JPH0547252A - Electric contact material and its manufacture - Google Patents

Electric contact material and its manufacture

Info

Publication number
JPH0547252A
JPH0547252A JP20508091A JP20508091A JPH0547252A JP H0547252 A JPH0547252 A JP H0547252A JP 20508091 A JP20508091 A JP 20508091A JP 20508091 A JP20508091 A JP 20508091A JP H0547252 A JPH0547252 A JP H0547252A
Authority
JP
Japan
Prior art keywords
layer
alloy
plating layer
plating
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20508091A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
智 鈴木
Mitsuru Murakawa
満 村川
Toyoichiro Minamitani
豊一郎 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20508091A priority Critical patent/JPH0547252A/en
Publication of JPH0547252A publication Critical patent/JPH0547252A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electric contact material having a surface layer consisting of an Ag alloy and having the wear resistance, corrosion resistance and workability equal to those in the case of manufacture of clad method. CONSTITUTION:A contact base material, a bed layer consisting of Ni or Co, or the alloy of both formed on the surface of the contact base material, and an Ag-Sn-In alloy layer formed on the surface of the bed layer are provided. The Ag-Sn-In alloy layer is formed by forming a Ag plated layer, an Sn plated layer, and an In plated layer on the bed layer by plating method, and conducting a diffusion thermal treatment thereto. Since the thickness of each plated layer is thin, the use quantity of Ag can be saved. Further, since the plating method is inexpensive and continuable, the manufacturing cost is highly reduced as the whole. The surface is excellent in wear resistance, corrosion resistance and workability as it is formed of the Ag-Sn-In alloy layer, and almost equal, compared with a conventional material manufactured by clad method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気接点材料とその製造
方法に関し、更に詳しくは、クラッド法で製造した従来
の電気接点材料に比べても、耐摩耗性,耐食性,加工性
などの特性が略同等である電気接点材料とそれを極めて
安価に製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric contact material and a method for producing the same, and more specifically, it has characteristics such as abrasion resistance, corrosion resistance and workability as compared with conventional electric contact materials produced by the clad method. Substantially equivalent electrical contact material and method for making it at very low cost.

【0002】[0002]

【従来の技術】各種金属線条の表面をAgまたはAg合
金で被覆して成る材料は、その基材である金属線条が具
備する特性に加えて、AgまたはAg合金が備えている
耐食性,半田付け性,電気接続性などの特性も発現する
ので、従来から各種の用途に用いられている。
2. Description of the Related Art A material obtained by coating the surface of various metal filaments with Ag or an Ag alloy has, in addition to the characteristics possessed by the metal filaments as its base material, the corrosion resistance of Ag or Ag alloys. Since it exhibits characteristics such as solderability and electrical connectivity, it has been conventionally used for various purposes.

【0003】例えば、Cu合金条の表面を厚み0.5〜2
0μmのAg層で被覆して成る材料は、Cu合金の優れ
た機械的特性に加えて、Agが有する優れた耐食性,半
田付け性,電気接続性等も同時に発現する経済的な高性
能導体として知られており、電気・電子機器分野におけ
る接触部品やリードの材料として広く用いられている。
For example, the surface of a Cu alloy strip has a thickness of 0.5-2.
The material coated with a 0 μm Ag layer is an economical high-performance conductor that exhibits not only the excellent mechanical properties of Cu alloys, but also the excellent corrosion resistance, solderability, and electrical connectivity that Ag has. It is known and widely used as a material for contact parts and leads in the field of electric and electronic devices.

【0004】ところで、これら材料のうち、例えばスイ
ッチは固定接点と可動接点を組合せて構成されている
が、これら両接点の材料には、いずれも、上記したAg
またはAg合金で基材を被覆した材料が通常用いられて
いる。この場合、Ag層の厚みが0.2〜5.0μmのとき
は、通常、基材にAgを電気めっきしたものが用いら
れ、またAg層の厚みが5μm以上の厚みのときは、基
材とAg箔をクラッドしたものが用いられている。そし
て、Ag合金層で表面層が構成されている接点の場合
は、通常、Ag合金箔と基材とをクラッドして製造した
材料が用いられている。
By the way, of these materials, for example, a switch is composed of a combination of a fixed contact and a movable contact, and the materials of these two contacts are all Ag described above.
Alternatively, a material in which a base material is coated with an Ag alloy is usually used. In this case, when the thickness of the Ag layer is 0.2 to 5.0 μm, a base material electroplated with Ag is usually used, and when the thickness of the Ag layer is 5 μm or more, the base material is And Ag foil clad is used. In the case of a contact whose surface layer is composed of an Ag alloy layer, a material produced by clad an Ag alloy foil and a base material is usually used.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記した接
点材料のうち、表面層がAg合金層のものは、Ag層の
ものに比べて、耐摩耗性と耐アーク性に優れている。し
かし、層の厚みは5μm以上であるため高価なAg合金
の使用量は多くなり、しかもめっき法で層を成膜するこ
とが困難であるためクラッド法を適用せざるを得ず、結
果として製造コストが大幅に上昇するという欠点があ
る。
By the way, among the above-mentioned contact materials, the one having the Ag alloy layer as the surface layer is superior in wear resistance and arc resistance to the one having the Ag layer. However, since the thickness of the layer is 5 μm or more, the amount of expensive Ag alloy used is large, and since it is difficult to form the layer by the plating method, the clad method has to be applied, resulting in manufacturing. It has the disadvantage of significantly increasing costs.

【0006】本発明は、表面がAg合金で構成されてい
る電気接点材料における上記問題を解決し、クラッド法
で製造した従来のAg合金表面の電気接点材料に比べて
も、その接点特性は略同等である電気接点材料と、それ
を極めて安価に製造する方法の提供を目的とする。
The present invention solves the above problems in an electric contact material whose surface is composed of an Ag alloy, and its contact characteristics are substantially even when compared with the conventional electric contact material of the Ag alloy surface manufactured by the clad method. An object of the present invention is to provide an equivalent electrical contact material and a method of manufacturing the same at an extremely low cost.

【0007】[0007]

【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、接点基材と、前記接点基材
の表面に形成されたNiもしくはCoまたは両者の合金
から成る下地層と、前記下地層の表面に形成されたAg
−Sn−In合金から成る表面層とを備えていることを
特徴とする電気接点材料が提供され、また、接点基材の
表面に、めっき法で、NiもしくはCoまたは両者の合
金から成る下地めっき層を成膜する工程(以下、第1工
程という);前記下地めっき層の表面に、めっき法で、
Agめっき層を成膜する工程(以下、第2工程とい
う);前記Agめっき層の表面に、めっき法で、Snめ
っき層とInめっき層を順不同に成膜する工程(以下、
第3工程という);および、非酸化性雰囲気中で加熱し
て、前記Agめっき層とSnめっき層とInめっき層と
に拡散処理を施してこれら3層をAg−Sn−In合金
層に転化する工程(以下、第4工程という);を備えて
いることを特徴とする電気接点材料の製造方法が提供さ
れる。
In order to achieve the above object, in the present invention, a contact base material and a base layer made of Ni or Co or an alloy of both are formed on the surface of the contact base material. , Ag formed on the surface of the underlayer
-Sn-In alloy is provided on the surface of the contact base material, and the surface of the contact base material is plated by Ni or Co or an alloy of both. A step of forming a layer (hereinafter referred to as a first step); on the surface of the base plating layer by a plating method,
A step of forming an Ag plating layer (hereinafter referred to as a second step); a step of forming an Sn plating layer and an In plating layer in a random order on the surface of the Ag plating layer by a plating method (hereinafter, referred to as
Third step); and heating in a non-oxidizing atmosphere to subject the Ag plating layer, the Sn plating layer, and the In plating layer to diffusion treatment to convert these three layers into an Ag-Sn-In alloy layer. And a step (hereinafter, referred to as a fourth step).

【0008】まず、本発明における接点基材の材料とし
ては、例えば、Cuや各種のCu合金;鋼材,アルミニ
ウム材のような材料の表面をCuまたはCu合金で被覆
して成る複合材料;またはNiやFe,もしくはこれら
の合金;などをあげることができる。接点基材の形状
は、格別限定されるものではなく、例えば、線材,条
材,棒材,管材などをあげることができる。
First, as the material of the contact base material in the present invention, for example, Cu or various Cu alloys; a composite material obtained by coating the surface of a material such as steel or aluminum with Cu or Cu alloy; or Ni. And Fe, or alloys thereof; and the like. The shape of the contact base material is not particularly limited, and examples thereof include a wire material, a strip material, a rod material, and a pipe material.

【0009】本発明の電気接点材料の製造方法におい
て、まず、第1工程は、接点基材の表面にめっき法でN
i,Coまたは両者の合金から成る下地めっき層を成膜
する工程である。この下地めっき層は、後述する第4工
程の拡散処理時に、下地めっき層の下に位置する接点基
材の構成元素が、この下地めっき層の上に成膜されてい
るAgめっき層,Snめっき層およびInめっき層に拡
散することを防止するためのバリア層として機能する。
In the method for producing an electric contact material of the present invention, first, the first step is to apply N on the surface of the contact base material by plating.
This is a step of forming a base plating layer made of i, Co or an alloy of both. In this undercoat plating layer, the constituent elements of the contact base material located under the undercoat plating layer are deposited on the undercoat plating layer during the diffusion treatment of the fourth step, which will be described later. It functions as a barrier layer for preventing diffusion into the layer and the In plating layer.

【0010】この下地層は、電気めっき法や無電解めっ
き法などによって形成される。コストの点からすると、
電気めっき法が好適である。下地層は、後述する第4工
程において接点基材の構成元素のAg−Sn−In合金
層への拡散を防止するための拡散バリアとして機能す
る。したがって、その厚みは、この機能を達成できる程
度の厚みであればよく、具体的には0.1μm以上、好ま
しくは0.5μm以上であればよい。しかし、あまり厚く
しても無意味であり、しかも材料コストを高めるので、
とくに好ましくは0.5〜2.0μm程度である。
This underlayer is formed by an electroplating method or an electroless plating method. In terms of cost,
The electroplating method is preferred. The underlayer functions as a diffusion barrier for preventing the constituent elements of the contact base material from diffusing into the Ag—Sn—In alloy layer in the fourth step described later. Therefore, the thickness may be such that this function can be achieved, and specifically, the thickness may be 0.1 μm or more, preferably 0.5 μm or more. However, it is meaningless to make it too thick, and since it increases the material cost,
Particularly preferably, it is about 0.5 to 2.0 μm.

【0011】第2工程は、第1工程と同じくめっき法に
よって、上記下地めっき層の表面にAgめっき層を形成
する工程である。その厚みは格別限定されないが、0.2
μm以上であることが好ましい。また、接点としての特
性低下を招かず、また、材料コストとの関係からすると
0.5〜3.0μm程度であることがとくに好ましい。第3
工程は、第2工程で成膜したAgめっき層の表面に同じ
くめっき法で、Snめっき層とInめっき層を形成する
工程である。
The second step is a step of forming an Ag plating layer on the surface of the base plating layer by the plating method as in the first step. The thickness is not particularly limited, but 0.2
It is preferably at least μm. In addition, it does not cause deterioration of the characteristics as a contact, and in terms of material cost
It is particularly preferable that the thickness is about 0.5 to 3.0 μm. Third
The step is a step of forming the Sn plating layer and the In plating layer on the surface of the Ag plating layer formed in the second step by the same plating method.

【0012】このSnめっき層とInめっき層は、前記
したAgめっき層と一緒に、後述する第4工程における
拡散処理を受けることにより、Sn,In,Agが相互
に拡散して合金化してなるAg−Sn−In合金層に転
化する。したがって、Snめっき層とInめっき層の成
膜順序は格別限定されず順不同であればよい。この場
合、拡散処理時の温度や時間によっても変動するが、通
常、得られたAg−Sn−In合金層においては、Ag
濃度,Sn濃度,In濃度はこの層の中の全ての個所で
一定値になっているわけではなく、下地層側に接近する
ほどAg濃度が高くなる(Sn濃度やIn濃度は低くな
る)。すなわち、各合金成分はこの合金層の厚み方向で
濃度勾配をもって拡散している。
The Sn plating layer and the In plating layer are alloyed with the Ag plating layer by diffusing Sn, In and Ag into each other by being subjected to a diffusion treatment in a fourth step described later. It is converted to an Ag-Sn-In alloy layer. Therefore, the film formation order of the Sn plating layer and the In plating layer is not particularly limited as long as the order is not limited. In this case, although it varies depending on the temperature and time during the diffusion treatment, in the obtained Ag-Sn-In alloy layer, Ag is usually
The concentration, the Sn concentration, and the In concentration are not constant values at all points in this layer, and the Ag concentration increases (the Sn concentration and the In concentration decrease) as they approach the underlayer side. That is, each alloy component diffuses with a concentration gradient in the thickness direction of this alloy layer.

【0013】そして、Sn濃度の平均値が2〜20重量
%,In濃度の平均値が1〜10重量%、したがって、
Ag濃度の平均値が70〜97重量%になっているよう
なAg−Sn−In合金層のときに、その耐摩耗性や耐
アーク性は良好である。したがって、第3工程における
Snめっき層の厚み,Inめっき層の厚みは、上記した
問題を勘案してそれぞれ選択される。
The average Sn concentration is 2 to 20% by weight, and the average In concentration is 1 to 10% by weight.
When the Ag-Sn-In alloy layer has an average Ag concentration of 70 to 97% by weight, its wear resistance and arc resistance are good. Therefore, the thickness of the Sn plating layer and the thickness of the In plating layer in the third step are selected in consideration of the above problems.

【0014】具体的には、Agめっき層の厚みに対し、
Snめっき層は、0.03〜0.36倍の厚みに成膜するこ
とが好ましく、またInめっき層は0.015〜0.16倍
の厚みに成膜することが好ましい。Snめっき層,In
めっき層の厚みがそれぞれAgめっき層の厚みに対し、
0.03倍値未満,0.015倍値未満の場合は、形成され
たAg−Sn−In合金層における平均Sn濃度,平均
In濃度が2重量%未満,1重量%未満になってしま
い、その結果、Ag−Sn−In合金層の耐摩耗性や耐
アーク性が充分に発揮されなくなる。また、Snめっき
層,Inめっき層の厚みがAgめっき層の厚みに対し、
それぞれ、0.36倍値,0.16倍値を超えると、Sn,
Inが下地層のNiやCoとも合金化してしまい、得ら
れる材料は、著しくその加工性が低下する。
Specifically, with respect to the thickness of the Ag plating layer,
The Sn plating layer is preferably formed to a thickness of 0.03 to 0.36 times, and the In plating layer is preferably formed to a thickness of 0.015 to 0.16 times. Sn plating layer, In
The thickness of the plating layer is respectively the thickness of the Ag plating layer,
When the value is less than 0.03 times or less than 0.015 times, the average Sn concentration and the average In concentration in the formed Ag-Sn-In alloy layer are less than 2% by weight and less than 1% by weight, respectively. As a result, the wear resistance and arc resistance of the Ag-Sn-In alloy layer are not fully exhibited. Moreover, the thickness of the Sn plating layer and the In plating layer is greater than the thickness of the Ag plating layer.
When the value exceeds 0.36 times and 0.16 times, respectively, Sn,
In is alloyed with Ni and Co of the underlayer, and the workability of the obtained material is significantly reduced.

【0015】第4工程は前記したSnめっき層とInめ
っき層とAgめっき層に拡散処理を施して、三者をAg
−Sn−In合金層に転化する工程である。拡散処理
は、接点材料の酸化を防止するために、窒素,アルゴ
ン,水素のような非酸化性雰囲気中で行われる。この拡
散処理時の温度と時間は、Snめっき層とInめっき層
とAgめっき層のそれぞれの厚み、基材の材質、断面積
によって適宜に選定されるが、概ね、処理温度は300
℃以上,処理時間は10秒以上であればよい。
In the fourth step, the Sn plating layer, the In plating layer, and the Ag plating layer are subjected to a diffusion treatment so that the three components are Ag.
It is a step of converting into a -Sn-In alloy layer. The diffusion process is carried out in a non-oxidizing atmosphere such as nitrogen, argon or hydrogen to prevent oxidation of the contact material. The temperature and time during this diffusion treatment are appropriately selected depending on the thicknesses of the Sn plating layer, the In plating layer, and the Ag plating layer, the material of the base material, and the cross-sectional area.
The processing time may be 10 ° C. or more and the temperature may be 10 ° C. or more.

【0016】本発明の製造方法においては、下地層用の
めっき槽,Agめっき層用のめっき槽,Snめっき層用
のめっき槽,Inめっき層用のめっき槽をシリーズに配
列し、ここに接点基材の条や線を連続的に走行させるこ
とにより、接点基材の表面に、下地めっき層,Agめっ
き層,Snめっき層,Inめっき層を順次連続的に成膜
し、更にInめっき層用のめっき槽につづけて熱処理ラ
インをシリーズに接続して、ここにめっき処理が終了し
た接点基材を連続的に走行させることによって拡散処理
を行えば、一貫した生産ラインの下での連続生産が可能
になる。
In the manufacturing method of the present invention, a plating tank for the underlayer, a plating tank for the Ag plating layer, a plating tank for the Sn plating layer, and a plating tank for the In plating layer are arranged in series, and a contact is provided here. The base plating layer, the Ag plating layer, the Sn plating layer, and the In plating layer are sequentially and successively formed on the surface of the contact base material by continuously running the strips and wires of the base material, and the In plating layer is further formed. Continuing production under a consistent production line by connecting the heat treatment line to the series after the plating tank for use and performing the diffusion treatment by continuously running the contact base material that has been plated Will be possible.

【0017】このようにして得られた電気接点材料は、
接点基材の表面にNi,Coまたはその合金から成る層
が配置され、この層の上に、Ag−Sn−In合金層か
ら成る表面層が形成されている。
The electrical contact material thus obtained is
A layer made of Ni, Co or an alloy thereof is arranged on the surface of the contact base material, and a surface layer made of an Ag-Sn-In alloy layer is formed on this layer.

【0018】[0018]

【実施例】下地めっき層用のめっき槽,Agめっき層用
のめっき槽,Snめっき層用のめっき槽,Inめっき層
用のめっき槽および窒素ガス雰囲気焼鈍炉を直列に配置
した生産ラインに、表面に前処理を施した純銅条(幅3
0mm,厚み0.3mm)を連続的に走行させて、表1で示し
たような各めっき層を成膜したのち、表1の条件で拡散
処理を行った。
[Example] A plating tank for a base plating layer, a plating tank for an Ag plating layer, a plating tank for a Sn plating layer, a plating tank for an In plating layer, and a nitrogen gas atmosphere annealing furnace are arranged in series in a production line. Pure copper strip with surface pretreatment (width 3
0 mm, thickness 0.3 mm) was continuously run to form each plating layer as shown in Table 1, and then diffusion treatment was performed under the conditions of Table 1.

【0019】拡散処理後の合金層におけるAg,Sn,
Inの平均濃度(重量%)を測定し、その結果を表1に
示した。また、これらの各接点材料につき、下記の仕様
で耐摩耗性,曲げ加工性,耐食性の評価を行なった。そ
の結果も表1に併記した。 耐摩耗性(動摩擦係数):ヘッド頭部半径5mmのAg
棒、荷重10g、摺動距離10mm、摺動回数200回。
Ag, Sn, in the alloy layer after the diffusion treatment,
The average concentration (% by weight) of In was measured, and the results are shown in Table 1. In addition, each of these contact materials was evaluated for wear resistance, bending workability, and corrosion resistance under the following specifications. The results are also shown in Table 1. Wear resistance (dynamic friction coefficient): Ag with a head head radius of 5 mm
Rod, load 10 g, sliding distance 10 mm, sliding count 200 times.

【0020】曲げ加工性:Vブロック法、内側半径0.3
R、倍率100倍の実体顕微鏡で割れの状態を観察。 耐食性(硫化試験):H2 S 3ppm、温度40℃の
雰囲気に2時間放置したのち、10g,10mAで接触
抵抗(mΩ)を測定。 比較のために、厚み0.3mmの銅条に、Ag:90.0重量
%,Sn:5.0重量%,In:5.0重量%から成り、厚
みが5μmのAg−Sn−In合金箔をクラッドして比
較例接点を製造した。この接点についても、実施例と同
様にして、耐摩耗性,曲げ加工性,耐食性を測定し、そ
の結果も表1に示した。
Bendability: V block method, inner radius 0.3
R, observe the state of cracks with a stereoscopic microscope with 100x magnification. Corrosion resistance (sulfurization test): After being left for 2 hours in an atmosphere of H 2 S 3 ppm and a temperature of 40 ° C., contact resistance (mΩ) was measured at 10 g and 10 mA. For comparison, a copper strip having a thickness of 0.3 mm is formed of Ag: 90.0 wt%, Sn: 5.0 wt%, In: 5.0 wt%, and an Ag-Sn-In alloy having a thickness of 5 μm. The foil was clad to produce a comparative contact. With respect to this contact, wear resistance, bending workability and corrosion resistance were measured in the same manner as in the example, and the results are also shown in Table 1.

【0021】また、この比較例接点の製造コストを10
0としたときに、各実施例接点の製造コストを相対値と
して算出し、それを表1に示した。
Further, the manufacturing cost of this comparative example contact is 10
When it was set to 0, the manufacturing cost of each Example contact was calculated as a relative value, which is shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】以上の説明で明らかなように、本発明の
電気接点材料は、従来のクラッド法で製造した材料に比
べても、耐摩耗性,耐食性(耐硫化性),加工性が略同
等である。そして、本発明の電気接点材料は、接点表面
のAg−Sn−In合金層が低廉なコストで行なえるめ
っき法で成膜した薄い各めっき層を拡散熱処理すること
によって製造することができるので、Agの使用量を節
約でき、また工程数が少ない一貫した生産ラインで製造
することができるので、その製造コストの大幅な低下が
可能になり、その工業的価値は大である。
As is apparent from the above description, the electrical contact material of the present invention has substantially less wear resistance, corrosion resistance (sulfuration resistance) and workability than materials manufactured by the conventional cladding method. Is equivalent. Since the electrical contact material of the present invention can be manufactured by diffusion heat treatment of each thin plating layer formed by the plating method in which the Ag-Sn-In alloy layer on the contact surface can be performed at low cost, Since the amount of Ag used can be saved and the production can be performed on a consistent production line with a small number of steps, the production cost can be greatly reduced and its industrial value is great.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 接点基材と、前記接点基材の表面に形成
されたNiもしくはCoまたは両者の合金から成る下地
層と、前記下地層の表面に形成されたAg−Sn−In
合金から成る表面層とを備えていることを特徴とする電
気接点材料。
1. A contact base material, an underlayer formed of Ni or Co or an alloy of both on the surface of the contact base material, and Ag—Sn—In formed on the surface of the underlayer.
An electric contact material comprising a surface layer made of an alloy.
【請求項2】 接点基材の表面に、めっき法で、Niも
しくはCoまたは両者の合金から成る下地めっき層を成
膜する工程;前記下地めっき層の表面に、めっき法で、
Agめっき層を成膜する工程;前記Agめっき層の表面
に、めっき法で、Snめっき層とInめっき層を順不同
に成膜する工程;および、非酸化性雰囲気中で加熱し
て、前記Agめっき層とSnめっき層とInめっき層と
に拡散処理を施してこれら3層をAg−Sn−In合金
層に転化する工程;を備えていることを特徴とする電気
接点材料の製造方法。
2. A step of forming a base plating layer made of Ni or Co or an alloy of both by a plating method on the surface of the contact base material; and a plating method on the surface of the base plating layer,
A step of forming an Ag plating layer; a step of forming an Sn plating layer and an In plating layer in a random order on the surface of the Ag plating layer by a plating method; and heating in a non-oxidizing atmosphere to form the Ag plating layer. A method of manufacturing an electrical contact material, comprising the steps of subjecting a plated layer, a Sn plated layer, and an In plated layer to a diffusion treatment to convert these three layers into an Ag-Sn-In alloy layer.
JP20508091A 1991-08-15 1991-08-15 Electric contact material and its manufacture Pending JPH0547252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20508091A JPH0547252A (en) 1991-08-15 1991-08-15 Electric contact material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20508091A JPH0547252A (en) 1991-08-15 1991-08-15 Electric contact material and its manufacture

Publications (1)

Publication Number Publication Date
JPH0547252A true JPH0547252A (en) 1993-02-26

Family

ID=16501095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20508091A Pending JPH0547252A (en) 1991-08-15 1991-08-15 Electric contact material and its manufacture

Country Status (1)

Country Link
JP (1) JPH0547252A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007907A1 (en) * 2003-07-18 2005-01-27 Sumitomo Electric Industries, Ltd. Electric contact and electrical equipment including the same
KR100729722B1 (en) * 2005-10-13 2007-06-18 희성금속 주식회사 Method for cladding Ag at welding part of a plate contact point of AgSnInOx series
WO2013077286A1 (en) * 2011-11-22 2013-05-30 エヌイーシー ショット コンポーネンツ株式会社 Temperature fuse and sliding electrode used in temperature fuse
WO2013141273A1 (en) * 2012-03-22 2013-09-26 田中貴金属工業株式会社 Electrode material having clad structure
WO2013168620A1 (en) * 2012-05-07 2013-11-14 田中貴金属工業株式会社 Electrode material for thermal-fuse movable electrode
WO2014091634A1 (en) * 2012-12-14 2014-06-19 株式会社徳力本店 Electrode material for thermal fuse and production method therefor
WO2014091633A1 (en) * 2012-12-14 2014-06-19 株式会社徳力本店 Electrode material for thermal fuse and production method therefor
WO2014091632A1 (en) * 2012-12-14 2014-06-19 株式会社徳力本店 Electrode material for thermal fuse and production method therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007907A1 (en) * 2003-07-18 2005-01-27 Sumitomo Electric Industries, Ltd. Electric contact and electrical equipment including the same
KR100729722B1 (en) * 2005-10-13 2007-06-18 희성금속 주식회사 Method for cladding Ag at welding part of a plate contact point of AgSnInOx series
CN103946946A (en) * 2011-11-22 2014-07-23 恩益禧肖特电子零件有限公司 Temperature fuse and sliding electrode used in temperature fuse
WO2013077286A1 (en) * 2011-11-22 2013-05-30 エヌイーシー ショット コンポーネンツ株式会社 Temperature fuse and sliding electrode used in temperature fuse
US9460883B2 (en) 2011-11-22 2016-10-04 Nec Schott Components Corporation Temperature fuse and sliding electrode used for temperature fuse
JPWO2013077286A1 (en) * 2011-11-22 2015-04-27 エヌイーシー ショット コンポーネンツ株式会社 Thermal fuse and sliding electrode used for the thermal fuse
JP2013196984A (en) * 2012-03-22 2013-09-30 Tanaka Kikinzoku Kogyo Kk Electrode material having clad structure
WO2013141273A1 (en) * 2012-03-22 2013-09-26 田中貴金属工業株式会社 Electrode material having clad structure
JP2013235674A (en) * 2012-05-07 2013-11-21 Tanaka Kikinzoku Kogyo Kk Electrode material for temperature fuse movable electrode
WO2013168620A1 (en) * 2012-05-07 2013-11-14 田中貴金属工業株式会社 Electrode material for thermal-fuse movable electrode
US10176958B2 (en) 2012-05-07 2019-01-08 Tanaka Kikinzoku Kogyo K.K. Electrode material for thermal-fuse movable electrode
WO2014091634A1 (en) * 2012-12-14 2014-06-19 株式会社徳力本店 Electrode material for thermal fuse and production method therefor
WO2014091633A1 (en) * 2012-12-14 2014-06-19 株式会社徳力本店 Electrode material for thermal fuse and production method therefor
WO2014091632A1 (en) * 2012-12-14 2014-06-19 株式会社徳力本店 Electrode material for thermal fuse and production method therefor
JP6021284B2 (en) * 2012-12-14 2016-11-09 株式会社徳力本店 Electrode material for thermal fuse and method for manufacturing the same
JPWO2014091632A1 (en) * 2012-12-14 2017-01-05 株式会社徳力本店 Method for manufacturing electrode material for thermal fuse

Similar Documents

Publication Publication Date Title
US5780172A (en) Tin coated electrical connector
CA2240239C (en) Tin coated electrical connector
JP4814552B2 (en) Surface treatment method
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
US6312762B1 (en) Process for production of copper or copper base alloys
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
JP5776630B2 (en) Copper-based material and method for producing the same
JP2959872B2 (en) Electrical contact material and its manufacturing method
JP3481392B2 (en) Electronic component lead member and method of manufacturing the same
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
TW201526778A (en) Metal foil for electromagnetic shielding, electromagnetic shielding member, and shielded cable
JP2915623B2 (en) Electrical contact material and its manufacturing method
JPH0547252A (en) Electric contact material and its manufacture
JP2015105409A (en) Copper foil and method for producing the same
JP3734961B2 (en) Contact material and manufacturing method thereof
JP3303594B2 (en) Heat-resistant silver-coated composite and method for producing the same
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP2019112666A (en) Conductive material
JP7281970B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JPH0547251A (en) Electric contact material and its manufacture
JPH0520949A (en) Electric contact point material and manufacture thereof
JP2000030558A (en) Electric contact material and its manufacture
JPH058276B2 (en)
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same