JPH0546056B2 - - Google Patents

Info

Publication number
JPH0546056B2
JPH0546056B2 JP1219359A JP21935989A JPH0546056B2 JP H0546056 B2 JPH0546056 B2 JP H0546056B2 JP 1219359 A JP1219359 A JP 1219359A JP 21935989 A JP21935989 A JP 21935989A JP H0546056 B2 JPH0546056 B2 JP H0546056B2
Authority
JP
Japan
Prior art keywords
gas
reaction
separator
synthetic resin
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1219359A
Other languages
Japanese (ja)
Other versions
JPH02276154A (en
Inventor
Kensuke Nakatani
Takahito Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1219359A priority Critical patent/JPH02276154A/en
Publication of JPH02276154A publication Critical patent/JPH02276154A/en
Publication of JPH0546056B2 publication Critical patent/JPH0546056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は炭素−炭素結合を有する合成繊維、例
えばポリプロピレン、ポリエステル、ビニロン等
の合成樹脂繊維を素材とする電池用セパレータの
製造方法に関する。 (ロ) 従来の技術 従来、例えばニツケル−カドミウム蓄電池用の
セパレータとしてはナイロン不織布が多く用いら
れてきた。これはナイロン不織布が適度な強度、
ガス透過性及び親水性を有しているためである。
しかしながら、ナイロンは素材そのものの耐アル
カリ性、耐酸化性が十分であるとは言い難く、特
に45℃以上の温度では比較的簡単に分解してしま
うことが知られている。すなわち高温で電池を充
電した場合には、電池内で発生した酸素ガスによ
りナイロンが炭酸ガス、水、アンモニア等に分解
される訳であるが、この炭酸ガスやアンモニアは
電池特性に悪影響を及ぼす。また、更に分解が進
むとセパレータとしての絶縁能力が低下し、つい
には電池内部短絡を引き起こす。この問題を解決
するためにセパレータの素材をポリオレフイン系
の樹脂に変更しようとする試みが続けられてお
り、特に高温下で使用する電池を中心にポリプロ
ピレン不織布が使用されるようになつてきた。 ポリプロピレン不織布は耐アルカリ性、耐酸化
性に優れ、また強度やガス透過性等についてもナ
イロン不織布と同等のものが得られてはいるが、
素材自体が親水性に乏しいことから電解液の保持
能力に欠けていた。そのためポリプロピレン不織
布を使用した電池は、電池容量や内部抵抗をはじ
めとして電池特性全般においてナイロン不織布を
使用した電池より劣りがちであつた。 このポリプロピレン不織布の電解液保持能力を
向上させるために、ナイロン繊維あるいはガラ
ス繊維などと混紡して不織布とする。界面活性
剤を繊維表面に塗布する。繊維径を細くするな
どにより不織布構造面で改良を加える。放射線
等の照射により繊維表面に親水基をグラフト重合
させる等の数多くの試みがなされているが、未だ
十分優れた電解液保持能力の向上のための方法は
見出されていない。 (ハ) 発明が解決しようとする課題 本発明は前記問題点に鑑みてなされたものであ
つて、セパレータ素材としての合成樹脂繊維に表
面処理を施すことにより、親水性及び保液性を向
上せしめた電池用セパレータの製造方法を提供し
ようとするものである。 (ニ) 課題を解決するための手段 本発明の電池用セパレータの製造方法は、セパ
レータ素材としての炭素−炭素結合を有する合成
樹脂繊維にフツ素を含む反応ガスを接触反応させ
ることを特徴とするものである。 ここで、前記反応ガスとしては、フツ素を主反
応ガスとし副反応ガスとして酸素及び亜硫酸ガス
の少なくとも一方を含有してなる混合ガスを不活
性ガスで希釈したものを用いるのが好ましい。 更に、前記合成樹脂繊維としては、表面にフツ
素ガスとの反応を妨げない程度の界面活性剤から
なる薄層を有するものを使用するのが適する。 (ホ) 作用 炭素−炭素結合を有する合成樹脂繊維とフツ素
ガスとを接触反応させると、前記繊維の表面層に
おいて、例えば主鎖の−CH2−CH2−のHにフツ
素ガスがアタツクしHとFとが置換されて主鎖中
に部分的に−CF2−が生成するという主反応や、
例えば合成樹脂繊維表面に吸着せる酸素を取り込
み部分的に−C−O−Fが生成したり、或るいは
主鎖の−CH2−のHにフツ素ガスがアタツクをす
るが、切断されたC−H結合のCの周辺にFが存
在しないと炭素同志が反応して部分的に−C=C
−を生成するという副反応が生じる。この主反応
或るいは副反応によつて繊維表面における主鎖の
−CH2−CH2−の正則性が乱れ、その結果、合成
樹脂繊維の表面エネルギーが変化する。そして、
この反応時の反応熱が高い場合には、繊維表面を
部分的に溶融して表面積を増大させるに至る。こ
こで、上記の主反応或いは副反応による合成樹脂
繊維の表面エネルギーの変化は、表面エネルギー
が低下するように変化し、その結果、水との接触
角が小さくなり、水と濡れ易くなる。又、表面積
の増大も、合成樹脂接触が水と濡れ易くなるのに
寄与する。 更に、フツ素ガスは極めて反応性に富むガスで
あるため、フツ素ガスと合成樹脂繊維の反応が極
めて容易に起きることから、反応場に副反応物質
を存在させておけば樹脂表面に副反応物質を取り
込むことが可能となる。この効果を利用して積極
的に親水基の導入を図ることにより、更に親水性
を向上させることが可能となる。例えば前記反応
ガスとしてフツ素ガスに加えて酸素ガスや亜硫酸
ガスを混入したものを用いることが考えられる。
反応場に酸素ガスが存在すれば反応表面にC−O
−FやC=Oなる極性基が形成されるし、亜硫酸
ガスが存在すればスルフオン基等が形成され表面
状態を一層変化させるので親水性が更に向上す
る。 更に、また、合成樹脂繊維の表面に親水性を有
する有機物よりなる界面活性剤の薄層を塗布形成
した状態で反応ガスと反応させると、フツ素ガス
との反応に伴つて塗布された有機物と樹脂が結合
して親水性が著しく向上する。 (ヘ) 実施例 以下に本発明の実施例を示し、説明する。 〔実施例 1〕 比重1.23の水酸化カリウム溶液で充分洗浄した
ポリプロピレン不織布(厚さ0.21mm、目付65g/
m2)を準備し、この不織布を鉄製の反応容器内に
収納し真空排気した後、フツ素ガスを窒素ガスで
希釈してなる反応ガスを前記容器内に大気圧にな
るまで導入して一定時間反応させた。その後再び
容器内のガスを真空排気し窒素ガスを導入して反
応ガスを完全に除去した後前記不織布を取り出し
た。 第1図及び第2図は、夫々フツ素ガス処理前及
び処理後のポリプロピレン繊維の形状即ち表面状
態を表す電子顕微鏡写真(×5000)であり、明ら
かに、フツ素ガス処理後のものは、表面が荒れた
状態となつていることが伺える。 こうして作成された本発明のセパレータ及び前
記フツ素ガスによる処理前のポリプロピレン不織
布からなるセパレータを用い、電池に組み込む前
及び電池に組み込み充放電サイクルを行なつた後
に於けるセパレータの親水性を測定した。充放電
サイクルを行なつた後のセパレータは、密閉形ニ
ツケル−カドミウム蓄電池に組み込み、室温で
0.1cの電流で11時間充電した後0.8cの電流で1時
間放電するというサイクル条件で50回繰り返し充
放電したのち、電池を解体して取り出し洗浄・乾
燥したものをサンプルとして用いた。親水性の評
価方法としては、これらセパレータを20mm巾のタ
ンザク状に切断し、セパレータの一端を比重1.23
の水酸化カリウム溶液に浸漬し、10分間静置した
時の水酸化カリウム溶液がセパレータに吸収上昇
した高さ(吸液高さ)により判断する方法を採用
した。この結果を、表1に示す。
(a) Industrial Application Field The present invention relates to a method for manufacturing a battery separator made of synthetic fibers having carbon-carbon bonds, such as synthetic resin fibers such as polypropylene, polyester, and vinylon. (b) Prior Art Conventionally, nylon nonwoven fabrics have often been used as separators for, for example, nickel-cadmium storage batteries. This is due to the moderate strength of the nylon non-woven fabric.
This is because it has gas permeability and hydrophilicity.
However, it is difficult to say that nylon itself has sufficient alkali resistance and oxidation resistance, and it is known that it decomposes relatively easily, especially at temperatures above 45°C. That is, when a battery is charged at a high temperature, nylon is decomposed into carbon dioxide gas, water, ammonia, etc. due to oxygen gas generated within the battery, and this carbon dioxide gas and ammonia have a negative effect on battery characteristics. Moreover, as the decomposition progresses further, the insulating ability of the separator decreases, eventually causing an internal short circuit in the battery. In order to solve this problem, attempts have been made to change the material of the separator to a polyolefin resin, and polypropylene nonwoven fabrics have come to be used particularly in batteries that are used at high temperatures. Although polypropylene nonwoven fabric has excellent alkali resistance and oxidation resistance, and has the same strength and gas permeability as nylon nonwoven fabric,
Because the material itself has poor hydrophilicity, it lacks the ability to retain electrolyte. Therefore, batteries using polypropylene nonwoven fabric tend to be inferior to batteries using nylon nonwoven fabric in overall battery characteristics, including battery capacity and internal resistance. In order to improve the electrolyte retention ability of this polypropylene nonwoven fabric, it is blended with nylon fibers or glass fibers to form a nonwoven fabric. Apply a surfactant to the fiber surface. Improvements will be made to the structure of the nonwoven fabric, such as by reducing the fiber diameter. Many attempts have been made to graft-polymerize hydrophilic groups onto the fiber surface by irradiation with radiation or the like, but no method has yet been found to sufficiently improve the electrolyte retention ability. (c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and improves hydrophilicity and liquid retention by surface-treating synthetic resin fibers as a separator material. The present invention aims to provide a method for manufacturing a battery separator. (d) Means for Solving the Problems The method for manufacturing a battery separator of the present invention is characterized in that a synthetic resin fiber having carbon-carbon bonds as a separator material is subjected to a catalytic reaction with a reaction gas containing fluorine. It is something. Here, as the reaction gas, it is preferable to use a mixed gas containing fluorine as a main reaction gas and at least one of oxygen and sulfur dioxide gas as a side reaction gas, diluted with an inert gas. Further, as the synthetic resin fiber, it is suitable to use one having a thin layer of surfactant on the surface to an extent that does not hinder the reaction with fluorine gas. (E) Effect When a synthetic resin fiber having a carbon-carbon bond is brought into contact with a fluorine gas, the fluorine gas attacks, for example, the H of -CH 2 -CH 2 - in the main chain in the surface layer of the fiber. The main reaction is that H and F are substituted and -CF 2 - is partially generated in the main chain,
For example, -C-O-F is partially generated by absorbing oxygen adsorbed on the surface of synthetic resin fibers, or fluorine gas attacks the H of -CH 2 - in the main chain, but it is not cleaved. If F is not present around C in the C-H bond, the carbons will react and partially form -C=C
A side reaction occurs that produces -. This main reaction or side reaction disturbs the regularity of -CH2 - CH2- in the main chain on the fiber surface, and as a result, the surface energy of the synthetic resin fiber changes. and,
If the reaction heat during this reaction is high, the fiber surface will be partially melted and the surface area will increase. Here, the change in the surface energy of the synthetic resin fiber due to the above-mentioned main reaction or side reaction changes so that the surface energy decreases, and as a result, the contact angle with water becomes smaller and it becomes easier to wet with water. The increase in surface area also contributes to making the synthetic resin contact easier to wet with water. Furthermore, since fluorine gas is an extremely reactive gas, reactions between fluorine gas and synthetic resin fibers occur extremely easily, so if a side reaction substance is present in the reaction field, side reactions can occur on the resin surface. It becomes possible to take in substances. By utilizing this effect and actively introducing hydrophilic groups, it becomes possible to further improve hydrophilicity. For example, it is conceivable to use a mixture of oxygen gas and sulfur dioxide gas in addition to fluorine gas as the reaction gas.
If oxygen gas exists in the reaction field, C-O on the reaction surface
Polar groups such as -F and C═O are formed, and if sulfur dioxide gas is present, sulfon groups and the like are formed to further change the surface condition, thereby further improving hydrophilicity. Furthermore, when a thin layer of a surfactant made of a hydrophilic organic substance is coated on the surface of a synthetic resin fiber and reacted with a reaction gas, the applied organic substance and the fluorine gas react with each other. Resin bonds and hydrophilicity is significantly improved. (f) Examples Examples of the present invention will be shown and explained below. [Example 1] Polypropylene nonwoven fabric (thickness 0.21 mm, basis weight 65 g/
After preparing the nonwoven fabric and evacuating it in an iron reaction container, a reaction gas prepared by diluting fluorine gas with nitrogen gas was introduced into the container until the pressure reached atmospheric pressure . Allowed time to react. Thereafter, the gas in the container was again evacuated and nitrogen gas was introduced to completely remove the reaction gas, and then the nonwoven fabric was taken out. FIGS. 1 and 2 are electron micrographs (×5000) showing the shape, or surface condition, of polypropylene fibers before and after the fluorine gas treatment, respectively. It is clear that after the fluorine gas treatment, It can be seen that the surface is in a rough state. Using the thus prepared separator of the present invention and a separator made of a polypropylene nonwoven fabric before treatment with the fluorine gas, the hydrophilicity of the separator was measured before being incorporated into a battery and after being incorporated into a battery and subjected to charge/discharge cycles. . After the charge/discharge cycle, the separator is assembled into a sealed nickel-cadmium storage battery and left at room temperature.
After charging and discharging the battery 50 times under the cycle of charging at a current of 0.1c for 11 hours and discharging at a current of 0.8c for 1 hour, the battery was disassembled, taken out, washed and dried, and used as a sample. To evaluate hydrophilicity, these separators were cut into 20 mm wide tanzak shapes, and one end of the separator was cut with a specific gravity of 1.23.
A method was adopted in which the separator was immersed in a potassium hydroxide solution and allowed to stand for 10 minutes, and the height of absorption of the potassium hydroxide solution into the separator rose (liquid absorption height). The results are shown in Table 1.

〔実施例 2〕[Example 2]

実施例1と同様水酸化カリウム溶液で洗浄した
ポリプロピレン不織布を反応容器内に収納し真空
排気した後、一定量の酸素もしくは亜硫酸ガスを
導入し、次いで窒素で希釈したフツ素ガスを大気
圧になるまで導入して一定時間反応させた。その
後再び容器内のガスを真空排気し窒素ガスを導入
して反応ガスの完全な除去を行なつたのち前記不
織布を取り出した。 こうして作成されたセパレータを、実施例1と
同様な操作を行なつて親水性を測定した。この結
果を、表2に示す。
As in Example 1, a polypropylene nonwoven fabric washed with a potassium hydroxide solution was placed in a reaction vessel and evacuated, then a certain amount of oxygen or sulfur dioxide gas was introduced, and then fluorine gas diluted with nitrogen was brought to atmospheric pressure. was introduced and allowed to react for a certain period of time. Thereafter, the gas in the container was again evacuated and nitrogen gas was introduced to completely remove the reaction gas, and then the nonwoven fabric was taken out. The separator thus produced was subjected to the same operation as in Example 1 to measure the hydrophilicity. The results are shown in Table 2.

〔実施例 3〕[Example 3]

実施例1と同様の水酸化カリウム溶液で洗浄し
たポリプロピレン不織布の表面にノニオン系界面
活性剤を約0.2重量%噴霧し、これを実施例1及
び2と同様の手順で処理した。 こうして作成されたセパレータ及び表面に前記
界面活性剤の塗布のみ行なつたセパレータを、実
施例1と同様の操作を行なつて親水性を測定し
た。この結果を表3に示す。
About 0.2% by weight of a nonionic surfactant was sprayed onto the surface of a polypropylene nonwoven fabric washed with the same potassium hydroxide solution as in Example 1, and treated in the same manner as in Examples 1 and 2. The separator thus prepared and the separator whose surface was only coated with the surfactant were subjected to the same operation as in Example 1 to measure hydrophilicity. The results are shown in Table 3.

【表】 表3よりフツ素ガスとの接触反応に際し、樹脂
表面に界面活性剤の薄層を塗布形成させておくこ
とで、ポリプロピレン不織布の親水性がより一層
向上し、電池内での充放電サイクル後に於いても
良好な親水性を示すことがわかる。これは、界面
活性剤が繊維と結合し充放電サイクルによつても
容易に除去されないためと考えられる。これに対
して樹脂表面に界面活性剤の薄層を塗布形成のみ
行なつたものは、サイクル前では高い親水性を示
すが、充放電サイクルを行なうことにより界面活
性剤が容易に除去され、サイクル後ではほとんど
親水性が維持されていない。 前記実施例においてはポリオレフイン系のポリ
プロピレン不織布を用いた場合について詳述した
が、例えばポリエステルやビニロンなども炭素−
炭素結合を有する合成樹脂繊維であるので、フツ
素を含む反応ガスと接触反応させることにより前
記合成樹脂繊維の表面エネルギーが低下し、これ
らについても反応前のものに比べて、更に水と濡
れやすくすることができる。したがつて、鉛電
池、一次電池用セパレータの親水性向上に対して
も有効である。 また、実施例では不織布の形態に構成された合
成樹脂繊維を、フツ素ガスを含む反応ガスと接触
反応させたが、これは一般に不織布の製造工程に
於いて繊維同志を結合するときに熱処理を行なう
ため、予めフツ素処理を行なつた樹脂繊維を用い
て不織布を製造すると、この熱処理によつて繊維
の表面積が溶融する恐れがあり、本発明の効果が
半減するからである。 尚、実施例に於いては、セパレータ用の合成樹
脂繊維体をタンザク状にして反応ガスと接触反応
させるという所謂、バツチ処理によりセパレータ
の表面処理を行なつたが、本発明品はガスとの接
触反応により得られたものであるから、どのよう
な形態であつても反応は比較的均一となるため、
たとえばセパレータ用の合成樹脂繊維体を帯状に
し、連続的に供給して反応ガスと接触反応させる
という所謂、連続処理によりセパレータの表面処
理を行なうことも可能である。 (ト) 発明の効果 本発明の電池用セパレータの製造方法によれ
ば、樹脂表面の形態が変化してセパレータの親水
性が向上し、電解液の保持能力が上がり、電池に
用いた際の電池性能を向上せしめることができ
る。また、前記反応ガスとの接触反応に於いて反
応場に副反応物質を存在させておき樹脂表面に親
水基を導入すれば、より一層親水性の向上したセ
パレータを得ることができる。
[Table] From Table 3, by coating and forming a thin layer of surfactant on the resin surface during the contact reaction with fluorine gas, the hydrophilicity of the polypropylene nonwoven fabric is further improved, and the charging and discharging inside the battery is improved. It can be seen that it shows good hydrophilicity even after cycling. This is thought to be because the surfactant binds to the fibers and is not easily removed even during charge/discharge cycles. On the other hand, resins in which only a thin layer of surfactant is applied and formed on the resin surface show high hydrophilicity before cycling, but the surfactant is easily removed by charge/discharge cycles, and After that, almost no hydrophilicity is maintained. In the above examples, the case where a polyolefin-based polypropylene nonwoven fabric was used was described in detail, but for example, polyester, vinylon, etc.
Since it is a synthetic resin fiber with carbon bonds, the surface energy of the synthetic resin fiber is lowered by contact reaction with a reaction gas containing fluorine, and these fibers are also more easily wetted with water than before the reaction. can do. Therefore, it is also effective in improving the hydrophilicity of separators for lead batteries and primary batteries. In addition, in the examples, synthetic resin fibers configured in the form of nonwoven fabric were brought into contact reaction with a reaction gas containing fluorine gas, but this is because heat treatment is generally used when bonding fibers together in the manufacturing process of nonwoven fabrics. This is because, if a nonwoven fabric is manufactured using resin fibers that have been previously subjected to fluorine treatment, the surface area of the fibers may be melted by this heat treatment, and the effect of the present invention will be halved. In the examples, the surface treatment of the separator was carried out by so-called batch treatment, in which the synthetic resin fiber body for the separator was made into a tanzak shape and brought into contact with the reaction gas. Since it is obtained through a catalytic reaction, the reaction is relatively uniform no matter what form it is in.
For example, it is also possible to perform the surface treatment of the separator by a so-called continuous treatment in which a synthetic resin fiber body for the separator is made into a band shape and is continuously supplied to cause a contact reaction with a reaction gas. (G) Effects of the Invention According to the method for manufacturing a battery separator of the present invention, the morphology of the resin surface changes, the hydrophilicity of the separator improves, the electrolyte retention ability increases, and the battery separator when used in a battery improves. Performance can be improved. Further, by introducing a hydrophilic group into the resin surface by allowing a side reaction substance to exist in the reaction field during the contact reaction with the reaction gas, a separator with further improved hydrophilicity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフツ素ガス処理前のポリプロピレン繊
維の形状を示す電子顕微鏡写真、第2図はフツ素
ガス処理後のポリプロピレン繊維の形状を示す電
子顕微鏡写真である。
FIG. 1 is an electron micrograph showing the shape of polypropylene fibers before fluorine gas treatment, and FIG. 2 is an electron micrograph showing the shape of polypropylene fibers after fluorine gas treatment.

Claims (1)

【特許請求の範囲】 1 セパレータ素材としての炭素−炭素結合を有
する合成樹脂繊維にフツ素を含む反応ガスを接触
反応させることを特徴とする電池用セパレータの
製造方法。 2 前記反応ガスは、フツ素を主反応ガスとし副
反応ガスとして酸素及び亜硫酸ガスの少なくとも
一方を含有してなる混合ガスを不活性ガスで希釈
したものである特許請求の範囲第1項記載の電池
用セパレータの製造方法。 3 前記合成樹脂繊維は、表面にフツ素ガスとの
反応を妨げない程度の界面活性剤からなる薄層を
有する特許請求の範囲第1項記載の電池用セパレ
ータの製造方法。
[Scope of Claims] 1. A method for producing a battery separator, characterized in that a synthetic resin fiber having carbon-carbon bonds as a separator material is subjected to a catalytic reaction with a reaction gas containing fluorine. 2. The reactive gas is a mixed gas containing fluorine as a main reactive gas and at least one of oxygen and sulfur dioxide gas as a side reactive gas, diluted with an inert gas. A method for manufacturing a battery separator. 3. The method of manufacturing a battery separator according to claim 1, wherein the synthetic resin fiber has a thin layer of surfactant on its surface to an extent that does not prevent reaction with fluorine gas.
JP1219359A 1989-08-25 1989-08-25 Manufacture of separator for battery Granted JPH02276154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1219359A JPH02276154A (en) 1989-08-25 1989-08-25 Manufacture of separator for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1219359A JPH02276154A (en) 1989-08-25 1989-08-25 Manufacture of separator for battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58216485A Division JPS60109171A (en) 1983-11-16 1983-11-16 Separator for battery

Publications (2)

Publication Number Publication Date
JPH02276154A JPH02276154A (en) 1990-11-13
JPH0546056B2 true JPH0546056B2 (en) 1993-07-12

Family

ID=16734197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1219359A Granted JPH02276154A (en) 1989-08-25 1989-08-25 Manufacture of separator for battery

Country Status (1)

Country Link
JP (1) JPH02276154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931348C1 (en) * 1999-07-07 2001-01-18 Freudenberg Carl Fa Process for the surface treatment of a fibrous polyphenyl sulfide or polysulfone

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743690A1 (en) * 1995-05-17 1996-11-20 Mitsubishi Chemical Corporation Battery separator and method for its production
US6291105B1 (en) 1997-08-19 2001-09-18 Daiwabo Co., Ltd. Battery separator and method for manufacturing the same and battery
JP4860828B2 (en) * 2001-02-01 2012-01-25 ダイワボウホールディングス株式会社 Polyolefin fiber for cement reinforcement and method for producing the same
DE10143898B4 (en) 2001-09-07 2005-07-14 Carl Freudenberg Kg Alkaline cell or battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107088A (en) * 1974-01-17 1975-08-23
JPS5362138A (en) * 1976-11-16 1978-06-03 Chisso Corp Method of manufacturing separator for battery
JPS60109171A (en) * 1983-11-16 1985-06-14 Sanyo Electric Co Ltd Separator for battery
JPH047548A (en) * 1990-04-25 1992-01-10 Konica Corp Laminating device for id booklet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50107088A (en) * 1974-01-17 1975-08-23
JPS5362138A (en) * 1976-11-16 1978-06-03 Chisso Corp Method of manufacturing separator for battery
JPS60109171A (en) * 1983-11-16 1985-06-14 Sanyo Electric Co Ltd Separator for battery
JPH047548A (en) * 1990-04-25 1992-01-10 Konica Corp Laminating device for id booklet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931348C1 (en) * 1999-07-07 2001-01-18 Freudenberg Carl Fa Process for the surface treatment of a fibrous polyphenyl sulfide or polysulfone

Also Published As

Publication number Publication date
JPH02276154A (en) 1990-11-13

Similar Documents

Publication Publication Date Title
EP0316916B1 (en) Separator material for storage batteries and method for making the same
CN109004205B (en) Preparation method of lithium-sulfur battery positive electrode material
US4379817A (en) Organic solvent-treated manganese dioxide-containing cathodes
CN101043091B (en) Nickel hydrogen storage battery
US5213722A (en) Method of making a separator material for a storage battery
JPH0546056B2 (en)
JPH047548B2 (en)
US5871864A (en) Lithium secondary cells and methods for preparing active materials for negative electrodes
GB2098636A (en) Separator for electrochemical energy-storage units and a process for its manufacture
JPH08311765A (en) Polyolefin nonwoven fabric
CN112794312A (en) Nitrogen-doped graphene material, composite cathode material, and preparation methods and applications of nitrogen-doped graphene material and composite cathode material
JP2001055666A (en) Surface-processing method for polyphenylene sulfide fiber and polysulfone fiber
JPH01132044A (en) Separator for battery
JP3807691B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP2762443B2 (en) Manufacturing method of battery separator
JP2950935B2 (en) Alkaline storage battery
JPH1064502A (en) Battery separator and battery
JP3395996B2 (en) Battery separator and manufacturing method thereof
CN112803116B (en) Lithiation treatment method of diaphragm and diaphragm material treated by lithiation treatment method
JPH10101830A (en) Surface treatment of polyolefin-based resin molded form
JP3893230B2 (en) Sulfonation treatment method and battery separator production method
JPH0456062A (en) Manufacture of separator for battery
JPH0949158A (en) Nonwoven cloth and its production
JPH08315800A (en) Battery separator and alkaline secondary battery using this
JPS6119056A (en) Separator for battery