JPH0547251A - Electric contact material and its manufacture - Google Patents

Electric contact material and its manufacture

Info

Publication number
JPH0547251A
JPH0547251A JP20507991A JP20507991A JPH0547251A JP H0547251 A JPH0547251 A JP H0547251A JP 20507991 A JP20507991 A JP 20507991A JP 20507991 A JP20507991 A JP 20507991A JP H0547251 A JPH0547251 A JP H0547251A
Authority
JP
Japan
Prior art keywords
layer
alloy
plating
alloy layer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20507991A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
智 鈴木
Mitsuru Murakawa
満 村川
Toyoichiro Minamitani
豊一郎 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20507991A priority Critical patent/JPH0547251A/en
Publication of JPH0547251A publication Critical patent/JPH0547251A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To provide an electric contact material excellent in wear resistance, corrosion resistance, and workability. CONSTITUTION:A contact base material, a bed layer consisting of Ni, Co, or the alloy of both formed on the surface of the contact base material, an Ag-Sn alloy layer formed on the surface of the bed layer, and a surface layer consisting of Au or an Au alloy formed on the surface of the Ag-Sn alloy layer are provided. The average concentration of Sn in the Ag-Sn alloy layer is less than 10wt.%, and the concentration of Sn in the Ag-Sn alloy layer is changed at a concentration gradient as increasing from the critical surface with the bed layer to the surface layer part of the Ag-Sn alloy layer. The Ag-Sn alloy layer is formed by the diffusion thermal treatment of an Ag plated layer and an Sn plated layer formed on the bed layer. Since the thickness of each plating layer is thin, the use quantity of Ag can be saved. Further, since the plating method is inexpensive and continuable, the manufacturing cost is highly reduced as the whole. The surface is excellent in wear resistance, corrosion resistance and workability since the average concentration of Sn is less than 10wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気接点材料とその製造
方法に関し、更に詳しくは、耐摩耗性,耐食性,加工性
が優れている電気接点材料とそれを極めて安価に製造す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric contact material and a method for manufacturing the same, and more particularly to an electric contact material having excellent wear resistance, corrosion resistance and workability and a method for manufacturing the same at a very low cost.

【0002】[0002]

【従来の技術】各種金属線条の表面をAgまたはAg合
金で被覆して成る材料は、その基材である金属線条が具
備する特性に加えて、AgまたはAg合金が備えている
耐食性,半田付け性,電気接続性などの特性も発現する
ので、従来から各種の用途に用いられている。
2. Description of the Related Art A material obtained by coating the surface of various metal filaments with Ag or an Ag alloy has, in addition to the characteristics possessed by the metal filaments as its base material, the corrosion resistance of Ag or Ag alloys. Since it exhibits characteristics such as solderability and electrical connectivity, it has been conventionally used for various purposes.

【0003】例えば、Cu合金条の表面を厚み0.5〜2
0μmのAg層で被覆して成る材料は、Cu合金の優れ
た機械的特性に加えて、Agが有する優れた耐食性,半
田付け性,電気接続性等も同時に発現する経済的な高性
能導体として知られており、電気・電子機器分野におけ
る接触部品やリードの材料として広く用いられている。
ところで、これら材料のうち、例えばスイッチは固定
接点と可動接点を組合せて構成されているが、これら両
接点の材料には、いずれも、上記したAgまたはAg合
金で基材を被覆した材料が通常用いられている。
For example, the surface of a Cu alloy strip has a thickness of 0.5-2.
The material coated with a 0 μm Ag layer is an economical high-performance conductor that exhibits not only the excellent mechanical properties of Cu alloys, but also the excellent corrosion resistance, solderability, and electrical connectivity that Ag has. It is known and widely used as a material for contact parts and leads in the field of electric and electronic devices.
By the way, among these materials, for example, a switch is composed of a combination of a fixed contact and a movable contact, and the material of both of these contacts is usually a material in which a base material is coated with Ag or Ag alloy described above. It is used.

【0004】この場合、Ag層の厚みが0.2〜5.0μm
のときは、通常、基材にAgを電気めっきしたものが用
いられ、またAg層の厚みが5μm以上の厚みのとき
は、基材とAg箔をクラッドしたものが用いられてい
る。そして、Ag合金層で表面層が構成されている接点
の場合は、通常、Ag合金箔と基材とをクラッドして製
造した材料が用いられている。
In this case, the Ag layer has a thickness of 0.2 to 5.0 μm.
In this case, a base material electroplated with Ag is usually used, and when the thickness of the Ag layer is 5 μm or more, a base material and Ag foil clad are used. In the case of a contact whose surface layer is composed of an Ag alloy layer, a material produced by clad an Ag alloy foil and a base material is usually used.

【0005】ところで、上記した接点材料のうち、表面
層がAg合金層のものは、Ag層のものに比べて、耐摩
耗性と耐アーク性に優れている。しかし、層の厚みは5
μm以上であるため高価なAg合金の使用量は多くな
り、しかもめっき法で層を成膜することが困難であるた
めクラッド法を適用せざるを得ず、結果として製造コス
トが大幅に上昇するという欠点がある。
By the way, among the above-mentioned contact materials, the one having the Ag alloy layer as the surface layer is superior to the one having the Ag layer in wear resistance and arc resistance. However, the layer thickness is 5
Since the thickness is more than μm, the amount of expensive Ag alloy used is large, and since it is difficult to form a layer by the plating method, the clad method has to be applied, resulting in a significant increase in manufacturing cost. There is a drawback.

【0006】表面層がAg合金層の場合における上記し
た問題を解決することを目的として、表面層がAg合金
層から成る電気接点に関しては、例えば、特公昭54−
13215号公報に次のようなものが開示されている。
すなわち、この接点は、CuまたはCu合金から成る基
材の上に直接Agめっき層を成膜し、更にその上にSn
めっき層を成膜したのち全体に拡散処理を施すことによ
り前記Agめっき層とSnめっき層を合金化して、上記
公報記載の第2図によれば、基材−Ag層−Ag−Sn
合金層の3層構成にしたものである。そして、この場合
のAg−Sn合金層におけるSn濃度は10〜30重量
%とされている。
For the purpose of solving the above-mentioned problems in the case where the surface layer is an Ag alloy layer, an electrical contact in which the surface layer is an Ag alloy layer is disclosed in, for example, Japanese Patent Publication No. 54-54.
The following is disclosed in Japanese Patent No. 13215.
That is, in this contact, an Ag plating layer is directly formed on a base material made of Cu or a Cu alloy, and Sn is further formed thereon.
After the plating layer is formed, the Ag plating layer and the Sn plating layer are alloyed by subjecting the whole to diffusion treatment, and according to FIG. 2 of the above publication, base material-Ag layer-Ag-Sn.
This is a three-layer structure of alloy layers. The Sn concentration in the Ag—Sn alloy layer in this case is set to 10 to 30% by weight.

【0007】[0007]

【発明が解決しようとする課題】上記した接点材料は、
クラッド法で製造する従来の材料に比べて安価になると
いう利点を備えているが、その反面、Ag−Sn合金層
におけるSn濃度が高すぎるため、その合金層は硬くて
脆性であり、例えば曲げ加工を施したときにクラックな
どが生じやすく、また、耐硫化性もAg単独の場合に比
べて劣化するという問題がある。
The above-mentioned contact material is
Although it has an advantage of being cheaper than the conventional material manufactured by the clad method, on the other hand, the Sn concentration in the Ag—Sn alloy layer is too high, so that the alloy layer is hard and brittle, and for example, is bent. There is a problem that cracks are likely to occur when processed, and that the sulfidation resistance is deteriorated as compared with the case of Ag alone.

【0008】更に、このAg−Sn合金層を5μm以下
の薄層とする場合には、拡散処理時に、このAg−Sn
合金層が基材成分であるCuまたはCu合金の拡散によ
って汚染され、その結果、Ag−Sn合金層の接触抵抗
の増大が引き起こされてしまう。本発明は表面がAg合
金で構成されている上記電気接点材料における上記した
問題を解決し、クラッド法で製造する接点材料に比べて
極めて安価に製造することができ、耐磨耗性,耐食性,
加工性が優れた電気接点材料と、その製造方法の提供を
目的とする。
Further, when the Ag-Sn alloy layer is formed as a thin layer having a thickness of 5 μm or less, the Ag-Sn alloy layer is formed during the diffusion treatment.
The alloy layer is contaminated by the diffusion of the base component Cu or Cu alloy, and as a result, the contact resistance of the Ag—Sn alloy layer is increased. The present invention solves the above-mentioned problems in the above electrical contact material whose surface is composed of an Ag alloy, and can be manufactured at an extremely low cost as compared with the contact material manufactured by the clad method, and has wear resistance, corrosion resistance,
An object of the present invention is to provide an electric contact material having excellent workability and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段・作用】上記した目的を達
成するために、本発明においては、接点基材と、前記接
点基材の表面に形成されたNiもしくはCoまたは両者
の合金から成る下地層と、前記下地層の表面に形成され
たAg−Sn合金層と、前記Ag−Sn合金層の表面に
形成されたAuまたはAu合金から成る表面層とを備
え、前記Ag−Sn合金層におけるSnの平均濃度は1
0重量%未満であり、かつ前記Ag−Sn合金層におけ
るSnの濃度は前記下地層との界面から前記Ag−Sn
合金層の表層部にかけて増大する濃度勾配で変化してい
ることを特徴とする電気接点材料が提供され、また、接
点基材の表面に、めっき法で、NiもしくはCoまたは
両者の合金からなる下地めっき層を成膜する工程(以
下、第1工程という);前記下地めっき層の表面に、め
っき法で、Agめっき層を成膜する工程(以下、第2工
程という);前記Agめっき層の表面に、めっき法で、
Snめっき層を成膜する工程(以下、第3工程とい
う);および、非酸化性雰囲気中で加熱して、前記Ag
めっき層と前記Snめっき層に拡散処理を施して両層を
Ag−Sn合金層に転化する工程(以下、第4工程とい
う);および、前記Ag−Sn合金層の表面に、めっき
法で、AuまたはAu合金層を成膜する工程(以下、第
5工程という);を備えていることを特徴とする前記電
気接点材料の製造方法が提供される。
In order to achieve the above object, in the present invention, a contact base material and a Ni or Co alloy formed on the surface of the contact base material or an alloy of both are used. A ground layer, an Ag-Sn alloy layer formed on the surface of the underlayer, and a surface layer made of Au or an Au alloy formed on the surface of the Ag-Sn alloy layer, the Ag-Sn alloy layer comprising: Average concentration of Sn is 1
It is less than 0% by weight, and the concentration of Sn in the Ag-Sn alloy layer is from the interface with the underlayer to the Ag-Sn alloy layer.
Provided is an electrical contact material characterized by changing in a concentration gradient increasing toward the surface layer portion of an alloy layer, and a base material made of Ni or Co or an alloy of both by plating on the surface of a contact base material. A step of forming a plating layer (hereinafter referred to as a first step); a step of forming an Ag plating layer on the surface of the base plating layer by a plating method (hereinafter referred to as a second step); On the surface, by plating,
A step of forming a Sn plating layer (hereinafter referred to as a third step); and heating in a non-oxidizing atmosphere to obtain the Ag.
A step of performing a diffusion treatment on the plating layer and the Sn plating layer to convert both layers into an Ag-Sn alloy layer (hereinafter referred to as a fourth step); and, on the surface of the Ag-Sn alloy layer, by a plating method, There is provided a method for producing the electrical contact material, which comprises a step of forming an Au or Au alloy layer (hereinafter referred to as a fifth step);

【0010】まず、本発明における接点基材の材料とし
ては、例えば、Cuや各種のCu合金;鋼材,アルミニ
ウム材のような材料の表面をCuまたはCu合金で被覆
して成る複合材料;またはNiやFe,もしくはこれら
の合金;などをあげることができる。この接点基材の形
状は、格別限定されるものではなく、例えば、線材,条
材,棒材,管材などをあげることができる。
First, as the material of the contact base material in the present invention, for example, Cu or various Cu alloys; composite materials obtained by coating the surface of materials such as steel materials and aluminum materials with Cu or Cu alloys; or Ni. And Fe, or alloys thereof; and the like. The shape of the contact base material is not particularly limited, and examples thereof include a wire material, a strip material, a bar material, and a pipe material.

【0011】本発明の電気接点材料の製造方法におい
て、まず、第1工程は、接点基材の表面にめっき法でN
i,Coまたは両者の合金から成る下地めっき層を成膜
する工程である。この下地めっき層は、後述する第4工
程の拡散処理時に、下地めっき層の下に位置する接点基
材の構成元素が、この下地めっき層の上に成膜されてい
るAgめっき層およびSnめっき層に拡散することを防
止するためのバリア層として機能する。
In the method for producing an electric contact material of the present invention, first, the first step is to apply N on the surface of the contact base material by plating.
This is a step of forming a base plating layer made of i, Co or an alloy of both. In this undercoat plating layer, the constituent elements of the contact base material located under the undercoat plating layer are formed on the undercoat plating layer during the diffusion treatment of the fourth step described later, and the Ag plating layer and the Sn plating layer are formed on the undercoat plating layer. It functions as a barrier layer for preventing diffusion into the layer.

【0012】この下地層は、電気めっき法や無電解めっ
き法などによって形成される。コストの点からすると、
電気めっき法が好適である。下地層は、後述する第4工
程において接点基材の構成元素が目的とするAg−Sn
合金層に拡散することを防止するための拡散バリアとし
て機能する。したがって、その厚みは、この機能を達成
できる程度の厚みであればよく、具体的には0.1μm以
上、好ましくは0.5μm以上であればよい。しかし、あ
まり厚くしても無意味であり、しかも材料コストを高め
るので、とくに好ましくは0.5〜2.0μm程度である。
This underlayer is formed by an electroplating method or an electroless plating method. In terms of cost,
The electroplating method is preferred. The underlayer is made of Ag-Sn which is a constituent element of the contact base material in the fourth step described later.
It functions as a diffusion barrier for preventing diffusion into the alloy layer. Therefore, the thickness may be such that this function can be achieved, and specifically, the thickness may be 0.1 μm or more, preferably 0.5 μm or more. However, it is meaningless if it is made too thick, and the material cost is increased. Therefore, it is particularly preferably about 0.5 to 2.0 μm.

【0013】第2工程は、第1工程と同じくめっき法に
よって、上記下地めっき層の表面にAgめっき層を成膜
する工程である。その厚みは格別限定されないが、0.2
μm以上であることが好ましい。また、接点としての特
性低下を招かず、また、材料コストとの関係からすると
0.5〜3.0μm程度であることがとくに好ましい。第3
工程は、第2工程で成膜したAgめっき層の表面に同じ
くめっき法で、Snめっき層を成膜する工程である。
The second step is a step of forming an Ag plating layer on the surface of the base plating layer by the plating method as in the first step. The thickness is not particularly limited, but 0.2
It is preferably at least μm. In addition, it does not cause deterioration of the characteristics as a contact, and in terms of material cost
It is particularly preferable that the thickness is about 0.5 to 3.0 μm. Third
The step is a step of forming a Sn plating layer on the surface of the Ag plating layer formed in the second step by the same plating method.

【0014】このSnめっき層は、前記したAgめっき
層と一緒になって、後述する第4工程における拡散処理
を受けることにより、既に第2工程で成膜されていたA
gめっき層に拡散して、下地層側にいくほどSn濃度が
低くなるSnの濃度勾配を有するAg−Sn合金層、逆
にいえば、下地層側にいくほどAg濃度が高くなるAg
の濃度勾配を有するAg−Sn合金層を形成する。
This Sn plating layer, together with the above-mentioned Ag plating layer, is subjected to the diffusion treatment in the fourth step described later to form A which has already been formed in the second step.
g Ag-Sn alloy layer having a Sn concentration gradient that diffuses into the g-plated layer and the Sn concentration decreases toward the underlayer side, conversely, the Ag concentration increases toward the underlayer side.
Forming an Ag—Sn alloy layer having a concentration gradient of

【0015】このSnめっき層の厚みは、その下に位置
するAgめっき層と合金化してAg−Sn合金層になっ
たときに、そのAg−Sn合金層におけるSnの平均濃
度が10重量%未満となるような厚みに設定される。S
nの平均濃度が10重量%以上となるような厚みの場合
は、後述の第4工程で、得られたAg−Sn合金層にA
3 Snのような金属間化合物が生成するようになり、
Ag−Sn合金層が硬くて脆性になってその加工性が著
しく劣化する。また、Snの平均濃度が10重量%以上
のAg−Sn合金層は、それを硫化雰囲気に曝すと、A
gとSnの間で局部電池が形成され、Agより卑な電位
のSnがアノードになって酸化が著しく進行してしまう
からである。
The thickness of this Sn plating layer is such that when it is alloyed with the Ag plating layer located therebelow to form an Ag-Sn alloy layer, the average concentration of Sn in the Ag-Sn alloy layer is less than 10% by weight. The thickness is set so that S
When the thickness is such that the average concentration of n is 10% by weight or more, A is added to the Ag-Sn alloy layer obtained in the fourth step described later.
intermetallic compounds such as g 3 Sn are generated,
The Ag-Sn alloy layer becomes hard and brittle, and its workability is significantly deteriorated. Moreover, when the Ag—Sn alloy layer having an average Sn concentration of 10% by weight or more is exposed to a sulfurizing atmosphere,
This is because a local battery is formed between g and Sn, and Sn having a base potential lower than that of Ag becomes an anode and oxidation progresses remarkably.

【0016】具体的には、Agめっき層の厚み1μmに
対し、Snめっき層の厚みを0.14μm以下とすること
が好ましい。第4工程は前記したSnめっき層とAgめ
っき層に拡散処理を施して、両者をAg−Sn合金層に
する工程である。拡散処理は、接点材料の酸化を防止す
るために、窒素,アルゴン,水素のような非酸化性雰囲
気中で行われる。
Specifically, it is preferable that the thickness of the Sn plating layer is 0.14 μm or less with respect to the thickness of the Ag plating layer of 1 μm. The fourth step is a step in which the Sn plating layer and the Ag plating layer described above are subjected to a diffusion treatment to form both of them into an Ag-Sn alloy layer. The diffusion process is carried out in a non-oxidizing atmosphere such as nitrogen, argon or hydrogen to prevent oxidation of the contact material.

【0017】この拡散処理時の温度と時間は、Snめっ
き層とAgめっき層の厚み、基材の材質、断面積によっ
て適宜に選定されるが、概ね、処理温度は300℃以
上,処理時間は10秒以上であればよい。Snめっき層
やAgめっき層が前記した仕様のめっき層である場合に
は、上記処理条件の拡散処理によって、形成されたAg
−Sn合金層は、下地層側にいくほどSn濃度が低くな
るSnの濃度勾配を有する層にすることができる。
The temperature and time during this diffusion treatment are appropriately selected depending on the thickness of the Sn plating layer and the Ag plating layer, the material of the base material, and the cross-sectional area. Generally, the treatment temperature is 300 ° C. or higher, and the treatment time is It may be 10 seconds or more. When the Sn plating layer or the Ag plating layer is the plating layer having the above-mentioned specifications, the Ag formed by the diffusion treatment under the above treatment conditions.
The -Sn alloy layer can be a layer having a Sn concentration gradient in which the Sn concentration decreases toward the underlayer.

【0018】このときのSnの濃度勾配は、Ag−Sn
合金層と下地層との界面におけるSn濃度(任意単位)
を1としたときに、Ag−Sn合金層の表層部における
Sn濃度が1.1〜5となっているような濃度勾配である
ことが好ましい。この濃度勾配が5/1を超える場合
は、Ag−Sn合金層の表層部と前記下地層との界面間
における接点特性に差異が生ずるようになるとともに、
表層部におけるSn濃度が高くなることはAg−Sn合
金層の耐食性と加工性の劣化を引き起こすからである。
また、濃度勾配が1.1/1未満の場合は、Ag−Sn合
金層と下地層との界面におけるSn濃度が相対的に高く
なっているので、そのSnが下地層のNi,Coまたは
両者の合金と合金化するようになり、加工性の劣化を招
くからである。
At this time, the Sn concentration gradient is Ag-Sn.
Sn concentration at the interface between alloy layer and underlayer (arbitrary unit)
It is preferable that the concentration gradient is such that the Sn concentration in the surface layer portion of the Ag—Sn alloy layer is 1.1 to 5 when 1 is set to 1. If this concentration gradient exceeds 5/1, contact characteristics will differ between the interface between the surface layer of the Ag—Sn alloy layer and the underlayer, and
This is because the higher Sn concentration in the surface layer portion causes deterioration of the corrosion resistance and workability of the Ag—Sn alloy layer.
Further, when the concentration gradient is less than 1.1 / 1, the Sn concentration at the interface between the Ag—Sn alloy layer and the underlayer is relatively high, so Sn is the underlayer Ni, Co, or both. This is because it becomes alloyed with the above alloy, which causes deterioration of workability.

【0019】第5工程は、第4工程で形成したAg−S
n合金層の表面にめっき法で、AuまたはAu合金層を
成膜する工程である。めっき法としては、電気めっき法
や無電解めっき法のいずれをも採用できるが、コストの
点から電気めっき法が好適である。このめっき層は、前
記したAg−Sn合金層の接触抵抗を改善して接点とし
ての摺動性を高めるために形成される。したがって、そ
の厚みは、0.01〜0.2μm程度であればよい。この厚
みが0.01μmより薄い場合は上記効果が充分に得られ
ず、また0.2μmより厚くしても、効果は飽和状態に達
するので、徒にコストアップを招くだけになるからであ
る。
The fifth step is Ag-S formed in the fourth step.
This is a step of forming Au or an Au alloy layer on the surface of the n alloy layer by a plating method. As the plating method, either an electroplating method or an electroless plating method can be adopted, but the electroplating method is preferable from the viewpoint of cost. This plating layer is formed in order to improve the contact resistance of the Ag-Sn alloy layer described above and enhance the slidability as a contact. Therefore, the thickness may be about 0.01 to 0.2 μm. This is because if the thickness is less than 0.01 μm, the above-described effect cannot be sufficiently obtained, and if the thickness is more than 0.2 μm, the effect reaches a saturated state, which causes a cost increase.

【0020】なお、上記した第5工程の終了後、得られ
た接点材料に、更に圧延加工を施すと、Ag−Sn合金
層の硬度が増大してその耐磨耗性の向上が実現されるの
で有用である。本発明の製造方法においては、下地層用
のめっき槽,Agめっき層用のめっき槽,Snめっき層
用のめっき槽をシリーズに配列し、ここに接点基材の条
や線を連続的に走行させることにより、接点基材の表面
に、下地めっき層,Agめっき層,Snめっき層を順次
連続的に成膜し、更にSnめっき層用のめっき槽につづ
けて熱処理ラインをシリーズに接続して、ここで拡散処
理を行い、更に、熱処理ラインにつづけてAuまたはA
u合金のめっき槽をシリーズに配列してここに拡散処理
を施した基材を連続的に走行させ、必要に応じてそのめ
っき槽の後段に圧延ラインを配置することにより、一貫
した生産ラインの下での連続生産が可能になる。
If the obtained contact material is further rolled after the above-mentioned fifth step, the hardness of the Ag--Sn alloy layer is increased and its abrasion resistance is improved. So useful. In the manufacturing method of the present invention, a plating tank for the underlayer, a plating tank for the Ag plating layer, and a plating tank for the Sn plating layer are arranged in series, and the strips and wires of the contact base material are continuously run there. By doing so, a base plating layer, an Ag plating layer, and a Sn plating layer are sequentially and continuously formed on the surface of the contact base material, and further, a plating bath for the Sn plating layer is connected and the heat treatment line is connected in series. , Diffusion process is performed here, and further Au or A
By arranging u alloy plating tanks in series, running the diffusion-treated base material continuously, and arranging a rolling line at the latter stage of the plating tank as necessary, a consistent production line Enables continuous production below.

【0021】このようにして得られた電気接点材料は、
接点基材の表面にNi,Coまたはその合金から成る層
が配置され、この層の上に、Ag(Sn)の濃度勾配を
有するAg−Sn合金層が形成され、更に、その上にA
uまたはAu合金層が形成されている。
The electrical contact material thus obtained is
A layer made of Ni, Co or an alloy thereof is arranged on the surface of the contact base material, an Ag—Sn alloy layer having a concentration gradient of Ag (Sn) is formed on the layer, and further A is formed on the layer.
A u or Au alloy layer is formed.

【0022】[0022]

【実施例】下地めっき層用のめっき槽,Agめっき層用
のめっき槽,Snめっき層用のめっき槽、窒素ガス雰囲
気焼鈍炉および表面層用のめっき槽を直列に配置した生
産ラインに、表面に前処理を施した純銅条(幅30mm,
厚み0.3mm)を連続的に走行させて、表1で示したよう
な各めっき層を成膜し、また、表1の条件で拡散処理を
行った。
[Example] A plating bath for a base plating layer, a plating bath for an Ag plating layer, a plating bath for a Sn plating layer, a nitrogen gas atmosphere annealing furnace, and a plating bath for a surface layer are arranged in series on a production line. Pure copper strip pre-treated (width 30 mm,
Each plating layer as shown in Table 1 was formed by continuously running a plate having a thickness of 0.3 mm), and a diffusion treatment was performed under the conditions shown in Table 1.

【0023】拡散処理後のAg−Sn合金層における表
層部との界面および下地層との界面におけるSnの存在
量(重量%)を測定して拡散状態を調査した。その結果
を表1に示した。また、これらの各接点材料につき、下
記の仕様で耐摩耗性,曲げ加工性,耐食性の評価を行な
った。その結果も表1に併記した。
The amount of Sn (% by weight) at the interface with the surface layer and the interface with the underlayer in the Ag-Sn alloy layer after the diffusion treatment was measured to examine the diffusion state. The results are shown in Table 1. In addition, each of these contact materials was evaluated for wear resistance, bending workability, and corrosion resistance under the following specifications. The results are also shown in Table 1.

【0024】耐摩耗性(動摩擦係数):ヘッド頭部半径
5mmのAg棒、荷重10g、摺動距離10mm、摺動回数
200回。 曲げ加工性:Vブロック法、内側半径0.3R、倍率10
0倍の実体顕微鏡で割れの状態を観察。 耐食性(硫化試験):H2 S 3ppm、温度40℃の
雰囲気に2時間放置したのち、10g,10mAで接触
抵抗(mΩ)を測定。
Abrasion resistance (dynamic friction coefficient): Ag rod having a head head radius of 5 mm, a load of 10 g, a sliding distance of 10 mm, and a sliding number of 200 times. Bending workability: V block method, inner radius 0.3R, magnification 10
Observe the state of cracks with a 0x stereoscopic microscope. Corrosion resistance (sulfurization test): After being left for 2 hours in an atmosphere of H 2 S 3 ppm and a temperature of 40 ° C., contact resistance (mΩ) was measured at 10 g and 10 mA.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上の説明で明らかなように、本発明の
電気接点材料は、耐摩耗性,耐食性(耐硫化性),加工
性が優れている。また、本発明の電気接点材料は、接点
表面のAg−Sn合金層が低廉なコストで行なえるめっ
き法で成膜した薄いめっき層を拡散熱処理することによ
って製造することができ、また、表面層のAuまたはA
u合金の働きでAg−Sn合金層の耐食性も向上してい
るので、Agの使用量を節約でき、また工程数が少ない
一貫した生産ラインで製造することができるので、その
製造コストの大幅な低下が可能になる。
As is apparent from the above description, the electric contact material of the present invention is excellent in wear resistance, corrosion resistance (sulfurization resistance) and workability. Further, the electrical contact material of the present invention can be produced by diffusion heat treatment of a thin plating layer formed by a plating method that allows the Ag-Sn alloy layer on the contact surface to be manufactured at low cost, and the surface layer Au or A
Since the corrosion resistance of the Ag-Sn alloy layer is improved by the action of the u alloy, the amount of Ag used can be saved, and since it can be manufactured in a consistent production line with a small number of steps, its manufacturing cost is significantly increased. It is possible to decrease.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 接点基材と、前記接点基材の表面に形成
されたNiもしくはCoまたは両者の合金から成る下地
層と、前記下地層の表面に形成されたAg−Sn合金層
と、前記Ag−Sn合金層の表面に形成されたAuまた
はAu合金から成る表面層とを備え、前記Ag−Sn合
金層におけるSnの平均濃度は10重量%未満であり、
かつ前記Ag−Sn合金層におけるSnの濃度は前記下
地層との界面から前記Ag−Sn合金層の表層部にかけ
て増大する濃度勾配で変化していることを特徴とする電
気接点材料。
1. A contact base material, a base layer made of Ni or Co or an alloy of both formed on the surface of the contact base material, an Ag—Sn alloy layer formed on the surface of the base layer, and A surface layer made of Au or an Au alloy formed on the surface of the Ag-Sn alloy layer, wherein the average concentration of Sn in the Ag-Sn alloy layer is less than 10% by weight,
The electrical contact material is characterized in that the Sn concentration in the Ag-Sn alloy layer changes with an increasing concentration gradient from the interface with the underlayer to the surface layer of the Ag-Sn alloy layer.
【請求項2】 前記下地層との界面におけるSn濃度を
1としたとき、前記Ag−Sn合金層の前記表面層との
界面におけるSn濃度が1.1〜5になっている請求項1
の電気接点材料。
2. When the Sn concentration at the interface with the underlayer is 1, the Sn concentration at the interface with the surface layer of the Ag—Sn alloy layer is 1.1 to 5.
Electrical contact material.
【請求項3】 接点基材の表面に、めっき法で、Niも
しくはCoまたは両者の合金からなる下地めっき層を成
膜する工程;前記下地めっき層の表面にめっき法で、A
gめっき層を成膜する工程;前記Agめっき層の表面
に、めっき法で、Snめっき層を成膜する工程;およ
び、非酸化性雰囲気中で加熱して、前記Agめっき層と
前記Snめっき層に拡散処理を施して両層をAg−Sn
合金層に転化する工程;および、前記Ag−Sn合金層
の表面に、めっき法で、AuまたはAu合金層を成膜す
る工程;を備えていることを特徴とする請求項1の電気
接点材料の製造方法。
3. A step of forming an underplating layer made of Ni or Co or an alloy of both on the surface of the contact base material by a plating method;
a step of forming a g plating layer; a step of forming an Sn plating layer on the surface of the Ag plating layer by a plating method; and heating in a non-oxidizing atmosphere to form the Ag plating layer and the Sn plating Both layers are Ag-Sn by diffusion treatment.
The electrical contact material according to claim 1, further comprising: a step of converting into an alloy layer; and a step of depositing an Au or Au alloy layer on the surface of the Ag-Sn alloy layer by a plating method. Manufacturing method.
【請求項4】 前記AuまたはAu合金層を成膜したの
ち、更に圧延加工を施す請求項3の電気接点材料の製造
方法。
4. The method for manufacturing an electrical contact material according to claim 3, wherein after the Au or Au alloy layer is formed, rolling is further performed.
JP20507991A 1991-08-15 1991-08-15 Electric contact material and its manufacture Pending JPH0547251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20507991A JPH0547251A (en) 1991-08-15 1991-08-15 Electric contact material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20507991A JPH0547251A (en) 1991-08-15 1991-08-15 Electric contact material and its manufacture

Publications (1)

Publication Number Publication Date
JPH0547251A true JPH0547251A (en) 1993-02-26

Family

ID=16501077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20507991A Pending JPH0547251A (en) 1991-08-15 1991-08-15 Electric contact material and its manufacture

Country Status (1)

Country Link
JP (1) JPH0547251A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003446A1 (en) 2007-01-11 2008-07-17 Kabushiki Kaisha Kobe Seiko Sho, Kobe Reflecting film with excellent cohesion resistance and sulfur resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003446A1 (en) 2007-01-11 2008-07-17 Kabushiki Kaisha Kobe Seiko Sho, Kobe Reflecting film with excellent cohesion resistance and sulfur resistance
US8367200B2 (en) 2007-01-11 2013-02-05 Kobe Steel, Ltd. Reflecting film excellent in cohesion resistance and sulfur resistance

Similar Documents

Publication Publication Date Title
US5780172A (en) Tin coated electrical connector
US5916695A (en) Tin coated electrical connector
JP3880877B2 (en) Plated copper or copper alloy and method for producing the same
EP2703524A2 (en) Sn-coated copper alloy strip having excellent heat resistance
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
JP2007063624A (en) Copper alloy tinned strip having excellent insertion/withdrawal property and heat resistance
JP2959872B2 (en) Electrical contact material and its manufacturing method
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
KR20190045417A (en) Conductive material for connection parts which has excellent minute slide wear resistance
JP3481392B2 (en) Electronic component lead member and method of manufacturing the same
WO2007126011A1 (en) TIN-PLATED Cu-Ni-Si ALLOY STRIP
JPH05192821A (en) Electric discharge working electrode and its manufacture
JP2915623B2 (en) Electrical contact material and its manufacturing method
JP2010146925A (en) Contactor material for electric motor and method of manufacturing the same
JP4489738B2 (en) Cu-Ni-Si-Zn alloy tin plating strip
JP4427487B2 (en) Tin-coated electrical connector
JPH0547252A (en) Electric contact material and its manufacture
JP5226032B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
JPH0547251A (en) Electric contact material and its manufacture
JPH0562555A (en) Electric contact material and its manufacture
JP5155139B2 (en) Tin-coated electrical connector
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JPH058276B2 (en)
JPH0520949A (en) Electric contact point material and manufacture thereof
JP7353928B2 (en) Materials for electrical contacts and their manufacturing methods, connector terminals, connectors, and electronic components