元素と該希土類元素および該
遷移金属の金属間化合物とのうちの少なくとも1つは該
添加元素を含む)、並びに該希土類元素単体相からなる
混合組織であることを特徴とするものである。
Furthermore, the alloy target for magneto-optical recording of the third present invention is
Component, composition is Sm, Nd, Gd, Tb, Dy, Ho, Tm, Er at least one rare earth element 10 to 50 atomic%, B, Al, Si, P, Ti, V, C
At least one additive element in r, Mn, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Bi 0.1 to 10 atomic%, balance substantially at least 1 in Co, Fe, Ni A rare earth element and an intermetallic compound phase of the transition metal, and a fine mixed phase of the rare earth element and the rare earth element and an intermetallic compound of the transition metal (the rare earth element and the rare earth At least one of the element and the intermetallic compound of the transition metal has a mixed structure including the additional element), and the alloy target for magneto-optical recording according to the fourth aspect of the present invention. Is a composition of 10 to 50 atomic% of at least one rare earth element among Sm, Nd, Gd, Tb, Dy, Ho, Tm and Er, B, Al, Si,
At least one additive element of P, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Bi 0.1 to 100 atomic% and the balance substantially Co, F
At least one kind of transition metal in e and Ni, the structure is an intermetallic compound phase of the rare earth element and the transition metal, a fine mixed phase of the rare earth element and the intermetallic compound of the rare earth element and the transition metal (At least one of the rare earth element and the intermetallic compound of the rare earth element and the transition metal contains the additive element), and a mixed structure consisting of the simple phase of the rare earth element. is there.

本発明の合金ターゲットの成分組成は、Sm,Nd,Gd,Tb,D
y,Ho,Tm,Erの中の少なくとも1種の希土類元素10〜50原
子%、B,Al,Si,P,Ti,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,W,Pt,Pb,
Biの中の少なくとも1種の添加元素0.1〜10原子%、残
部実質的にCo,Fe,Niの中の少なくとも1種の遷移金属で
ある必要がある。希土類元素の量が10原子%未満になっ
たり、50原子%を超えると、スパッタリング法により得
られる薄膜の光磁気特性が充分なものとならない。ま
た、添加元素の量が0.1原子%未満では、得られる薄膜
の耐食性が充分でなく、一方、10原子%を超えると、薄
膜の光磁気特性が充分なものとならない。
The composition of the alloy target of the present invention is Sm, Nd, Gd, Tb, D
At least one rare earth element in y, Ho, Tm, Er 10-50 atomic%, B, Al, Si, P, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb,
It is necessary that at least one additive element in Bi is 0.1 to 10 atomic%, and the balance is at least one transition metal in Co, Fe and Ni. If the amount of the rare earth element is less than 10 atomic% or exceeds 50 atomic%, the magneto-optical properties of the thin film obtained by the sputtering method will not be sufficient. On the other hand, if the amount of the additive element is less than 0.1 atom%, the corrosion resistance of the obtained thin film is not sufficient, while if it exceeds 10 atom%, the magneto-optical properties of the thin film are not sufficient.

本発明の合金ターゲットは、製造上不可避的に混入する
不純物、例えばCa,C,Sなどを含んでいてもよい。
The alloy target of the present invention may contain impurities, such as Ca, C, and S, which are unavoidably mixed in during manufacturing.

更に、本発明の合金ターゲットの組織は、該希土類元
素、該添加元素および該遷移金属の金属間化合物相、並
びに該希土類元素と該希土類元素および該遷移金属の金
属間化合物との微細混合相からなる混合組織、または上
記諸相と該希土類元素単体相とからなる混合組織を呈す
る。
Further, the structure of the alloy target of the present invention, from the rare earth element, the additive element and the intermetallic compound phase of the transition metal, and the fine mixed phase of the rare earth element and the rare earth element and the intermetallic compound of the transition metal Or a mixed structure composed of the above phases and the rare earth element simple phase.

上記微細混合相は、希土類元素と希土類元素および遷移
金属の金属間化合物とが微細に混合したもので、融体が
常温に冷却される際におこる共晶、包晶、包共晶などの
反応により生成されるものである。また、急速に冷却さ
れて非晶質組織を呈していたものが、加熱により結晶質
組織となったものでもよい。本発明の組織においては、
前記金属間化合物相に前記添加元素が含有され、前記微
細混合相に前記添加元素が実質的に含有されない。ま
た、前記金属間化合物相に前記添加元素が実質的に含有
されず、前記微細混合相に前記添加元素が含有されても
よい。このように、組織に、前記混合相を存在させ、前
記金属間化合物相と前記微細混合相のいずれか一方に前
記添加元素を含有させる、即ち前記添加元素を偏在させ
ることは、(1)脆い前記金属間化合物相の結合相とな
る、(2)膜組成を均一にする、そして(3)ターゲッ
トと膜との組成差を少なくするように作用する。この混
合相は、500μm以下の大きさで、3容量%以上存在す
ることが、前記作用を有効に発揮させる上で好ましく、
形状は粒状、角状、柱状などでよく、特に制限はない。
遷移金属単体相は実質的に存在しないことが必要であ
り、存在すると、ターゲット利用効率や膜の経時変化に
悪い影響を及ぼす。他の相である金属間化合物相は、1
相でも2相以上でもよく、それらの形状、大きさも特に
制限はない。
The fine mixed phase is a finely mixed rare earth element and an intermetallic compound of a rare earth element and a transition metal, and a eutectic, a peritectic, a peritectic, etc. reaction that occurs when the melt is cooled to room temperature. Is generated by. Further, a material which has been rapidly cooled to have an amorphous structure may be one having a crystalline structure due to heating. In the organization of the present invention,
The additive element is contained in the intermetallic compound phase, and the additive element is not substantially contained in the fine mixed phase. Further, the additive element may not be contained substantially in the intermetallic compound phase, and the additive element may be contained in the fine mixed phase. As described above, the presence of the mixed phase in the structure and the inclusion of the additive element in any one of the intermetallic compound phase and the fine mixed phase, that is, uneven distribution of the additive element is (1) brittle. It acts as a binding phase of the intermetallic compound phase, (2) uniformizing the film composition, and (3) reducing the composition difference between the target and the film. It is preferable that this mixed phase has a size of 500 μm or less and is present in an amount of 3% by volume or more in order to effectively exhibit the above-mentioned action,
The shape may be granular, angular, columnar, etc. and is not particularly limited.
It is necessary that the transition metal simple phase is substantially absent, and if it is present, it has a bad influence on the target utilization efficiency and the change with time of the film. The other phase, the intermetallic phase, is 1
There may be a phase or two or more phases, and there is no particular limitation on their shape and size.

希土類元素単体相は、別の他の相として存在しても、存
在しないものと作用に特に著しい相違はない。
Even if the rare earth element simple phase exists as another phase, there is no significant difference in action from the phase that does not exist.

次に本発明の合金ターゲットの製造方法例を説明する。Next, an example of a method for manufacturing the alloy target of the present invention will be described.

本発明の合金ターゲットを製造するには、前記添加元素
を含有する粉末と前記添加元素を実質的に含有しない粉
末とを混合し、次に、粉末冶金法により、焼結体である
合金ターゲットとする。また、前記添加元素を含有する
粉末と前記添加元素を実質的に含有しない粉末のどちら
か一方は、溶解法により製造された合金粉末、換言すれ
ば、一旦、溶湯となった履歴を有する合金粉末を使用す
るか、または、粉末冶金法による焼結の際、液相を生ぜ
しめることが必要である。このような合金粉末として
は、(1)溶解して得られた合金鋳塊を機械粉砕して製
造したもの、(2)合金を電極としてプラズマREP(Rot
ation Electrode Process)法により製造したもの、
(3)合金溶湯をロールなどの常温の冷却装置により急
速に冷却凝固させて得られた薄帯を粉砕して製造したも
のなどが挙げられる。もう一方の粉末は、例えば、希土
類酸化物粉、遷移金属粉あるいは遷移金属粉および添加
元素粉、並びに金属カルシウムのような還元剤を混合
し、加熱して、希土類酸化物の還元、遷移金属あるいは
遷移金属および添加元素への拡散の反応を行わせる還元
拡散法により製造したものなどが挙げられる。
In order to manufacture the alloy target of the present invention, a powder containing the additive element and a powder substantially not containing the additive element are mixed, and then, by a powder metallurgy method, an alloy target that is a sintered body is obtained. To do. Further, one of the powder containing the additive element and the powder not substantially containing the additive element is an alloy powder produced by a melting method, in other words, an alloy powder having a history of once being a molten metal. Or it is necessary to produce a liquid phase during sintering by powder metallurgy. Such alloy powders are (1) manufactured by mechanically crushing an alloy ingot obtained by melting, and (2) plasma REP (Rot
ation Electrode Process),
(3) Examples include those manufactured by crushing a thin strip obtained by rapidly cooling and solidifying the molten alloy with a cooling device such as a roll at room temperature. The other powder is, for example, a rare earth oxide powder, a transition metal powder or a transition metal powder and an additive element powder, and a reducing agent such as metal calcium are mixed and heated to reduce the rare earth oxide, transition metal or Examples include those produced by a reduction diffusion method that causes a reaction of diffusion to a transition metal and an additional element.

なお、遷移金属の単体または合金粉末の使用は、合金タ
ーゲットの組織に遷移金属単体相を存在させないという
観点から留意すべきであり、使用するとしてもできるだ
け細粒のものを使用するのが好ましい。
It should be noted that the use of the transition metal simple substance or the alloy powder should be noted from the viewpoint that the transition metal simple substance phase does not exist in the structure of the alloy target, and even if it is used, it is preferable to use a fine grain.

こうして得られた合金粉末は、次に、粉末冶金法によ
り、焼結体である合金ターゲットが製造される。即ち、
例えば、混合粉末を、常温で0.5〜5t/cm2の圧力で単純
圧縮するか、0.5〜2t/cm2の圧力で静水圧プレスにて成
形した後、真空あるいはAr雰囲気中、700〜1300℃の温
度で0.5〜5時間焼結する常圧焼結法、真空中、0.1〜0.
5t/cm2の圧力で600〜1200℃の温度で1〜5時間焼結す
る熱間加圧法、更には弾性体中に封入後、600〜1200℃
の温度、0.1〜2t/cm2の圧力で0.5〜5時間焼結する熱間
静水圧加圧法等により焼結を行なう。
The alloy powder thus obtained is then subjected to powder metallurgy to produce an alloy target which is a sintered body. That is,
For example, the mixed powder is simply compressed at a pressure of 0.5 to 5 t / cm 2 at room temperature, or is formed by isostatic pressing at a pressure of 0.5 to 2 t / cm 2 , and then 700 to 1300 ° C. in a vacuum or Ar atmosphere. Atmospheric pressure sintering method for 0.5 to 5 hours at a temperature of 0.1 to 0 in vacuum.
Hot pressing method of sintering at a pressure of 5 t / cm 2 at a temperature of 600 to 1200 ° C. for 1 to 5 hours, and further after encapsulating in an elastic body, 600 to 1200 ° C.
Sintering is performed by a hot isostatic pressing method or the like in which the sintering is performed at a temperature of 0.1 to 2 t / cm 2 for 0.5 to 5 hours.

以上のような方法で製造された合金ターゲットは、本発
明の組織を呈する。この組織の中で前記微細混合相は、
前記溶解法により製造された合金粉末中に存在していた
か、あるいは、前記粉末冶金法による焼結の際に液相が
生成したことにより新たに存在したものである。
The alloy target manufactured by the above method exhibits the structure of the present invention. In this structure, the fine mixed phase is
It is present in the alloy powder produced by the melting method or is newly present due to the formation of a liquid phase during the sintering by the powder metallurgy method.

以下、本発明を実施例により具体的に説明する。Hereinafter, the present invention will be specifically described with reference to examples.

〔実施例〕〔Example〕

実施例1 組成Tb25Fe60Co10Cr5の合金ターゲットの製造を目的と
して、還元拡散法により製造した組成Tb13.2Fe68Co12.5
Cr6.3の合金粉末(平均粒計50μm)とプラズマREP法に
より製造した組成Tb72Fe28の合金粉末(平均粒径100μ
m)(以上、いずれも純度99.9重量%以上、以下の例に
おける原料粉末も同様)とを配合し、アルゴンガス雰囲
気中ボールミルで1時間混合した。
Example 1 A composition Tb 13.2 Fe 68 Co 12.5 produced by a reduction diffusion method for the purpose of producing an alloy target having a composition Tb 25 Fe 60 Co 10 Cr 5.
Alloy powder of Cr 6.3 (average particle size 50 μm) and alloy powder of composition Tb 72 Fe 28 produced by plasma REP method (average particle size 100 μm
m) (all of which have a purity of 99.9% by weight or more, the same applies to the raw material powders in the following examples) and mixed for 1 hour in a ball mill in an argon gas atmosphere.

この混合粉末を内径152mmの黒鉛製の成形器に装入し熱
間加圧した。熱間加圧の条件として、真空度を1×10-4
Torrとし、粉末を加圧するために、100kg/cm2の圧力を8
60℃に昇温するまで加え、昇温後は圧力を250kg/cm2
しその温度を30分保持した後、室温まで冷却した。
This mixed powder was placed in a graphite molding machine having an inner diameter of 152 mm and hot pressed. As the condition of hot pressing, the degree of vacuum is 1 × 10 -4
Torr, and pressurize 100 kg / cm 2 to 8 times to pressurize the powder.
After the temperature was raised to 60 ° C., the pressure was raised to 250 kg / cm 2 and the temperature was maintained for 30 minutes, and then cooled to room temperature.

成形器から取り出した合金ターゲットである焼結体のヒ
ビ、割れを検査した。これらは目視にて全く見あたら
ず、透過X線の照射による内部検査でも観測されなかっ
た。また、この焼結体の組成、組織の検鏡結果を第1表
に示す。このうち、存在する相の大きさおよび容量%は
切断法によった。なお、希土類元素単体相および遷移金
属単体相は認められなかった。
The sintered compact as the alloy target taken out from the molding machine was inspected for cracks and cracks. These were not found at all by visual observation, and were not observed by internal inspection by irradiation with transmitted X-rays. In addition, Table 1 shows the results of microscopic examination of the composition and structure of this sintered body. Of these, the size and volume% of the phases present were determined by the cleavage method. No rare earth element single phase or transition metal single phase was observed.

このような合金ターゲット(直径151mm、厚さ3mm)を使
用し、スパッタリング法(Arガス圧:6×10-5Torr、スパ
ッタリング電力:4W/cm2、基板:ソーダガラス)により
薄膜(膜厚3000Å)を作成した。作成中スパッタリング
はいずれの試験も充分安定していた。また、作成後の合
金ターゲットのヒビ、割れを前記と同様に観察、検査し
たが、観測されなかった。薄膜作成後、(1)膜組成の
バラツキ、(2)ターゲット−膜の組成ずれ、(3)タ
ーゲット利用効率、(4)膜組成の経時変化を測定し
た。なお、上記(1)〜(4)の測定方法は、次の通り
である。
Using such an alloy target (diameter 151 mm, thickness 3 mm), a thin film (film thickness 3000 Å) by sputtering method (Ar gas pressure: 6 × 10 -5 Torr, sputtering power: 4 W / cm 2 and substrate: soda glass) )made. During the preparation, the sputtering was sufficiently stable in all the tests. Further, cracks and cracks of the alloy target after formation were observed and inspected in the same manner as above, but were not observed. After forming the thin film, (1) variation in film composition, (2) target-film composition deviation, (3) target utilization efficiency, and (4) film composition change over time were measured. The measuring methods (1) to (4) are as follows.

(1) 膜組成のバラツキ:基板のターゲット中心直上
位置を原点とし、半径方向に30mm間隔の6点を取り、そ
れらの点における希土類元素量および添加元素量をEPMA
により定量分析し、そのバラツキ(範囲)を求める。
(1) Variation in film composition: The origin is located directly above the center of the target on the substrate, and 6 points at 30 mm intervals are taken in the radial direction, and the amounts of rare earth elements and additive elements at those points are measured by EPMA.
Quantitative analysis is performed according to to obtain the variation (range).

(2) ターゲット−膜の組成ずれ:ターゲットおよび
膜中の希土類元素量および添加元素量をEPMAにより定量
分析し、その組成差を求める。
(2) Target-film composition shift: The amounts of rare earth elements and added elements in the target and the film are quantitatively analyzed by EPMA, and the composition difference is obtained.

(3) ターゲット利用効率:長時間使用し、ターゲッ
ト厚さが最も薄いところで0.5mmとなったターゲットの
減量を測定する。
(3) Target utilization efficiency: Use for a long time and measure the weight loss of the target that became 0.5 mm at the thinnest target thickness.

(4) 膜組成の経時変化:スパッタ時間が1,5,10およ
び30時間経過した時点で得られた薄膜中の希土類元素量
のバラツキ(範囲)を求める。
(4) Change in film composition with time: Obtain the variation (range) of the amount of rare earth element in the thin film obtained at the time of sputtering time of 1, 5, 10 and 30 hours.

上記測定により得られた結果を第2表に示す。The results obtained by the above measurement are shown in Table 2.

実施例2、3、比較例1〜3 第1表に示す原料粉末を使用した以外は、実施例1と同
様に試験した。これらの焼結体の組成、組織の検鏡結果
を第1表に示す。なお、実施例2、3において、薄膜作
成前後で合金ターゲットのヒビ、割れを観察、検査した
結果、それらは何ら観測されなかった。また、測定によ
り得られた結果を第2表に示す。
Examples 2 and 3, Comparative Examples 1 to 3 Tests were performed in the same manner as in Example 1 except that the raw material powders shown in Table 1 were used. Table 1 shows the results of microscopic examination of the composition and structure of these sintered bodies. In addition, in Examples 2 and 3, as a result of observing and inspecting cracks and cracks of the alloy target before and after forming the thin film, they were not observed at all. The results obtained by the measurement are shown in Table 2.

〔発明の効果〕 以上から明らかなように、本発明により、組成が均一
で、ヒビ、割れがなく高強度をもち、かつ、ターゲット
−膜の組成ずれや膜組成の経時変化が少なく、利用効率
がよい、優れたターゲットを提供することができる。
[Effects of the Invention] As is clear from the above, according to the present invention, the composition is uniform, has high strength without cracks and cracks, and the composition shift of the target-film and the change with time of the film composition are small, and the utilization efficiency is improved. Can provide a good and excellent target.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】成分、組成が、Sm,Nd,Gd,Tb,Dy,Ho,Tm,Er
の中の少なくとも1種の希土類元素10〜50原子%、B,A
l,Si,P,Ti,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,W,Pt,Pb,Biの中の
少なくとも1種の添加元素0.1〜10原子%、残部実質的
にCo,Fe,Niの中の少なくとも1種の遷移金属であり、組
織が該希土類元素、該添加元素および該遷移金属の金属
間化合物相、並びに該希土類元素と該希土類元素および
該遷移金属の金属間化合物との微細混合相からなる混合
組織であることを特徴とする光磁気記録用合金ターゲッ
ト。
1. Ingredients and compositions are Sm, Nd, Gd, Tb, Dy, Ho, Tm, Er
At least one rare earth element of 10 to 50 atomic%, B, A
l, Si, P, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Bi at least one additive element 0.1 to 10 atomic%, the balance substantially At least one transition metal of Co, Fe, and Ni, the structure of which is an intermetallic compound phase of the rare earth element, the additive element, and the transition metal, and the rare earth element, the rare earth element, and the metal of the transition metal. An alloy target for magneto-optical recording having a mixed structure composed of a fine mixed phase with an intermetallic compound.
【請求項2】成分、組成が、Sm,Nd,Gd,Tb,Dy,Ho,Tm,Er
の中の少なくとも1種の希土類元素10〜50原子%、B,A
l,Si,P,Ti,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,W,Pt,Pb,Biの中の
少なくとも1種の添加元素0.1〜10原子%、残部実質的
にCo,Fe,Niの中の少なくとも1種の遷移金属であり、組
織が該希土類元素、該添加元素および該遷移金属の金属
間化合物相、該希土類元素と該希土類元素および該遷移
金属の金属間化合物との微細混合相、並びに該希土類元
素単体相からなる混合組織であることを特徴とする光磁
気記録用合金ターゲット。
2. The components and compositions are Sm, Nd, Gd, Tb, Dy, Ho, Tm, Er.
At least one rare earth element of 10 to 50 atomic%, B, A
l, Si, P, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Bi at least one additive element 0.1 to 10 atomic%, the balance substantially At least one kind of transition metal among Co, Fe, and Ni, whose structure is an intermetallic compound phase of the rare earth element, the additive element, and the transition metal, an intermetallic compound of the rare earth element, the rare earth element, and the transition metal An alloy target for magneto-optical recording having a fine structure mixed with a compound and a mixed structure composed of the rare earth element simple substance phase.
【請求項3】成分、組成が、Sm,Nd,Gd,Tb,Dy,Ho,Tm,Er
の中の少なくとも1種の希土類元素10〜50原子%、B,A
l,Si,P,Ti,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,W,Pt,Pb,Biの中の
少なくとも1種の添加元素0.1〜10原子%、残部実質的
にCo,Fe,Niの中の少なくとも1種の遷移金属であり、組
織が該希土類元素および該遷移金属の金属間化合物相、
並びに該希土類元素と該希土類元素および該遷移金属の
金属間化合物との微細混合相(該希土類元素と該希土類
元素および該遷移金属の金属間化合物とのうちの少なく
とも1つは該添加元素を含む)からなる混合組織である
ことを特徴とする光磁気記録用合金ターゲット。
3. The components and compositions are Sm, Nd, Gd, Tb, Dy, Ho, Tm, Er.
At least one rare earth element of 10 to 50 atomic%, B, A
l, Si, P, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Bi at least one additive element 0.1 to 10 atomic%, the balance substantially At least one transition metal of Co, Fe, and Ni, the structure of which is an intermetallic compound phase of the rare earth element and the transition metal,
And a fine mixed phase of the rare earth element and the intermetallic compound of the rare earth element and the transition metal (at least one of the rare earth element and the intermetallic compound of the rare earth element and the transition metal contains the additive element) The alloy target for magneto-optical recording having a mixed structure of
【請求項4】成分、組成が、Sm,Nd,Gd,Tb,Dy,Ho,Tm,Er
の中の少なくとも1種の希土類元素10〜50原子%、B,A
l,Si,P,Ti,V,Cr,Mn,Zr,Nb,Mo,Hf,Ta,W,Pt,Pb,Biの中の
少なくとも1種の添加元素0.1〜10原子%、残部実質的
にCo,Fe,Niの中の少なくとも1種の遷移金属であり、組
織が該希土類元素および該遷移金属の金属間化合物相、
該希土類元素と該希土類元素および該遷移金属の金属間
化合物との微細混合相(該希土類元素と該希土類元素お
よび該遷移金属の金属間化合物とのうち少なくとも1つ
は該添加元素を含む)、並びに該希土類元素単体相から
なる混合組織であることを特徴とする光磁気記録用合金
ターゲット。
4. The components and compositions are Sm, Nd, Gd, Tb, Dy, Ho, Tm, Er.
At least one rare earth element of 10 to 50 atomic%, B, A
l, Si, P, Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Bi at least one additive element 0.1 to 10 atomic%, the balance substantially At least one transition metal of Co, Fe, and Ni, the structure of which is an intermetallic compound phase of the rare earth element and the transition metal,
A fine mixed phase of the rare earth element and the intermetallic compound of the rare earth element and the transition metal (at least one of the rare earth element, the rare earth element and the intermetallic compound of the transition metal includes the additive element), An alloy target for magneto-optical recording having a mixed structure composed of the rare earth element simple phase.
JP63268216A 1988-10-26 1988-10-26 Alloy target for magneto-optical recording Expired - Fee Related JPH0784657B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63268216A JPH0784657B2 (en) 1988-10-26 1988-10-26 Alloy target for magneto-optical recording
DE3935698A DE3935698C2 (en) 1988-10-26 1989-10-26 Alloy target for the production of a magneto-optical recording medium
US07/426,710 US4992095A (en) 1988-10-26 1989-10-26 Alloy target used for manufacturing magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268216A JPH0784657B2 (en) 1988-10-26 1988-10-26 Alloy target for magneto-optical recording

Publications (2)

Publication Number Publication Date
JPH02118065A JPH02118065A (en) 1990-05-02
JPH0784657B2 true JPH0784657B2 (en) 1995-09-13

Family

ID=17455528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268216A Expired - Fee Related JPH0784657B2 (en) 1988-10-26 1988-10-26 Alloy target for magneto-optical recording

Country Status (1)

Country Link
JP (1) JPH0784657B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4321851A1 (en) * 1993-07-01 1995-01-12 Philips Patentverwaltung Magneto-optical recording medium
JPH0790567A (en) * 1993-07-30 1995-04-04 Hitachi Metals Ltd Target material for magneto-optical recording medium and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766585B2 (en) * 1986-03-06 1995-07-19 三菱マテリアル株式会社 Tb-Fe based sintered sputtering target material for forming magneto-optical recording medium
JPS63171877A (en) * 1987-01-09 1988-07-15 Mitsubishi Kasei Corp Composit target material

Also Published As

Publication number Publication date
JPH02118065A (en) 1990-05-02

Similar Documents

Publication Publication Date Title
US4992095A (en) Alloy target used for manufacturing magneto-optical recording medium
EP1523584A1 (en) FABRICATION OF B/C/N/O/Si DOPED SPUTTERING TARGETS
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
JPH06184740A (en) Target for optomagnetic recording medium and production thereof
JPH0784656B2 (en) Alloy target for magneto-optical recording
US4915737A (en) Alloy target for manufacturing a magneto-optical recording medium
JPS6324030A (en) Anisotropic rare earth magnet material and its production
US4885134A (en) Sputtering target and method of preparing the same
JP2533922B2 (en) Sintered target member and manufacturing method thereof
US4915738A (en) Alloy target for manufacturing a magneto-optical recording medium
JPH0784657B2 (en) Alloy target for magneto-optical recording
JPS6270550A (en) Material for target
JPH0784658B2 (en) Alloy target for magneto-optical recording
JPH0790567A (en) Target material for magneto-optical recording medium and its production
JPH0119448B2 (en)
JPH11246967A (en) Target for irmn series alloy film formation, its production and antiferromagnetic film using it
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JP2001226764A (en) Sintered compact for sputtering target material, its manufacturing method, and sputtering target
JPS62130236A (en) Production of target material
JP4547840B2 (en) Permanent magnet and method for manufacturing the same
JPH0791637B2 (en) Sputtering alloy target and manufacturing method thereof
JPH01242733A (en) Manufacture of alloy powder for rare earth metal-transition metal target and manufacture of rare earth metal-transition metal target
JPS62205556A (en) Sputtering target for forming photoelectromagnetic recording medium
JPH02138463A (en) Target material for sputtering
JPH02121376A (en) Manufacture of magnetostrictive material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees