JPH0949158A - Nonwoven cloth and its production - Google Patents

Nonwoven cloth and its production

Info

Publication number
JPH0949158A
JPH0949158A JP8133129A JP13312996A JPH0949158A JP H0949158 A JPH0949158 A JP H0949158A JP 8133129 A JP8133129 A JP 8133129A JP 13312996 A JP13312996 A JP 13312996A JP H0949158 A JPH0949158 A JP H0949158A
Authority
JP
Japan
Prior art keywords
core
woven fabric
sheath
fluorine
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8133129A
Other languages
Japanese (ja)
Inventor
Akira Watanabe
渡邉  朗
Tetsuya Aya
哲也 綾
Toshikazu Kasai
俊和 笠井
Hidehiko Obara
秀彦 小原
Mari Ooishi
真里 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8133129A priority Critical patent/JPH0949158A/en
Publication of JPH0949158A publication Critical patent/JPH0949158A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain nonwoven cloth having strength as well as lyophilicity and suitable for a battery separator and a filtering material. SOLUTION: This nonwoven cloth contains a fiber having a sheath-core structure consisting of a polypropylene as the core component and a polyethylene as the sheath component. The elemental ratio of oxygen to carbon (O/C) of the nonwoven cloth is 0.01-0.5 and the fluorine to carbon ratio (F/C) is 0.01-0.5 determined by ESCA and the ratio of oxygen to fluorine (O/F) determined by fluorescent X-ray analysis is 0.4-10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は主にアルカリ二次電
池用セパレータに使用される不織布に関する。詳しくは
本発明は通気性、親水性、保液性、強度に優れたポリオ
レフィン系不織布、その製造方法および不織布を用いた
アルカリ2次電池セパレータに関する。
TECHNICAL FIELD The present invention relates to a non-woven fabric mainly used as a separator for alkaline secondary batteries. More specifically, the present invention relates to a polyolefin-based nonwoven fabric excellent in air permeability, hydrophilicity, liquid retention and strength, a method for producing the same, and an alkaline secondary battery separator using the nonwoven fabric.

【0002】[0002]

【従来の技術】従来、ナイロン不織布は適度な強度、ガ
ス透過性及び親水性を有しているため、アルカリ電池、
例えばニッケル−カドミウム蓄電池用のセパレータとし
て広く用いられてきた。しかし、ナイロンは耐アルカリ
性、耐酸化性が十分であるとは言い難く、特に45℃以
上の温度では比較的簡単に分解してしまうことが知られ
ている。すなわち、高温で電池を充電した場合には、電
池内で発生した酸素によりナイロンが二酸化炭素、水、
アンモニア等に分解され、この二酸化炭素やアンモニア
は電池特性に悪影響を及ぼし、更に分解が進むとセパレ
ータとしての電気絶縁能力が低下し、ついには電池内部
短絡を引き起こすといった問題があった。
2. Description of the Related Art Conventionally, nylon nonwoven fabric has appropriate strength, gas permeability and hydrophilicity, so
For example, it has been widely used as a separator for nickel-cadmium storage batteries. However, it is difficult to say that nylon has sufficient alkali resistance and oxidation resistance, and it is known that nylon is relatively easily decomposed particularly at a temperature of 45 ° C. or higher. That is, when the battery is charged at a high temperature, the oxygen generated in the battery causes nylon to carbon dioxide, water,
When decomposed into ammonia or the like, the carbon dioxide or ammonia adversely affects the battery characteristics, and if the decomposition further proceeds, the electric insulating ability as a separator is reduced, and finally there is a problem that an internal short circuit of the battery is caused.

【0003】この問題を解決するためにセパレータの素
材をポリオレフィン系の樹脂に変更しようとする試みが
行われ、特に、高温下で使用される電池を中心にポリオ
レフィン系不織布が使用されるようになってきた。
In order to solve this problem, attempts have been made to change the material of the separator to a polyolefin-based resin, and in particular, a polyolefin-based nonwoven fabric has come to be used mainly in batteries used under high temperature. Came.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ポリオ
レフィン系不織布は耐アルカリ性、耐酸化性等の耐薬品
性は良好であるが、電解液との親和性に乏しく、その保
持性に劣るという欠点がある。この問題を解決し、電解
液保持能力を向上させるために、界面活性剤を塗布する
方法(特開昭60−255107号公報)があるが、こ
の場合界面活性剤の流出が問題となる。しかも、ひとた
び乾燥させると、もはや親水性を示さなくなり根本的な
解決にはならない。
However, although the polyolefin-based nonwoven fabric has good chemical resistance such as alkali resistance and oxidation resistance, it has a drawback that it has a poor affinity with an electrolytic solution and its retention is poor. . In order to solve this problem and improve the electrolytic solution holding ability, there is a method of applying a surfactant (JP-A-60-255107), but in this case, the outflow of the surfactant becomes a problem. Moreover, once dried, it no longer exhibits hydrophilicity and is not a fundamental solution.

【0005】さらに、酸素ガスを用い低温プラズマ処理
する方法が挙げられるが、この方法では高真空条件が必
要であり、大型材料の連続処理が困難であり、更に装置
コストが高く簡便な汎用的処理としては不適当である。
また、疎水性高分子表面に親水性モノマーをグラフトさ
せる種々の方法が提案されている(特公昭56−440
98号公報)。しかし、反応が複雑であり、主鎖の切
断、架橋、グラフト効率等の相互の絡み合いの調整が困
難であり、不織布の空間内部にまで均一にグラフト重合
が進行し難い等の問題がある。
Further, there is a method of low-temperature plasma treatment using oxygen gas, but this method requires high vacuum conditions, continuous treatment of large-sized materials is difficult, and equipment cost is high and simple general-purpose treatment is required. Is unsuitable as
Further, various methods for grafting a hydrophilic monomer on the surface of a hydrophobic polymer have been proposed (Japanese Patent Publication No. 56-440).
No. 98). However, there are problems that the reaction is complicated, it is difficult to adjust the entanglement of the main chain such as cutting, cross-linking, grafting efficiency, etc., and it is difficult for the graft polymerization to uniformly proceed even inside the space of the nonwoven fabric.

【0006】また、ポリプロピレン製不織布にフッ素と
酸素の混合ガスを処理することで親水性を付与する方法
(特公平5−46056号公報)が提案されているが、
ポリプロピレンはフッ素による処理性が低く、要求され
る性能を得るためには高濃度のフッ素雰囲気で処理する
必要があり、繊維の劣化や効率の点で問題であった。
Further, a method of imparting hydrophilicity to a nonwoven fabric made of polypropylene by treating a mixed gas of fluorine and oxygen (Japanese Patent Publication No. 5-46056) has been proposed.
Polypropylene has low processability with fluorine, and it is necessary to process in a high-concentration fluorine atmosphere in order to obtain the required performance, which is a problem in terms of fiber deterioration and efficiency.

【0007】[0007]

【課題を解決するための手段】上記課題に鑑み鋭意検討
した結果、特定のポリオレフィン繊維からなり、特定の
表面組成を有する不織布は、十分な強度を有し、かつ、
電解液の吸液性、保持性が優れることを見出し本発明に
到達した。すなわち、本発明の要旨は、芯成分がポリプ
ロピレン、鞘成分がポリエチレンである芯鞘構造を有す
る繊維を含有する不織布であって、該不織布のESCA
にて測定した炭素に対する酸素の元素組成比(O/C)
が0.01〜0.5、炭素に対するフッ素の元素組成比
(F/C)が0.01〜0.5であり、蛍光X線分析に
て測定したフッ素に対する酸素の元素組成比(O/F)が
0.4〜10であることを特徴とする不織布に存する。
As a result of intensive studies in view of the above problems, a nonwoven fabric made of a specific polyolefin fiber and having a specific surface composition has sufficient strength, and
The inventors have found that the electrolytic solution has excellent liquid absorption and retention properties, and have reached the present invention. That is, the gist of the present invention is a non-woven fabric containing fibers having a core-sheath structure in which the core component is polypropylene and the sheath component is polyethylene.
Elemental composition ratio of oxygen to carbon (O / C)
Is 0.01 to 0.5, the elemental composition ratio of fluorine to carbon (F / C) is 0.01 to 0.5, and the elemental composition ratio of oxygen to fluorine (O / O / F / C) measured by X-ray fluorescence analysis. F) is in the range of 0.4-10.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の不織布は、芯成分がポリプロピレン、鞘成分が
ポリエチレンである芯鞘構造を有する繊維を少なくとも
含有し、通常、さらにポリオレフィンの単一成分からな
る繊維を含有する不織布からなる。本発明は、芯成分と
してポリプロピレンを用いることにより、短絡や過充電
その他により電池が高温にさらされた際に、セパレータ
の構造を維持することができ、また、電池組み立て時の
強度を出すことができる。また、鞘成分としてポリエチ
レンを使用することにより、従来のポリプロピレン繊維
では、フッ素と酸素の混合ガスで処理を行っても親水性
を発現しにくいという問題点を改善することができ、ま
た、不織布製造時のポリエチレン同志の熱融着による強
度向上を図ることができる。すなわち、耐熱性に優れた
ポリプロピレンを芯に、親水化しやすいポリエチレンを
鞘に持つ構造の繊維を用いることが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The nonwoven fabric of the present invention contains at least fibers having a core-sheath structure in which the core component is polypropylene and the sheath component is polyethylene, and is usually a nonwoven fabric containing fibers consisting of a single component of polyolefin. The present invention, by using polypropylene as the core component, can maintain the structure of the separator when the battery is exposed to a high temperature due to a short circuit, overcharging, or the like, and can provide strength during battery assembly. it can. Further, by using polyethylene as the sheath component, it is possible to improve the problem that conventional polypropylene fibers are less likely to exhibit hydrophilicity even when treated with a mixed gas of fluorine and oxygen. It is possible to improve strength by heat fusion of polyethylene at the time. That is, it is necessary to use a fiber having a structure in which polypropylene having excellent heat resistance is used as a core and polyethylene which is easily hydrophilized is used as a sheath.

【0009】本発明において、芯鞘構造とは、芯鞘構造
と並列構造との総称であり、芯鞘構造とは芯成分と鞘成
分が、繊維断面に同心円状に配列している構造(SHEATH-
CORE)を表し、並列構造とは芯成分のポリプロピレンが
偏心している構造(SIDE BY SIDE)でありサイドバイサイ
ド型とも呼ばれる。芯と鞘の割合は任意に用いることが
でき、断面の面積比で芯:鞘=10:1〜1:10であ
る繊維が好適に用いられる。これら芯鞘構造を有する繊
維は2種以上を併用しても構わない。
In the present invention, the core-sheath structure is a general term for the core-sheath structure and the parallel structure, and the core-sheath structure is a structure in which the core component and the sheath component are arranged concentrically in the fiber cross section (SHEATH). -
CORE), and the parallel structure is a structure in which polypropylene as a core component is eccentric (SIDE BY SIDE) and is also called a side-by-side type. The ratio of the core to the sheath can be arbitrarily used, and fibers having a cross-sectional area ratio of core: sheath = 10: 1 to 1:10 are preferably used. These fibers having a core-sheath structure may be used in combination of two or more kinds.

【0010】芯鞘構造を有する繊維の繊度は通常0.2
〜6デニール、好ましくは0.5〜4デニールのものが
好適に用いられる。繊度が0.2デニールよりも少ない
と繊維の分散性が悪く、6デニールよりも多いと繊維間
に大きなポアが生じて、不織布をバッテリーセパレータ
としてを電極間に挟んだとき短絡を生ずる危険性があ
る。
The fineness of a fiber having a core-sheath structure is usually 0.2.
-6 denier, preferably 0.5-4 denier are suitably used. When the fineness is less than 0.2 denier, the dispersibility of the fibers is poor, and when it is more than 6 denier, large pores are generated between the fibers, which may cause a short circuit when a non-woven fabric is used as a battery separator between electrodes. is there.

【0011】不織布に用いられるポリオレフィン繊維
は、通常ポリエチレン、ポリプロピレン等の炭化水素系
ポリオレフィン繊維である。例えば、高親水性が求めら
れる場合はポリエチレンを、耐熱性が求められる場合は
ポリプロピレンを用いることが好ましい。ポリオレフィ
ン繊維としては、ポリエチレン、ポリプロピレン等の炭
化水素系ポリオレフィン、これらをブレンドしたもの、
これらの共重合体等の単一成分からなる繊維の他に、芯
鞘構造を有する繊維を用いてもよい。ポリオレフィン繊
維の繊度については特に限定されるものではなく、ま
た、厳密な意味での繊維状である必要はなく、線状ある
いは枝状の分岐を有する形状や石綿のような綿状のもの
であってもよい。
The polyolefin fibers used for the non-woven fabric are usually hydrocarbon type polyolefin fibers such as polyethylene and polypropylene. For example, polyethylene is preferably used when high hydrophilicity is required, and polypropylene is preferably used when heat resistance is required. Polyolefin fibers include hydrocarbon-based polyolefins such as polyethylene and polypropylene, blends of these,
In addition to fibers composed of a single component such as these copolymers, fibers having a core-sheath structure may be used. The fineness of the polyolefin fiber is not particularly limited, and does not have to be a fiber in a strict sense, and may be a shape having linear or branched branches or a cotton-like material such as asbestos. May be.

【0012】芯鞘構造を有する繊維とポリオレフィン繊
維の割合は任意であるが、芯鞘構造を有する繊維は通常
30〜100重量%、好ましくは40〜90重量%であ
る。芯鞘構造を有する繊維が30重量%よりも少ない
と、ポリオレフィン繊維がポリエチレン繊維である場合
には、ポリエチレン繊維の強度が低いため、充分な強度
の不織布が得られず、また、ポリオレフィン繊維がポリ
プロピレン繊維である場合には、ポリエチレンの融点で
ポリプロピレンが融解しないため、サーマルボンド方法
で繊維同士を接着させることが難しく、必要な強度が得
られにくい。また、ポリプロピレンはポリエチレンに比
べてフッ素と酸素の混合ガスによる親水化処理性が劣る
ため、不織布として充分な親水性が得られにくくなる。
The ratio of the fiber having the core-sheath structure to the polyolefin fiber is arbitrary, but the amount of the fiber having the core-sheath structure is usually 30 to 100% by weight, preferably 40 to 90% by weight. If the fiber having a core-sheath structure is less than 30% by weight, when the polyolefin fiber is a polyethylene fiber, the strength of the polyethylene fiber is low, so that a nonwoven fabric having sufficient strength cannot be obtained, and the polyolefin fiber is polypropylene. In the case of fibers, polypropylene does not melt at the melting point of polyethylene, and thus it is difficult to bond the fibers to each other by the thermal bonding method, and it is difficult to obtain the required strength. Further, since polypropylene is inferior to polyethylene in hydrophilicity by a mixed gas of fluorine and oxygen, it is difficult to obtain sufficient hydrophilicity as a nonwoven fabric.

【0013】本発明の不織布は、本発明の効果を損なわ
ないかぎり、芯鞘構造を有する繊維、ポリオレフィン繊
維以外の繊維を含有していてもよい。本発明の不織布
は、ESCA(Electron Spectroscopy for Chemical A
nalysis)により測定された炭素に対する酸素の元素組
成比(O/C)が0.01〜0.5、好ましくは0.0
5〜0.5である。O/Cが0.01よりも小さいと十
分な親水性が得られず、0.5より大きいと強度の低下
が起こる。
The nonwoven fabric of the present invention may contain fibers other than the core-sheath structure fiber and the polyolefin fiber as long as the effects of the present invention are not impaired. The nonwoven fabric of the present invention is an ESCA (Electron Spectroscopy for Chemical A
The elemental composition ratio (O / C) of oxygen to carbon measured by the analysis is 0.01 to 0.5, preferably 0.0.
5 to 0.5. When O / C is less than 0.01, sufficient hydrophilicity cannot be obtained, and when O / C is more than 0.5, strength is reduced.

【0014】また、ESCAにより測定された炭素に対
するフッ素の元素組成比(F/C)が0.01〜0.
5、好ましくは0.05〜0.5である。F/Cが0.
01よりも小さいと好ましい親水性が得られにくく、
0.5より大きいと強度の低下が起こる。なお、ここで
ESCAにより測定された元素組成とは、PERKIN
ELEMER PHI社製のESCA−5500MC
を使用し、線源をAlとして、14kV、150W(モ
ノクロメータ使用、取出角65度)の条件で測定したも
のをいう。
The elemental composition ratio of fluorine to carbon (F / C) measured by ESCA is 0.01 to 0.
5, preferably 0.05 to 0.5. F / C is 0.
If it is smaller than 01, it is difficult to obtain preferable hydrophilicity,
If it exceeds 0.5, the strength is reduced. The elemental composition measured by ESCA means PERKIN.
ESCA-5500MC manufactured by ELEMER PHI
Was measured under the conditions of 14 kV and 150 W (using a monochromator, extraction angle of 65 degrees) using Al as a radiation source.

【0015】さらに本発明の不織布は、蛍光X線分析
(以下「XRF」という)により測定されたフッ素に対
する酸素の元素組成比(O/F)が0.4〜10である。
O/Fが0.4よりも小さいと好ましい親水性が得られ
にくく、10よりも大きいと改質が進みすぎて繊維の強
度が低下する。なお、ここでXRFにより測定された元
素組成とは、理学電機株式会社製蛍光X線分析計Sys
tem3370Eを使用し、Rh管球を一次X線源とし
て、40kV−70mAの条件下で同社製分光結晶RX
40を用いて測定したものをいう。
Furthermore, the nonwoven fabric of the present invention has an elemental composition ratio (O / F) of oxygen to fluorine of 0.4 to 10 as measured by fluorescent X-ray analysis (hereinafter referred to as "XRF").
When O / F is less than 0.4, it is difficult to obtain preferable hydrophilicity, and when O / F is more than 10, the modification proceeds too much and the strength of the fiber decreases. Here, the elemental composition measured by XRF means the fluorescent X-ray analyzer Sys manufactured by Rigaku Denki Co., Ltd.
tem3370E, Rh tube as the primary X-ray source under the conditions of 40kV-70mA, the company's spectroscopic crystal RX
It means what was measured using 40.

【0016】次に、本発明の不織布の製造方法について
説明する。本発明の不織布は、公知の種々の技術を利用
して製造できる。例えば、繊維を水中に均一に懸濁し、
これを金網等ですくいシート状にする湿式製造法や、繊
維を空気中に飛散させた後、金網に集めてカード状にす
るエアーレイド法や、紡糸機から直接ウェブを形成する
スパンボンド法やメルトブロー法などが挙げられる。さ
らには、不織布を製造する際には、繊維の分散性を改良
するために界面活性剤や、繊維のからみを向上させるた
めのポリビニールアルコール等の添加剤を用いても良
い。これらの不織布は単層であっても、異なる2種以上
の不織布を積層したものでもよい。
Next, the method for producing the nonwoven fabric of the present invention will be described. The nonwoven fabric of the present invention can be manufactured by utilizing various known techniques. For example, suspend fibers evenly in water,
Wet manufacturing method to make this into a scoop sheet with wire mesh, air raid method to make fibers into fibers after being scattered in the air, spun bond method to form web directly from spinning machine, Melt blow method and the like can be mentioned. Furthermore, when producing a nonwoven fabric, an additive such as a surfactant for improving the dispersibility of the fibers or polyvinyl alcohol for improving the entanglement of the fibers may be used. These non-woven fabrics may be a single layer or a laminate of two or more different non-woven fabrics.

【0017】本発明の不織布は、上記の方法等で得られ
た、芯成分がポリプロピレン、鞘成分がポリエチレンで
ある芯鞘構造を有する繊維を含有する不織布を、フッ素
と酸素を含む混合ガス(以下、単に「混合ガス」とい
う)に接触させることにより製造することができる。
The non-woven fabric of the present invention is a non-woven fabric containing fibers having a core-sheath structure in which the core component is polypropylene and the sheath component is polyethylene, which is obtained by the above method or the like, and a mixed gas containing fluorine and oxygen (hereinafter , Simply referred to as “mixed gas”).

【0018】混合ガスは、フッ素と酸素の他に窒素、ヘ
リウム等の不活性ガスを含有していてもよい。混合ガス
中のフッ素の濃度は特に限定されないが、通常0.01
〜80容量%、好ましくは0.01〜50容量%の範囲
が用いられる。フッ素が0.01容量%より少ないと、
改質させる不織布表面に効率よくポリマーラジカルを形
成させることが難しく、酸素存在下でフッ素80容量%
より多いと、反応が激しすぎてポリオレフィン不織布が
燃えてしまう。また、酸素の濃度は、通常0.01〜9
9.9容量%、好ましくは30〜99容量%の範囲から
選ばれる。特に、酸素の濃度はフッ素の濃度よりも高い
ことが望ましい。酸素濃度がフッ素よりも容量が少ない
場合にはフッ素化反応がより優先され酸素原子の導入が
困難になる。
The mixed gas may contain an inert gas such as nitrogen or helium in addition to fluorine and oxygen. The concentration of fluorine in the mixed gas is not particularly limited, but usually 0.01
The range of -80% by volume, preferably 0.01-50% by volume is used. If the fluorine content is less than 0.01% by volume,
It is difficult to efficiently form polymer radicals on the surface of the non-woven fabric to be modified, and 80% by volume of fluorine is present in the presence of oxygen.
If it is more, the reaction will be too intense and the polyolefin nonwoven fabric will burn. The oxygen concentration is usually 0.01 to 9
It is selected from the range of 9.9% by volume, preferably 30 to 99% by volume. In particular, it is desirable that the oxygen concentration be higher than the fluorine concentration. When the oxygen concentration is lower than that of fluorine, the fluorination reaction is prioritized and introduction of oxygen atoms becomes difficult.

【0019】混合ガスと不織布との接触温度は、直接フ
ッ素化反応が優先的に進行しない条件が選ばれるが、そ
の範囲は、通常−70〜140℃、好ましくは0〜90
℃、特に好ましくは0〜50℃の範囲である。−70℃
より低いとフッ素の反応性が極端に減少し、140℃よ
り高いと不織布のポリエチレン成分が融けてしまう。ま
た、0℃より低いとフッ素の反応性が低下するため有効
な処理が行われにくく、90℃より高いとフッ素化反応
が酸素化に比べて極端に優先され、親水性が発現しにく
くなる。
The contact temperature between the mixed gas and the non-woven fabric is selected such that the direct fluorination reaction does not proceed preferentially, but the range is usually -70 to 140 ° C, preferably 0 to 90.
C., particularly preferably in the range of 0 to 50.degree. -70 ° C
If it is lower, the reactivity of fluorine is extremely reduced, and if it is higher than 140 ° C., the polyethylene component of the nonwoven fabric is melted. On the other hand, if the temperature is lower than 0 ° C, the reactivity of fluorine is lowered, so that an effective treatment is difficult to be performed, and if the temperature is higher than 90 ° C, the fluorination reaction is extremely prioritized over the oxygenation, and the hydrophilicity is hard to be expressed.

【0020】混合ガスと不織布との接触時間は、広い範
囲から適宜選ばれ、通常1秒〜10日、好ましくは1秒
〜30分である。混合ガスと不織布との反応は、密閉さ
れた反応容器中に調湿した不織布を保持し、容器内を脱
気した後、混合ガスを導入するか、あるいは容器内を乾
燥気体で満たし、混合ガスで徐々に置換して、被処理材
と処理気体とを接触させる方法、あるいは、気体シール
の良好な処理室内に混合ガスを満たし、その室内へ室外
から被処理材を走行させる方法等が挙げられる。この場
合、混合ガスの接触効率を高めるため、被処理材同志が
接触しないように固定したり、容器内でロール状シート
の巻出し、巻取りを行うことができる。
The contact time between the mixed gas and the non-woven fabric is appropriately selected from a wide range and is usually 1 second to 10 days, preferably 1 second to 30 minutes. The reaction between the mixed gas and the non-woven fabric is carried out by holding the moisture-conditioned non-woven fabric in a closed reaction container and degassing the inside of the container, then introducing the mixed gas or filling the inside of the container with a dry gas, And a method of contacting the material to be processed with the processing gas, or a method of filling the processing gas with a good gas seal with the mixed gas and running the material to be processed from the outside to the room. . In this case, in order to improve the contact efficiency of the mixed gas, the materials to be treated can be fixed so that they do not come into contact with each other, or the rolled sheet can be unwound and wound in the container.

【0021】混合ガスの導入方法は、所定の濃度に希釈
された酸素や乾燥空気中に不織布を置き、そこにフッ素
を導入してもよいし、フッ素と酸素を所定の濃度に混合
したガスに不織布に接触させても良い。混合ガスと不織
布との反応終了後、未反応の混合ガスやフッ化水素など
の微量の副生物等を含む排ガスを除去する。排ガスの無
毒化方法は公知の技術が利用できる。例えば、未反応の
フッ素はアルミナ粒子を封入した管を通過させてフッ化
アルミとして固定化する方法やアルカリ水溶液にガスを
通過させる方法が挙げられる。また、微量生ずるフッ化
水素はフッ化ナトリウム粒子に吸着させる方法が挙げら
れる。
The mixed gas may be introduced by placing a non-woven fabric in oxygen or dry air diluted to a predetermined concentration and introducing fluorine into it. Alternatively, a mixed gas of fluorine and oxygen may be added. You may make it contact a nonwoven fabric. After the reaction of the mixed gas with the nonwoven fabric is completed, the unreacted mixed gas and the exhaust gas containing a trace amount of by-products such as hydrogen fluoride are removed. A known technique can be used as a method for detoxifying exhaust gas. For example, unreacted fluorine may be passed through a tube containing alumina particles to be fixed as aluminum fluoride or a method of passing a gas through an alkaline aqueous solution. Further, a method of adsorbing a small amount of hydrogen fluoride generated on the sodium fluoride particles can be mentioned.

【0022】フッ素は原子半径が小さいため、吸着に近
い状態で不織布表面に残存し経時的に脱離していく。こ
のような吸着フッ素を除去するために、混合ガスとの反
応後不織布は、水、アルカリ水溶液等により洗浄するこ
とが望ましい。水、アルカリ水溶液中のCa、Mg等の
硬水成分は、不織布に結合しているフッ素の脱離を促進
することがあるため、水、アルカリ水溶液中のCa、M
g等の硬水成分は一定濃度以下となるよう制御すること
が望ましく、好ましくは脱塩水が用いられる。
Since fluorine has a small atomic radius, it remains on the surface of the non-woven fabric in a state close to adsorption and desorbs with time. In order to remove such adsorbed fluorine, it is desirable that the non-woven fabric after the reaction with the mixed gas is washed with water, an alkaline aqueous solution or the like. Hard water components such as Ca and Mg in water and alkaline aqueous solution may promote desorption of fluorine bonded to the non-woven fabric.
It is desirable to control the hard water component such as g so that the concentration is not more than a certain concentration, and demineralized water is preferably used.

【0023】このように、不織布を混合ガスで処理する
ことにより、混合ガスと接触した繊維の表面に酸素とフ
ッ素が注入され、改質される。すなわち、芯鞘構造を有
する繊維では鞘成分であるポリエチレンが、ポリオレフ
ィン繊維ではその表面が改質される。
By treating the non-woven fabric with the mixed gas as described above, oxygen and fluorine are injected into the surface of the fiber which is in contact with the mixed gas to be modified. That is, polyethylene, which is a sheath component in fibers having a core-sheath structure, is modified on the surface of polyolefin fibers.

【0024】一般に、不織布をアルカリ二次電池用セパ
レータとして使用する場合には、電池の組立時間を短縮
するために初期の親液性は、電池内部に組み込まれたセ
パレータが有する親液性、保液性よりも高い親液性が要
求される。そこで、本発明においては、混合ガスで処理
した後、ノニオン系界面活性剤を塗布することが好まし
く、これにより初期の親液性を更に飛躍的に向上させる
ことができる。
Generally, when a non-woven fabric is used as a separator for an alkaline secondary battery, the initial lyophilic property is to maintain the lyophilic property of the separator incorporated inside the battery in order to shorten the battery assembling time. Higher lyophilicity than lyophilicity is required. Therefore, in the present invention, it is preferable to apply the nonionic surfactant after the treatment with the mixed gas, whereby the initial lyophilicity can be further dramatically improved.

【0025】ノニオン系界面活性剤はグリセリンやソル
ビトール、砂糖などの多価アルコールを親水基とする多
価アルコール型ノニオン系活性剤(エステル型)や、親
水基として機能するエチレンオキサイドを、疎水原料に
付加させたポリエチレングリコール型(エーテル型)ノ
ニオン活性剤が挙げられる。また、多価アルコール型の
活性剤にエチレンオキサイドを付加させたエーテルエス
テル型ノニオン活性剤も用いられる。特には、アルキル
フェノール系のポリエチレングリコール型ノニオン活性
剤がコストと界面活性能のバランスから好適に用いられ
る。
The nonionic surfactant is a polyhydric alcohol type nonionic surfactant (ester type) having a polyhydric alcohol such as glycerin, sorbitol or sugar as a hydrophilic group, or ethylene oxide which functions as a hydrophilic group as a hydrophobic raw material. Examples of the added polyethylene glycol type (ether type) nonionic activator. Further, ether ester type nonionic activators obtained by adding ethylene oxide to polyhydric alcohol type activators are also used. In particular, an alkylphenol-based polyethylene glycol type nonionic activator is preferably used from the balance of cost and surface activity.

【0026】界面活性剤の塗布の方法は公知の技術が利
用できる。例えば、混合ガスで処理した不織布を界面活
性剤を水等の溶媒に溶解させた界面活性剤溶液に浸漬さ
せて塗布する方法や、界面活性剤溶液を霧状にスプレー
塗布する方法が挙げられる。界面活性剤溶液の濃度は広
い範囲から選ばれるが、通常0.01〜5重量%、好ま
しくは0.05〜1重量%の範囲である。界面活性剤溶
液の濃度が0.01重量%よりも小さいと望ましい吸液
性が得られにくく、5重量%よりも大きいと界面活性剤
の溶出が問題となる。
As a method of applying the surfactant, known techniques can be used. For example, a method of immersing a non-woven fabric treated with a mixed gas in a surfactant solution in which a surfactant is dissolved in a solvent such as water to apply it, or a method of spray-applying the surfactant solution in a mist state can be mentioned. The concentration of the surfactant solution is selected from a wide range, but is usually 0.01 to 5% by weight, preferably 0.05 to 1% by weight. When the concentration of the surfactant solution is less than 0.01% by weight, it is difficult to obtain the desired liquid absorbency, and when it is more than 5% by weight, the elution of the surfactant becomes a problem.

【0027】本発明の不織布をアルカリ二次電池用バッ
テリーセパレータとして使用する際には、不織布を構成
する繊維の繊度や厚み、通気度、引っ張り破断強度など
の物性が以下に示す範囲内で高次元にバランスする事が
必要である。厚みは、通常50〜300μm、好ましく
は100〜300μm、より好ましくは100〜200
μmである。300μmよりも厚くなるとバッテリーの
高容量化の点で問題がある。また、50μmよりも薄く
なると通気度や強度の低下が起こる。
When the nonwoven fabric of the present invention is used as a battery separator for an alkaline secondary battery, the physical properties such as fineness and thickness of fibers constituting the nonwoven fabric, air permeability, and tensile rupture strength are high within the following ranges. Needs to be balanced. The thickness is usually 50 to 300 μm, preferably 100 to 300 μm, and more preferably 100 to 200.
μm. If the thickness is more than 300 μm, there is a problem in increasing the capacity of the battery. Further, when the thickness is less than 50 μm, the air permeability and the strength decrease.

【0028】通気度は、フラジール法により測定した場
合に、通常5〜150cm3/cm2/sec、好ましく
は10〜150cm3/cm2/sec、より好ましくは
30〜100cm3/cm2/secである。通気度が5
cm3/cm2/sec未満ではイオン伝導度が低下し、
150cm3/cm2/secを越える場合には、必要強
度を出すためには厚みを厚くしなければならず、好まし
い厚みの範囲では強度が不十分である。
The air permeability, when measured by a Frazier method, usually 5~150cm 3 / cm 2 / sec, preferably 10~150cm 3 / cm 2 / sec, more preferably 30~100cm 3 / cm 2 / sec Is. Air permeability is 5
If it is less than cm 3 / cm 2 / sec, the ionic conductivity will decrease,
When it exceeds 150 cm 3 / cm 2 / sec, the thickness must be increased to obtain the required strength, and the strength is insufficient in the preferable thickness range.

【0029】引っ張り破断強度は、通常3〜20kgf
/2cm、好ましくは4〜20kgf/2cmである。
引っ張り破断強度が3kgf/2cm未満ではバッテリ
ー組立時に破断する恐れが生ずる。不織布の目付けは上
記の物性のバランスから30〜100g/m2が好まし
い。
The tensile breaking strength is usually 3 to 20 kgf.
/ 2 cm, preferably 4 to 20 kgf / 2 cm.
If the tensile breaking strength is less than 3 kgf / 2 cm, there is a risk of breaking during battery assembly. The basis weight of the non-woven fabric is preferably 30 to 100 g / m 2 from the balance of the above physical properties.

【0030】また、本発明の不織布を電池用セパレータ
として使用する場合、耐アルカリ性の目安として、30
重量%水酸化カリウム水溶液に100℃にて1時間浸漬
した後の重量減少が1.4重量%以下、好ましくは1重
量%以下であることがよい。1.4重量%を超えると、
耐アルカリ性が不十分となり、特にニッケル−水素電池
やニッケル−亜鉛電池のようなアルカリ性溶媒を電解質
とする電池に用いる場合には適さない。
When the nonwoven fabric of the present invention is used as a battery separator, the alkali resistance is 30%.
The weight loss after immersion in a weight% potassium hydroxide aqueous solution at 100 ° C. for 1 hour is 1.4% by weight or less, preferably 1% by weight or less. If it exceeds 1.4% by weight,
Alkali resistance becomes insufficient, and it is not suitable especially when used in a battery such as a nickel-hydrogen battery or a nickel-zinc battery using an alkaline solvent as an electrolyte.

【0031】[0031]

【実施例】次に、本発明の実施例により詳細に説明する
が、本発明はその要旨を越えない限り、以下の実施例に
限定されるものではない。なお、以下の諸例において、
各測定は次の方法によって行った。
EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. In the following examples,
Each measurement was performed by the following method.

【0032】(1)ESCA測定 PERKIN ELMER PHI社製のESCA−5
500MCを用いてサンプルの表面元素組成分析を行っ
た。測定条件としては、使用した励起源はAl−Kα線
で、出力14kV、150W、モノクロメーター使用、
分析面積0.8mm×3.5mm、取出角65゜とし
た。
(1) ESCA measurement ESCA-5 manufactured by PERKIN ELMER PHI
The surface elemental composition analysis of the sample was performed using 500 MC. As the measurement conditions, the excitation source used was Al-Kα ray, output 14 kV, 150 W, monochromator used,
The analysis area was 0.8 mm × 3.5 mm and the take-out angle was 65 °.

【0033】(2)XRF測定 理学電機株式会社製蛍光X線分析計System337
0Eを使用し、Rh管球を一次X線源として、40kV
−70mAの条件下で同社製分光結晶RX40を用いて
測定したものをいう。表面元素組成比R(F/O)は、表面
からフッ素化層までのF−Kα及びO−Kα線の感度は
一定以下であるとの仮定を置き、O−Kα線とF−Kα
線の未処理の原料布のブランク強度を差し引いたネット
強度I(O)、I(F)より、原子量比f(O/F)=15.99
9/18.998=0.842、X線分析計に付属して
いるソフトウェアで求めた理論感度比Ct(O/F)=0.
263を用いて次式より算出した。
(2) XRF measurement Fluorescence X-ray analyzer System 337 manufactured by Rigaku Denki Co., Ltd.
0E, Rh tube as primary X-ray source, 40kV
It is measured with a spectroscopic crystal RX40 manufactured by the same company under the condition of -70 mA. The surface element composition ratio R (F / O) is based on the assumption that the sensitivities of F-Kα and O-Kα rays from the surface to the fluorinated layer are below a certain level.
From the net strengths I (O) and I (F) after subtracting the blank strength of the untreated raw cloth of the line, the atomic weight ratio f (O / F) = 15.99.
9 / 18.998 = 0.842, theoretical sensitivity ratio Ct (O / F) = 0.0.4 determined by software attached to the X-ray analyzer.
It was calculated from the following formula using H.263.

【0034】[0034]

【数1】 R(O/F)=[f(O/F)Ct(O/F)]×[I(F)/I(O)] =0.221×[I(F)/I(O)]## EQU1 ## R (O / F) = [f (O / F) Ct (O / F)] × [I (F) / I (O)] = 0.221 × [I (F) / I ( O)]

【0035】(3)引っ張り破断強度 インストロン型万能試験機を用いてサンプル幅20m
m、チャック間50mm、引っ張り速度200mm/m
inで引っ張り、破断時の幅2cm当たりの張力を測定
した。 (4)電解液の吸液高さ 幅25mmの短冊状にサンプルを切断し、サンプル端を
30重量%の水酸化カリウム水溶液に浸漬し、気温24
℃、湿度65%の部屋に鉛直に立てて30分間静置した
時の水酸化カリウム水溶液の吸収上昇高さを測定した。
(3) Tensile rupture strength Using an Instron type universal testing machine, sample width 20 m
m, 50 mm between chucks, pulling speed 200 mm / m
It was pulled in and the tension per width 2 cm at break was measured. (4) Liquid absorption height of electrolyte solution The sample was cut into a strip shape with a width of 25 mm, and the sample end was immersed in a 30 wt% potassium hydroxide aqueous solution, and the temperature was adjusted to 24
The height of absorption rise of the aqueous potassium hydroxide solution was measured when it was placed vertically in a room at 65 ° C and a humidity of 65% and left standing for 30 minutes.

【0036】(5)電解液の染み込み速度 温度24℃、湿度65%の環境で、水平に静置した不織
布に10μlの電解液(30重量%の水酸化カリウム水
溶液)を滴下したとき、電解液が不織布に全て染み込む
までの時間を計測した。 (6)電解液保液率 30重量%の水酸化カリウム水溶液に30分間サンプル
を浸漬し、24℃、湿度65%の空気中に10分間吊り
干しした後の重量変化百分率を測定した。
(5) Permeation rate of the electrolytic solution When 10 μl of the electrolytic solution (30% by weight potassium hydroxide aqueous solution) was dropped onto a non-woven fabric that was left horizontally in an environment of a temperature of 24 ° C. and a humidity of 65%, the electrolytic solution The time it took for the fabric to soak into the nonwoven fabric was measured. (6) Electrolyte solution retention rate The sample was immersed in a potassium hydroxide aqueous solution of 30% by weight for 30 minutes, and the sample was hung in air at 24 ° C and a humidity of 65% for 10 minutes, and the weight change percentage was measured.

【0037】(7)通気度 JIS L1096−1979に従い、株式会社東洋精
機製作所製の通気度試験機で測定した。 (8)耐アルカリ性 サンプル2gを、30重量%水酸化カリウム水溶液に1
00℃で1時間浸漬し、重量減少を測定した。
(7) Air Permeability According to JIS L1096-1979, the air permeability was measured by a gas permeability tester manufactured by Toyo Seiki Seisakusho. (8) Alkali resistance 2 g of a sample was added to a 30% by weight aqueous potassium hydroxide solution.
It was immersed at 00 ° C. for 1 hour, and the weight loss was measured.

【0038】参考例1 芯成分がポリプロピレンで鞘成分がポリエチレンであ
り、芯鞘の断面比率が1:1.25である1.5デニー
ルの繊維70%と、融点が132℃である綿状のポリエ
チレン繊維30%からなる湿式法で製造した不織布(目
付け53g/m2、厚み153μm、通気度40cm3
cm2/sec)の電解液の染み込み速度、保液率、引
っ張り破断強度、ESCA測定、XRF測定を行った。
結果を表−1に示す。
Reference Example 1 70% of 1.5 denier fiber having a core component of polypropylene and a sheath component of polyethylene, a core-sheath cross-section ratio of 1: 1.25, and a cotton-like material having a melting point of 132 ° C. Non-woven fabric made of 30% polyethylene fibers by a wet method (Basis weight 53 g / m 2 , thickness 153 μm, air permeability 40 cm 3 /
electrolyte penetration rate of cm 2 / sec), Hoekiritsu, tensile breaking strength, ESCA measurements were performed XRF measurement.
The results are shown in Table 1.

【0039】実施例1 参考例1の不織布をフッ素に耐性のある容器に入れ、容
器内を真空排気後、容器内にフッ素2.6容量%、酸素
73.7容量%、窒素23.7容量%からなる混合ガス
を導入し、長尺の不織布を連続的に処理した。反応終了
後、真空排気の後、窒素で復圧して取り出したサンプル
を、脱塩水にて連続的に洗浄し、乾燥させた。
Example 1 The non-woven fabric of Reference Example 1 was placed in a fluorine-resistant container, the inside of the container was evacuated, and then 2.6% by volume of fluorine, 73.7% by volume of oxygen, and 23.7% by volume of nitrogen were placed in the container. % Of mixed gas was introduced to continuously process a long nonwoven fabric. After the completion of the reaction, the sample taken out after vacuum evacuation and nitrogen pressure restoration was continuously washed with demineralized water and dried.

【0040】得られた不織布の電解液の染み込み速度、
保液率、引っ張り破断強度、ESCA測定、XRF測定
を行った。結果を表−1に示す。フッ素と酸素が導入さ
れ比較例1に比べ電解液の染み込み速度、保液率とも向
上している。得られた不織布の目付け、厚み、通気度は
処理前と変化はなかった。
The impregnation rate of the obtained non-woven fabric with the electrolytic solution,
Liquid retention, tensile break strength, ESCA measurement, and XRF measurement were performed. The results are shown in Table 1. Since fluorine and oxygen were introduced, both the impregnation rate of the electrolytic solution and the liquid retention rate were improved as compared with Comparative Example 1. The unit weight, thickness, and air permeability of the obtained non-woven fabric were the same as those before the treatment.

【0041】実施例2 実施例1で得られた不織布に、0.5重量%のポリオキ
シエチレンノニルフェニルエーテル水溶液(界面活性
剤:HLB15.5)を塗布し、乾燥させた。得られた
不織布の電解液の染み込み速度、吸液高さ、保液率およ
び引っ張り破断強度、ESCA測定、XRF測定を行っ
た。結果を表−1に示す。フッ素、酸素が導入されてい
ない比較例1と比べて、電解液の染み込み速度、吸液高
さが向上している。
Example 2 0.5% by weight of polyoxyethylene nonylphenyl ether aqueous solution (surfactant: HLB15.5) was applied to the nonwoven fabric obtained in Example 1 and dried. The impregnated rate of the electrolytic solution of the obtained nonwoven fabric, the liquid absorption height, the liquid retention rate and the tensile rupture strength, ESCA measurement, and XRF measurement were performed. The results are shown in Table 1. Compared with Comparative Example 1 in which fluorine and oxygen were not introduced, the impregnation rate of the electrolytic solution and the height of the liquid absorption were improved.

【0042】比較例1 参考例1の不織布に、実施例2と同様の界面活性剤溶液
を実施例2と同様な方法で塗布した。得られた不織布の
電解液の染み込み速度、保液率、引っ張り破断強度、E
SCA測定、XRF測定を行った。結果を表−1に示
す。
Comparative Example 1 The same surfactant solution as in Example 2 was applied to the nonwoven fabric of Reference Example 1 in the same manner as in Example 2. Permeation rate of electrolytic solution of the obtained nonwoven fabric, liquid retention rate, tensile breaking strength, E
SCA measurement and XRF measurement were performed. The results are shown in Table 1.

【0043】参考例2 芯成分がポリプロピレンで鞘成分がポリエチレンであ
り、芯鞘の比率が1:125である1.5デニールの繊
維72%と、偏心した芯成分がポリプロピレンで鞘の主
成分がポリエチレンである(サイドバイサイド型)3デ
ニールの繊維8%と、融点が125℃である綿状のポリ
エチレン繊維20%からなる湿式法で製造した不織布
(目付け59g/m2、厚み250μm、通気度90c
3/cm2/sec)の電解液の染み込み速度、保液
率、引っ張り破断強度、ESCA測定、XRF測定を行
った。結果を表−1に示す。
Reference Example 2 72% of 1.5 denier fiber having a core component of polypropylene and a sheath component of polyethylene and a core-sheath ratio of 1: 125, and an eccentric core component of polypropylene and a main component of the sheath. Nonwoven fabric manufactured by a wet method consisting of 8% of polyethylene (side-by-side type) 3 denier fiber and 20% of cotton-like polyethylene fiber having a melting point of 125 ° C. (Basis weight 59 g / m 2 , thickness 250 μm, air permeability 90 c
(m 3 / cm 2 / sec) Electrolyte soak rate, liquid retention rate, tensile rupture strength, ESCA measurement, and XRF measurement were performed. The results are shown in Table 1.

【0044】実施例3 参考例2の不織布を実施例1と同様の方法で処理を行っ
た。得られた不織布の電解液の染み込み速度と保液率、
引っ張り破断強度、ESCA測定、XRF測定を行っ
た。結果を表−1に示す。
Example 3 The nonwoven fabric of Reference Example 2 was treated in the same manner as in Example 1. Permeation rate and liquid retention rate of the obtained nonwoven fabric electrolyte,
Tensile breaking strength, ESCA measurement, and XRF measurement were performed. The results are shown in Table 1.

【0045】参考例3 芯成分がポリプロピレンで鞘成分がポリエチレンであ
り、芯鞘の比率が1:1である0.9デニールの繊維4
0%と1.5デニールのポリプロピレン繊維40%と綿
状のポリエチレン繊維20%からなる不織布(目付け6
0g/m2、厚み160μm、通気度28cm3/cm2
/sec)の電解液の染み込み速度、保液率、引っ張り
破断強度、ESCA測定、XRF測定を行った。結果を
表−1に示す。
Reference Example 3 0.9 denier fiber 4 in which the core component is polypropylene and the sheath component is polyethylene, and the ratio of the core and the sheath is 1: 1.
Nonwoven fabric consisting of 0% and 1.5% denier polypropylene fiber 40% and cotton-like polyethylene fiber 20% (Basis weight 6
0 g / m 2 , thickness 160 μm, air permeability 28 cm 3 / cm 2
/ Sec) permeation rate of electrolyte solution, liquid retention rate, tensile rupture strength, ESCA measurement, and XRF measurement. The results are shown in Table 1.

【0046】実施例4 参考例3の不織布を実施例1と同様の方法で処理を行っ
た。得られた不織布の電解液の吸液高さ、保液率、引っ
張り破断強度、ESCA測定、XRF測定を行った。結
果を表−1に示す。
Example 4 The nonwoven fabric of Reference Example 3 was treated in the same manner as in Example 1. The liquid absorption height, liquid retention, tensile break strength, ESCA measurement, and XRF measurement of the obtained nonwoven fabric were performed. The results are shown in Table 1.

【0047】参考例4 芯成分がポリプロピレンで鞘成分がポリエチレンであ
り、芯鞘の比率が1:1である0.9デニールの繊維5
0%と1.5デニールのポリプロピレン繊維50%から
なる不織布(目付け58g/m2、厚み249μm、通
気度50cm3/cm2/sec)の電解液の染み込み速
度、保液率、引っ張り破断強度、ESCA測定、XRF
測定を行った。結果を表−1に示す。
Reference Example 4 Fiber having a core component of polypropylene, a sheath component of polyethylene, and a core-sheath ratio of 1: 1 having a denier of 0.9 5
A non-woven fabric composed of 0% and 50% polypropylene fiber of 1.5 denier (area weight 58 g / m 2 , thickness 249 μm, air permeability 50 cm 3 / cm 2 / sec), impregnation rate of electrolyte, liquid retention rate, tensile breaking strength, ESCA measurement, XRF
A measurement was made. The results are shown in Table 1.

【0048】実施例5 参考例4の不織布を実施例1と同様の方法で処理を行っ
た。得られた不織布の電解液の吸液高さ、保液率、引っ
張り破断強度、ESCA測定、XRF測定を行った。結
果を表−1に示す。
Example 5 The nonwoven fabric of Reference Example 4 was treated in the same manner as in Example 1. The liquid absorption height, liquid retention, tensile break strength, ESCA measurement, and XRF measurement of the obtained nonwoven fabric were performed. The results are shown in Table 1.

【0049】比較例2 ポリプロピレン繊維からなり、メルトブロー法によって
製造した不織布(目付け50g/m2、厚み180μ
m、通気度14cm3/cm2/sec)を実施例1と同
様の方法で処理した。得られた不織布の電解液の染み込
み速度、保液率、引っ張り破断強度、ESCA測定、X
RF測定を行った。結果を表−1に示す。実施例1や3
に比べて、フッ素や酸素の導入量が少なく、電解液の染
み込み速度が小さい。
Comparative Example 2 A non-woven fabric made of polypropylene fiber and manufactured by a melt-blowing method (unit weight: 50 g / m 2 , thickness: 180 μm).
m, air permeability 14 cm 3 / cm 2 / sec) was treated in the same manner as in Example 1. Permeation rate of electrolyte of the obtained non-woven fabric, liquid retention rate, tensile breaking strength, ESCA measurement, X
RF measurement was performed. The results are shown in Table 1. Examples 1 and 3
Compared with, the introduction amount of fluorine and oxygen is small and the impregnation rate of the electrolytic solution is low.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 N.D.は測定限界以下であることを示す。 測定不能は、フッ素の元素組成が0なので、算出できないことを示す。[Table 2] N. D. Indicates that the value is below the measurement limit. Unmeasurable means that the elemental composition of fluorine is 0, and therefore calculation cannot be performed.

【0052】[0052]

【発明の効果】本発明の不織布は、高電圧や高真空など
の特殊な装置を必要とせずに簡便なプロセスにより得る
ことができ、強度と親液性を兼ね備え、アルカリ二次電
池用バッテリーセパレータや濾過材など幅広い利用が可
能である。
EFFECT OF THE INVENTION The nonwoven fabric of the present invention can be obtained by a simple process without requiring special equipment such as high voltage and high vacuum, has both strength and lyophilicity, and is a battery separator for alkaline secondary batteries. It can be used in a wide range of applications such as filter media.

フロントページの続き (72)発明者 小原 秀彦 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 (72)発明者 大石 真里 静岡県清水市折戸4丁目2番23号Front page continued (72) Inventor Hidehiko Obara 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Corporation Yokohama Research Institute (72) Inventor Mari Oishi 4-22, Orido, Shimizu-shi, Shizuoka

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】芯成分がポリプロピレン、鞘成分がポリエ
チレンである芯鞘構造を有する繊維を含有する不織布で
あって、該不織布のESCAにて測定した炭素に対する
酸素の元素組成比(O/C)が0.01〜0.5、炭素
に対するフッ素の元素組成比(F/C)が0.01〜
0.5であり、蛍光X線分析にて測定したフッ素に対す
る酸素の元素組成比(O/F)が0.4〜10であること
を特徴とする不織布。
1. A non-woven fabric containing fibers having a core-sheath structure in which the core component is polypropylene and the sheath component is polyethylene, and the elemental composition ratio (O / C) of oxygen to carbon measured by ESCA of the non-woven fabric. Is 0.01 to 0.5, and the elemental composition ratio (F / C) of fluorine to carbon is 0.01 to 0.5.
A non-woven fabric having an elemental composition ratio of oxygen to fluorine (O / F) of 0.4 to 10 as measured by fluorescent X-ray analysis.
【請求項2】芯成分がポリプロピレン、鞘成分がポリエ
チレンである芯鞘構造を有する繊維及びポリオレフィン
の単一成分からなる繊維を含有する不織布であることを
特徴とする請求項1に記載の不織布。
2. The non-woven fabric according to claim 1, which is a non-woven fabric containing a fiber having a core-sheath structure in which the core component is polypropylene and the sheath component is polyethylene, and a fiber composed of a single component of polyolefin.
【請求項3】芯鞘構造を有する繊維の繊度が0.2〜6
デニールであり、不織布の厚みが50〜300μm、目
付けが20〜120g/m2、引っ張り破断強度が3〜
20kgf/2cm、通気度が5〜150cm3/cm2
/secであることを特徴とする請求項1または2に記
載の不織布。
3. A fiber having a core-sheath structure having a fineness of 0.2 to 6
Denier, the thickness of the nonwoven fabric is 50 to 300 μm, the basis weight is 20 to 120 g / m 2 , and the tensile breaking strength is 3 to
20kgf / 2cm, the air permeability 5~150cm 3 / cm 2
/ Sec, The non-woven fabric according to claim 1 or 2.
【請求項4】芯鞘構造を有する繊維の繊度が0.5〜4
デニールであり、不織布の厚みが100〜300μm、
目付けが30〜100g/m2、引っ張り破断強度が4
〜20kgf/2cm、通気度が10〜150cm3
cm2/secであることを特徴とする請求項3に記載
の不織布。
4. The fineness of the fiber having a core-sheath structure is 0.5 to 4.
Denier and the thickness of the non-woven fabric is 100 to 300 μm,
A basis weight of 30 to 100 g / m 2 and a tensile breaking strength of 4
〜20kgf / 2cm, Air permeability 10〜150cm 3 /
The non-woven fabric according to claim 3, wherein the non-woven fabric is cm 2 / sec.
【請求項5】芯成分がポリプロピレン、鞘成分がポリエ
チレンである芯鞘構造を有する繊維を含有する不織布
を、フッ素と酸素を含む混合ガスに接触させて表面処理
することを特徴とする請求項1ないし4いずれか一項に
記載の不織布の製造方法。
5. A non-woven fabric containing fibers having a core-sheath structure in which the core component is polypropylene and the sheath component is polyethylene is subjected to a surface treatment by contacting with a mixed gas containing fluorine and oxygen. 5. The method for manufacturing a nonwoven fabric according to any one of 4 to 4.
【請求項6】芯成分がポリプロピレン、鞘成分がポリエ
チレンである芯鞘構造を有する繊維を含有する不織布
を、フッ素と酸素を含む混合ガスに接触させた後、ノニ
オン系の界面活性剤を塗布することを特徴とする請求項
1ないし4いずれか一項に記載の不織布の製造方法。
6. A non-woven fabric containing fibers having a core-sheath structure in which the core component is polypropylene and the sheath component is polyethylene is brought into contact with a mixed gas containing fluorine and oxygen, and then a nonionic surfactant is applied. The method for manufacturing a nonwoven fabric according to any one of claims 1 to 4, wherein
【請求項7】請求項1ないし4いずれか一項に記載の不
織布を用いたアルカリ二次電池用セパレータ。
7. A separator for an alkaline secondary battery, which uses the nonwoven fabric according to any one of claims 1 to 4.
JP8133129A 1995-05-30 1996-05-28 Nonwoven cloth and its production Pending JPH0949158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8133129A JPH0949158A (en) 1995-05-30 1996-05-28 Nonwoven cloth and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13184295 1995-05-30
JP7-131842 1995-05-30
JP8133129A JPH0949158A (en) 1995-05-30 1996-05-28 Nonwoven cloth and its production

Publications (1)

Publication Number Publication Date
JPH0949158A true JPH0949158A (en) 1997-02-18

Family

ID=26466564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8133129A Pending JPH0949158A (en) 1995-05-30 1996-05-28 Nonwoven cloth and its production

Country Status (1)

Country Link
JP (1) JPH0949158A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227074A (en) * 2001-02-01 2002-08-14 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
JP2006156158A (en) * 2004-11-30 2006-06-15 Sony Corp Aa type alkaline battery
CN112779673A (en) * 2021-01-05 2021-05-11 武汉纺织大学 Multifunctional composite melt-blown non-woven fabric and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227074A (en) * 2001-02-01 2002-08-14 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
JP2006156158A (en) * 2004-11-30 2006-06-15 Sony Corp Aa type alkaline battery
JP4514588B2 (en) * 2004-11-30 2010-07-28 ソニー株式会社 AA alkaline batteries
CN112779673A (en) * 2021-01-05 2021-05-11 武汉纺织大学 Multifunctional composite melt-blown non-woven fabric and preparation method thereof
CN112779673B (en) * 2021-01-05 2021-12-07 武汉纺织大学 Multifunctional composite melt-blown non-woven fabric and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1603176B1 (en) Production method of a separator for an alkali secondary battery
US6821680B2 (en) Battery separator, process for producing the same, and alkaline battery
EP0903794B1 (en) Battery separator and method for manufacturing the same, and battery
WO1998058111A1 (en) Non-woven fabric laminate
JPH08311765A (en) Polyolefin nonwoven fabric
JPH0949158A (en) Nonwoven cloth and its production
JP2006269384A (en) Separator for alkaline battery
EP1073131B1 (en) Alkaline battery separator and process for producing the same
JP3306412B2 (en) Surface treatment method for polyphenylene sulfide fiber or polysulfone fiber
EP0989619B1 (en) Alkaline battery separator
CN113725556B (en) Nonwoven fabric and battery separator
JP4367923B2 (en) Separator material and manufacturing method thereof
GB2098636A (en) Separator for electrochemical energy-storage units and a process for its manufacture
JPH10101830A (en) Surface treatment of polyolefin-based resin molded form
JPH1064502A (en) Battery separator and battery
EP0743690A1 (en) Battery separator and method for its production
JPH11238496A (en) Battery separator, its manufacture, and battery
JPH1167182A (en) Separator for alkaline battery and manufacture thereof
JPH047548B2 (en)
JP2002198024A (en) Separator for cell
JP2002198026A (en) Separator for cell, and manufacturing method of the same
JPH06101323B2 (en) Battery separator
JP3395996B2 (en) Battery separator and manufacturing method thereof
JP2004296356A (en) Separator for battery and battery
JP2000106162A (en) Separator for alkaline battery and manufacture of the separator