JPH0541852B2 - - Google Patents

Info

Publication number
JPH0541852B2
JPH0541852B2 JP61292550A JP29255086A JPH0541852B2 JP H0541852 B2 JPH0541852 B2 JP H0541852B2 JP 61292550 A JP61292550 A JP 61292550A JP 29255086 A JP29255086 A JP 29255086A JP H0541852 B2 JPH0541852 B2 JP H0541852B2
Authority
JP
Japan
Prior art keywords
output shaft
friction wheel
eccentric cam
gear
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61292550A
Other languages
Japanese (ja)
Other versions
JPS63145851A (en
Inventor
Kikuzo Takamya
Yoshitaka Tamura
Kyobumi Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Cycle Co Ltd
Original Assignee
Bridgestone Cycle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Cycle Co Ltd filed Critical Bridgestone Cycle Co Ltd
Priority to JP61292550A priority Critical patent/JPS63145851A/en
Publication of JPS63145851A publication Critical patent/JPS63145851A/en
Publication of JPH0541852B2 publication Critical patent/JPH0541852B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Friction Gearing (AREA)
  • Structure Of Transmissions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、産業機械および搬送機器等に装備す
るのに適した汎用の無段変速装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a general-purpose continuously variable transmission device suitable for equipping industrial machinery, conveyance equipment, and the like.

(従来の技術) 有段の変速装置は、その段階的変速時にシヨツ
クが発生し、また常に最適な出力回転が得られな
いという問題点がある。
(Prior Art) Stepped transmissions have problems in that shocks occur during stepwise shifting, and optimum output rotation cannot always be obtained.

無段変速装置は、このような問題点を解消する
ものであるが、従来の機械式無段変速装置として
は、摩擦車式無段変速機が多く実用化されてい
る。
Continuously variable transmissions are intended to solve these problems, but many conventional mechanical continuously variable transmissions include friction wheel type continuously variable transmissions.

一例としてあげれば実公昭49−29168号公報に開
示されたものがある。
One example is the one disclosed in Japanese Utility Model Publication No. 49-29168.

(発明が解決しようとする問題点) 上述した従来の摩擦車式無段変速装置は、主に
円錐車の摩擦伝動接点の回転半径を無段階に変え
ることによつて無段の変速伝動を行うものであ
る。しかしながら円錐車の摩擦伝動接点は、ヘル
ツ応力によつてそのピツチラインに相当する接触
軌道が帯状となるから、その接触軌道上の径の大
きい側と小さい側において、一方に正、一方に負
のすべりを発生する結果、これが内部摩擦損失と
なつて伝動効率を低下させるという問題点があ
る。また変速比が最高、最低の時は、駆動摩擦車
および従動摩擦車に対する摩擦伝動接点のピツチ
ライン径の比が1:2〜1:4というように大き
くなるため、前記した正、負のすべりが急増し、
いわゆるトツプやローの伝動時において伝動効率
が著しく低下するという問題点があつた。
(Problems to be Solved by the Invention) The conventional friction wheel type continuously variable transmission described above performs continuously variable speed transmission mainly by steplessly changing the rotation radius of the friction transmission contacts of the conical wheel. It is something. However, in the friction transmission contact of a conical wheel, the contact trajectory corresponding to the pitch line becomes band-shaped due to Hertzian stress, so there is a positive slip on one side and a negative slip on the other on the large diameter side and the small diameter side on the contact trajectory. As a result, there is a problem in that this results in internal friction loss and reduces transmission efficiency. Furthermore, when the gear ratio is the highest or lowest, the ratio of the pitch line diameter of the friction transmission contact to the driving friction wheel and the driven friction wheel becomes large, such as 1:2 to 1:4, so that the positive and negative slip mentioned above increases. rapidly increasing,
There was a problem in that the transmission efficiency was significantly reduced during so-called top and low transmission.

(問題点を解決するための手段) 上述の問題点を解決するため本発明において
は、入力軸と一体的に形成した中空円筒状の駆動
回転体にこれと共に回転する駆動摩擦車を設け、
前記入力軸と同心に出力軸を設け、この出力軸に
対して偏心した内側偏心カムを出力軸に回転自在
に嵌装すると共に、ケース蓋に固定して設け、内
側偏心カムに対して偏心した外側偏心カムを内側
偏心カムに嵌装し、この外側偏心カムを回動させ
ることにより外側偏心カムに嵌装した従動回転体
を出力軸に対して偏心量調整自在にし、この従動
回転体と一体的に設けた従動摩擦車を前記駆動摩
擦車に圧接係合させ、この従動摩擦車と一体的に
形成した従動回転体に内歯歯車を設け、前記出力
軸と同心の2個の内歯歯車をこの出力軸に対して
回転自在に設け、この一方の内歯歯車と前記従動
回転体と一体の内歯歯車を中間伝動歯車を介して
噛合連結し、前記駆動回転体を遊星キヤリヤとし
て、この遊星キヤリヤに枢支した遊星歯車を前記
他方の内歯歯車に噛合させると共に、前記出力軸
と一体に形成した太陽歯車に噛合させて無段変速
装置を構成する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a hollow cylindrical drive rotary body formed integrally with the input shaft, and a drive friction wheel that rotates therewith.
An output shaft is provided concentrically with the input shaft, and an inner eccentric cam that is eccentric with respect to the output shaft is rotatably fitted on the output shaft, and is fixed to the case lid and is eccentric with respect to the inner eccentric cam. The outer eccentric cam is fitted to the inner eccentric cam, and by rotating this outer eccentric cam, the amount of eccentricity of the driven rotor fitted to the outer eccentric cam can be freely adjusted with respect to the output shaft, and the driven rotor is integrated with the driven rotor. A driven friction wheel provided on the drive friction wheel is pressed into engagement with the driving friction wheel, an internal gear is provided on a driven rotating body integrally formed with the driven friction wheel, and two internal gears are provided concentrically with the output shaft. is provided rotatably with respect to the output shaft, one of the internal gears and the internal gear integral with the driven rotating body are meshed and connected via an intermediate transmission gear, and the driving rotating body is used as a planetary carrier. A continuously variable transmission is constructed by meshing a planetary gear pivotally supported by a planetary carrier with the other internal gear and meshing with a sun gear formed integrally with the output shaft.

(作用) 上述のように本発明装置は摩擦伝動用に円錐車
を使用せず、入力軸と一体的に形成した駆動摩擦
車と、出力軸に対して偏心量調整自在に設けた従
動摩擦車とを圧接係合によつて直接接触するよう
にし、特にトツプの変速状態においては駆動摩擦
車と従動摩擦車が同心状態で接合するようにした
から、この場合両摩擦車は全周において圧接接合
する結果、すべりのない100%近くの極めて高い
伝動効率を得ることができる。
(Function) As described above, the device of the present invention does not use a conical wheel for friction transmission, but instead uses a driving friction wheel formed integrally with the input shaft and a driven friction wheel provided with an adjustable amount of eccentricity with respect to the output shaft. The driving friction wheel and the driven friction wheel are brought into direct contact by pressure engagement, and especially in the top gear shifting state, the driving friction wheel and the driven friction wheel are concentrically connected. As a result, extremely high transmission efficiency of nearly 100% with no slippage can be achieved.

また駆動摩擦車に対して従動摩擦車が偏心して
両摩擦車が部分的に接合するトツプ以外の変速状
態になつても両摩擦車における摩擦伝動接点のピ
ツチライン径の比は1:2より近接したものとな
るから、摩擦伝動接触線が前記のピツチライン上
にかなり長く形成されると共に、ピツチラインの
両側に存在する正、負のすべり帯域も従来のもの
より狭くなる結果、トツプ以外の変速域において
もかなり高い伝動効率を得ることができる。
In addition, even if the driven friction wheel is eccentric with respect to the driving friction wheel and the shifting conditions are other than the top where both friction wheels are partially connected, the ratio of the pitch line diameters of the friction transmission contacts of both friction wheels remains closer than 1:2. As a result, the friction transmission contact line is formed quite long on the pitch line, and the positive and negative slip bands on both sides of the pitch line are also narrower than in the conventional case. Considerably high transmission efficiency can be obtained.

(実施例) 以下、第1図〜第8図について本発明の一実施
例を説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 8.

図中1は中空円筒状のケース本体、2はケース
本体1と一体に形成したベース、3はケース本体
1の入力側にボルト4により接続した入力側ケー
ス蓋、5はケース本体1の出力側にボルト4によ
り接続した出力側ケース蓋、6はケース本体1の
上部に設けたオイルキヤツプ、7はケース本体1
の底部に設けた排油栓である。
In the figure, 1 is a hollow cylindrical case body, 2 is a base formed integrally with the case body 1, 3 is an input side case lid connected to the input side of the case body 1 with a bolt 4, and 5 is the output side of the case body 1. The output side case lid is connected by bolt 4 to
This is an oil drain plug installed at the bottom of the tank.

本実施例においては、入力側ケース蓋3のボス
部3aを貫通する入力軸8を軸受9,10を介し
て回転自在に設け、この入力軸8の内側端部には
円形凹陥部8aを設けると共に、その外周部に接
続して中空円筒状の駆動回転体11を一体的に形
成する。12はボス部3aの外側にボルト13に
より取り付けた軸受押え、14はその内周部に設
けたラビリンスである。
In this embodiment, an input shaft 8 passing through the boss portion 3a of the input case lid 3 is rotatably provided via bearings 9 and 10, and a circular recess 8a is provided at the inner end of the input shaft 8. At the same time, a hollow cylindrical driving rotary body 11 is integrally formed by connecting to the outer circumference thereof. Reference numeral 12 designates a bearing retainer attached to the outside of the boss portion 3a with bolts 13, and reference numeral 14 designates a labyrinth provided on the inner circumference thereof.

駆動回転体11は中空円筒形の胴部11aと、
入力側端板部11bと、出力側の内側フランジ部
11cとによつて形成されており、それぞれボル
ト15によつて結合されている。16は出力側の
内側フランジ部11cと出力側ケース蓋5との間
に設けた軸受である。また駆動回転体11の胴部
11aの内周に駆動摩擦車17を駆動回転体11
と共に回転するように設ける。18は駆動回転体
11と駆動摩擦車17との間に設けたすべりキー
である。駆動摩擦車17は2個のリング部材17
aを対向させると共に、その間に複数個(本実施
例では4個)のばね19を介挿して構成されてい
る。
The drive rotor 11 has a hollow cylindrical body 11a,
It is formed by an input side end plate portion 11b and an output side inner flange portion 11c, which are connected to each other by bolts 15. Reference numeral 16 denotes a bearing provided between the output side inner flange portion 11c and the output side case lid 5. Further, a driving friction wheel 17 is installed on the inner periphery of the body 11a of the driving rotating body 11.
provided so that it rotates with the 18 is a sliding key provided between the driving rotary body 11 and the driving friction wheel 17. The driving friction wheel 17 has two ring members 17.
a are opposed to each other, and a plurality of (four in this embodiment) springs 19 are inserted between them.

また入力軸8と同心の出力軸20を出力側ケー
ス蓋5を貫通すると共に、その内側端部を入力軸
8の円形凹陥部8a内に軸受21を介して回転自
在に挿入する。22は出力軸20がケース蓋5を
貫通する部分に設けた軸受、23はボルト24,
25によりケース蓋5に取り付けた軸受押え、2
6はの内周部に設けたラビリンスである。
Further, an output shaft 20 coaxial with the input shaft 8 passes through the output case lid 5, and its inner end is rotatably inserted into the circular recess 8a of the input shaft 8 via a bearing 21. 22 is a bearing provided at the part where the output shaft 20 passes through the case lid 5; 23 is a bolt 24;
A bearing holder attached to the case lid 5 by 25, 2
6 is a labyrinth provided on the inner periphery.

また出力軸20の入力側に太陽歯車27を一体
に形成すると共に、出力軸20と同心の2個の内
歯歯車28,29を背中合わせにして一体に形成
した差動内歯歯車30を軸受31を介して出力軸
20に回転自在に設ける。
In addition, a sun gear 27 is integrally formed on the input side of the output shaft 20, and a differential internal gear 30, which is formed integrally with two internal gears 28 and 29 concentric with the output shaft 20 back to back, is attached to a bearing 31. It is rotatably provided on the output shaft 20 via.

また第4図および第5図に示すように、出力軸
20の中心01に対してl1だけ偏心した内側偏心カ
ム32を出力軸20に対して回転自在に嵌装する
と共に、その外側端部を第1図に示すようにケー
ス蓋5内に嵌入してボルト25により固定する。
33は出力軸20と内側偏心カム32との間に介
装した軸受である。
Further, as shown in FIGS. 4 and 5, an inner eccentric cam 32 that is eccentric by l 1 with respect to the center 0 1 of the output shaft 20 is rotatably fitted to the output shaft 20, and its outer end The part is fitted into the case lid 5 as shown in FIG.
33 is a bearing interposed between the output shaft 20 and the inner eccentric cam 32.

また第4図および第5図に示すように、内側偏
心カム32の中心02に対してl2だけ偏心した外側
偏心カム34を内側偏心カム32に対して回転自
在に嵌装する。なお、この場合l1=l2とする。
Further, as shown in FIGS. 4 and 5, an outer eccentric cam 34 eccentric by l 2 with respect to the center 0 2 of the inner eccentric cam 32 is rotatably fitted to the inner eccentric cam 32. In this case, l 1 =l 2 .

また外側偏心カム34の出力側に中空円筒部3
5を一体に形成し、この中空円筒部35の出力側
端面に、内側偏心カム32を中心軸とするウオー
ムホイール36をボルト37により固定して設
け、このウオームホイール36と噛合するウオー
ム38と一体の軸38aを、第2図に示すように
ケース蓋5に対して回転自在に設ける。39はブ
ツシユ、40は円筒状の止めねじ、41はロツク
ナツト、42は軸38aに固着したハンドルであ
る。
In addition, a hollow cylindrical portion 3 is provided on the output side of the outer eccentric cam 34.
A worm wheel 36 having the inner eccentric cam 32 as its central axis is fixed to the output side end surface of the hollow cylindrical portion 35 with a bolt 37, and a worm 38 that meshes with the worm wheel 36 is integrally formed with the worm wheel 36. A shaft 38a is provided rotatably with respect to the case lid 5 as shown in FIG. 39 is a bush, 40 is a cylindrical set screw, 41 is a lock nut, and 42 is a handle fixed to the shaft 38a.

また外側偏心カム34の外周に中空円筒状の従
動回転体43を軸受44を介して回転自在に設
け、この従動回転体43の胴部中央にVプーリ状
の従動摩擦車45を従動回転体43と一体に設
け、さらに従動回転体43の入力側端面に、前記
内歯歯車29と同様の内歯歯車46を従動回転体
43と同心にしてボルト47により固定して設け
る。なお48は外側偏心カム34の入力側端面に
ビス49によつて固定した軸受押え板である。
Further, a hollow cylindrical driven rotary body 43 is rotatably provided on the outer periphery of the outer eccentric cam 34 via a bearing 44, and a V-pulley-shaped driven friction wheel 45 is installed in the center of the body of the driven rotary body 43. Furthermore, an internal gear 46 similar to the internal gear 29 is provided concentrically with the driven rotating body 43 and fixed with a bolt 47 on the input side end face of the driven rotating body 43. Note that 48 is a bearing holding plate fixed to the input side end surface of the outer eccentric cam 34 with screws 49.

また第1図、第6図および第7図に示すよう
に、外側偏心カム34が内側偏心カム32の回り
に回動しても、常に内歯歯車46と噛合すると共
に、内歯歯車29とも噛合する中間伝動歯車50
を軸受51を介して内側偏心カム32に回転自在
に設ける。52はワツシヤ、53はカラーであ
る。
Further, as shown in FIGS. 1, 6, and 7, even when the outer eccentric cam 34 rotates around the inner eccentric cam 32, it always meshes with the internal gear 46 and also meshes with the internal gear 29. Intermediate transmission gear 50 meshing
is rotatably provided on the inner eccentric cam 32 via a bearing 51. 52 is a washer, and 53 is a color.

また第1図および第8図に示すように、駆動回
転体11の入力側端板部11bを遊星キヤリヤ5
4として、この遊星キヤリヤ54に複数個(本実
施例では4個)の遊星歯車55を軸56および軸
受57により回転自在に設け、これらの遊星歯車
55を前記内歯歯車28に内接噛合させると共
に、出力軸20と一体の太陽歯車27にそれぞれ
外接噛合させる。
Further, as shown in FIGS. 1 and 8, the input side end plate portion 11b of the drive rotor 11 is connected to the planetary carrier 5.
4, a plurality of (four in this embodiment) planetary gears 55 are rotatably provided on this planetary carrier 54 by a shaft 56 and a bearing 57, and these planetary gears 55 are internally meshed with the internal gear 28. At the same time, the output shaft 20 and the sun gear 27 integrated with each other are externally engaged with each other.

また第9図は本発明の変形例を示すもので、図
中前記実施例と同一の符号は同等のものを示す。
これは駆動摩擦車と従動摩擦車との構成を前記実
施例と逆にしたものである。
FIG. 9 shows a modified example of the present invention, and the same reference numerals as in the embodiment described above indicate equivalent parts.
In this embodiment, the structure of the driving friction wheel and the driven friction wheel is reversed from that of the previous embodiment.

すなわちこの場合は、断面形状が楔状のものを
リング状に形成した駆動摩擦車58を駆動回転体
11に固着し、従動摩擦車59は、従動回転体4
3を外包すると共に、この従動回転体43に対し
てキー60により軸方向に摺動自在に設けた2個
のリング59aをそれぞれ駆動摩擦車58を挾圧
するように配置して構成する。61はリング59
aを駆動摩擦車58に押し付けるためのコイルば
ねである。
That is, in this case, the drive friction wheel 58, which has a wedge-shaped cross section and is formed into a ring shape, is fixed to the drive rotor 11, and the driven friction wheel 59 is attached to the driven rotor 4.
3, and two rings 59a provided so as to be slidable in the axial direction with respect to the driven rotary body 43 using a key 60 are arranged so as to clamp the drive friction wheel 58, respectively. 61 is ring 59
This is a coil spring for pressing the drive friction wheel 58 against the drive friction wheel 58.

つぎに上述のように構成した本発明装置の作用
を、まず第1図〜第8図の実施例について説明す
る。第2図においてハンドル42を回転させる
と、ウオーム38、ウオームホイール36を介し
て外側偏心カム34がケース蓋5に固定した内側
偏心カム32に対して回動するため、入力軸8お
よび出力軸20に対する外側偏心カム34の偏心
量を自由に変化させることができる。第1,4,
6図は外側偏心カム34の出力軸20に対する偏
心量がゼロの場合を示すもので、この状態では駆
動摩擦車17と従動摩擦車45とが同心になるた
め、両摩擦車17,45は全周において接触し、
しかも駆動摩擦車17の両側のリング部材17a
がばね19の作用によりVプーリ状の従動摩擦車
45の溝の両側壁面に圧接しているため、駆動摩
擦車17が回転すれば従動摩擦車45もほとんど
すべることなく一体的に回転する。
Next, the operation of the apparatus of the present invention constructed as described above will be explained first with reference to the embodiments shown in FIGS. 1 to 8. In FIG. 2, when the handle 42 is rotated, the outer eccentric cam 34 rotates with respect to the inner eccentric cam 32 fixed to the case lid 5 via the worm 38 and the worm wheel 36, so that the input shaft 8 and the output shaft 20 rotate. The amount of eccentricity of the outer eccentric cam 34 relative to the outer eccentric cam 34 can be freely changed. 1st, 4th,
Figure 6 shows a case where the amount of eccentricity of the outer eccentric cam 34 with respect to the output shaft 20 is zero. In this state, the driving friction wheel 17 and the driven friction wheel 45 are concentric, so both friction wheels 17, 45 are completely contact in the circumference,
Moreover, the ring members 17a on both sides of the drive friction wheel 17
is in pressure contact with both side wall surfaces of the groove of the V-pulley-shaped driven friction wheel 45 by the action of the spring 19, so when the driving friction wheel 17 rotates, the driven friction wheel 45 also rotates integrally with almost no slippage.

したがつてこの状態で入力軸8が第4図の矢印
Aの方向に回転すれば、入力軸8と一体の駆動回
転体11、キー18を介して駆動摩擦車17も矢
印Aの方向に回転する。しかして上述したように
駆動摩擦車17が回転すれば、従動摩擦車45も
第4図の矢印Bの方向に回転する。また従動摩擦
車45が回転すれば、これと一体的に結合した内
歯歯車46が第6図の矢印Cの方向に回転し、内
歯歯車46と噛合する中間伝動歯車50、および
この中間伝動歯車50と噛合する内歯歯車29を
介して、この内歯歯車29と一体的に結合した差
動内歯歯車30も第8図の矢印Dの方向に回転す
る。したがつて差動内歯歯車30と一体の内歯歯
車28も矢印Dの方向に回転する。また前述した
ように入力軸8と一体の遊星キヤリヤ54も矢印
Dの方向に内歯歯車28と同速度で回転している
から、この遊星キヤリヤ54、軸56、軸受57
を介して、各遊星歯車55も、第8図の矢印Eの
方向に公転する。その結果、第8図に示すよう
に、これらの遊星歯車55と噛合する太陽歯車2
7も出力軸20と共に、入力軸8と一体的に回転
する。すなわちこの場合の入力軸8の回転と、出
力軸20の回転比は1:1である。この状態が本
無段変速装置の所謂トツプの変速状態である。
Therefore, in this state, if the input shaft 8 rotates in the direction of arrow A in FIG. do. When the driving friction wheel 17 rotates as described above, the driven friction wheel 45 also rotates in the direction of arrow B in FIG. 4. Further, when the driven friction wheel 45 rotates, the internal gear 46 integrally connected thereto rotates in the direction of arrow C in FIG. The differential internal gear 30 integrally connected to the internal gear 29 also rotates in the direction of arrow D in FIG. 8 via the internal gear 29 meshing with the gear 50. Therefore, the internal gear 28 integrated with the differential internal gear 30 also rotates in the direction of arrow D. Furthermore, as described above, the planetary carrier 54 integrated with the input shaft 8 also rotates in the direction of arrow D at the same speed as the internal gear 28, so the planetary carrier 54, shaft 56, bearing 57
, each planetary gear 55 also revolves in the direction of arrow E in FIG. As a result, as shown in FIG. 8, the sun gear 2 meshing with these planetary gears 55
7 also rotates together with the output shaft 20 and the input shaft 8. That is, in this case, the rotation ratio of the input shaft 8 and the output shaft 20 is 1:1. This state is the so-called top shift state of the continuously variable transmission.

つぎにこのトツプの変速状態より第2図のハン
ドル42を操作いて外側偏心カム34を約180゜回
動させると、外側偏心カム34が第3,5図の最
大偏心状態になるから、それに伴つて従動摩擦車
45も第3,5図に示すように駆動摩擦車17に
対して偏心する。このため駆動摩擦車17と従動
摩擦車45との接触部は、第3,5図に示すF点
付近のみになる。そしてこの状態で入力軸8を介
して駆動摩擦車17が第5図の矢印Gの方向に回
転すると、従動摩擦車45も矢印Hの方向に回転
するが、この場合両摩擦車17,45の摩擦伝動
点Fまでの回転半径に差が生ずる。すなわち第5
図において出力軸20および駆動摩擦車17の中
心を01とし、従動摩擦車45の中心を03とし、03
からF点までの半径をR1とし、01からF点まで
の半径をR2とすると、R1<R2となる。このため
この場合は、駆動摩擦車17に対して従動摩擦車
45は増速されて回転することになる。本実施例
の場合その増速比は1:1.35程度である。すなわ
ち入力軸8の回転1に対して0.35だけ増速するこ
とになる。
Next, when the outer eccentric cam 34 is rotated approximately 180 degrees by operating the handle 42 shown in FIG. 2 from this top gear shifting state, the outer eccentric cam 34 will be in the maximum eccentric state shown in FIGS. 3 and 5. Accordingly, the driven friction wheel 45 is also eccentric with respect to the driving friction wheel 17, as shown in FIGS. Therefore, the contact portion between the driving friction wheel 17 and the driven friction wheel 45 is only near point F shown in FIGS. 3 and 5. In this state, when the driving friction wheel 17 rotates in the direction of arrow G in FIG. 5 via the input shaft 8, the driven friction wheel 45 also rotates in the direction of arrow H. A difference occurs in the radius of rotation up to the friction transmission point F. That is, the fifth
In the figure, the center of the output shaft 20 and the driving friction wheel 17 is 0 1 , the center of the driven friction wheel 45 is 0 3 , and the center of the driven friction wheel 45 is 0 3 .
Let R 1 be the radius from 0 to point F, and R 2 be the radius from 0 1 to point F, then R 1 <R 2 . Therefore, in this case, the driven friction wheel 45 rotates at an increased speed with respect to the driving friction wheel 17. In this embodiment, the speed increasing ratio is about 1:1.35. In other words, the speed increases by 0.35 per rotation of the input shaft 8.

そして従動摩擦車45が増速回転すると、前述
したように歯車46,50,29を介して内歯歯
車28が第8図の矢印Iのように、入力軸8と一
体の遊星キヤリヤ54の速度より速い速度で回転
する。このため各遊星歯車55は、第8図におい
て矢印Eのように公転すると共に、矢印Jの方向
に自転するから、これらの遊星歯車55と噛合す
る太陽歯車27は減速されることになる。すなわ
ちこの遊星差動装置は、従動摩擦車45の増速率
を逆に出力軸20の減速率として増幅する。本実
施例におけるこの増幅倍数は約3.85であるから、
最低の変速状態(ロー)における出力軸20の回
転は、前記摩擦伝動部の増速率0.35の3.85倍、す
なわち、−0.35×3.85≒−1.35となる。そしてこの
場合遊星差動装置の内歯歯車28の回転が、1.35
であるから1.35−1.35=0であるから、出力軸2
0の回転はほぼゼロになる。
When the driven friction wheel 45 rotates at an increased speed, the internal gear 28 changes the speed of the planetary carrier 54 integrated with the input shaft 8 through the gears 46, 50, and 29 as indicated by the arrow I in FIG. Rotate at a faster speed. Therefore, each planetary gear 55 revolves in the direction of arrow E in FIG. 8 and also rotates in the direction of arrow J, so that the sun gear 27 meshing with these planetary gears 55 is decelerated. That is, this planetary differential device conversely amplifies the speed increase rate of the driven friction wheel 45 as a deceleration rate of the output shaft 20. Since this amplification factor in this example is about 3.85,
The rotation of the output shaft 20 in the lowest speed change state (low) is 3.85 times the speed increase rate of 0.35 of the friction transmission section, that is, −0.35×3.85≈−1.35. In this case, the rotation of the internal gear 28 of the planetary differential is 1.35
Therefore, 1.35−1.35=0, so output shaft 2
A rotation of 0 becomes almost zero.

そして第2図のハンドル42の操作量を前記し
たトツプとローとの中間の任意の操作量とすれ
ば、ローからトツプまでの間で無段の変速比が得
られることになる。
If the amount of operation of the handle 42 in FIG. 2 is set to an arbitrary amount of operation between the above-mentioned top and low, a stepless gear ratio can be obtained from low to top.

なお本装置は必要があれば、前記した増速率ま
たは増幅倍数を大きくすることによつて、入力軸
に対して出力軸を逆回転させることもできる。
Note that, if necessary, this device can also rotate the output shaft in the opposite direction with respect to the input shaft by increasing the speed increase rate or amplification factor described above.

また第9図に示す変形例の場合も作用は前記実
施例と同様であるから説明は省略する。
Also, in the case of the modified example shown in FIG. 9, the operation is similar to that of the previous embodiment, so the explanation will be omitted.

(発明の効果) 上述のように本発明装置は摩擦伝動用に円錐車
を使用せず、入力軸8と一体的に形成した駆動摩
擦車17と、出力軸20に対して偏心量調整自在
に設けた従動摩擦車45とを圧接係合によつて直
接接触するようにし、特にトツプの変速状態にお
いては駆動摩擦車17と従動摩擦車45が同心状
態で接合するようにしたから、この場合両摩擦車
17,45は全周において圧接接合する結果、す
べりのない100%近くの極めて高い伝動効率を得
ることができる。
(Effects of the Invention) As described above, the device of the present invention does not use a conical wheel for friction transmission, but uses a drive friction wheel 17 that is formed integrally with the input shaft 8, and the amount of eccentricity can be freely adjusted with respect to the output shaft 20. The provided driven friction wheel 17 and the driven friction wheel 45 are brought into direct contact by press-fitting engagement, and especially in the top gear shifting state, the driving friction wheel 17 and the driven friction wheel 45 are concentrically connected. As a result of the friction wheels 17 and 45 being pressure-welded around the entire circumference, extremely high transmission efficiency of nearly 100% without slipping can be obtained.

また駆動摩擦車17に対して従動摩擦車45が
偏心して、両摩擦車17,45が部分的に接合す
るトツプ以外の変速状態になつても、両摩擦車に
おける摩擦伝動接点Fのピツチライン径の比は
1:2より近接したものとなるから、摩擦伝動接
触線が前記のピツチライン上にかなり長く形成さ
れると共に、ピツチラインの両側に存在する正、
負のすべり帯域も従来のものより狭くなる結果、
トツプ以外の変速域においてもかなり高い伝動効
率を得ることができる。
Furthermore, even if the driven friction wheel 45 is eccentric with respect to the driving friction wheel 17 and the speed change state is other than the top where both friction wheels 17 and 45 are partially connected, the pitch line diameter of the friction transmission contact F of both friction wheels Since the ratio is closer than 1:2, the friction transmission contact line is formed quite long on the pitch line, and the positive and
As a result, the negative slip band is also narrower than the conventional one.
Considerably high transmission efficiency can be obtained even in shift ranges other than top.

特に本発明においては、ケース本体1の中心に
位置する出力軸20側に偏心カム機構を設けたか
ら、偏心カム機構をケース側に設けたものと比較
した場合、駆動摩擦車17と従動摩擦車45との
係合接点の回転半径を大きくすることができる。
このため本発明はその分伝動トルクを大きくする
ことができる。
In particular, in the present invention, since the eccentric cam mechanism is provided on the output shaft 20 side located at the center of the case body 1, when compared with a case where the eccentric cam mechanism is provided on the case side, the driving friction wheel 17 and the driven friction wheel 45 It is possible to increase the rotation radius of the engagement contact point with the
Therefore, the present invention can increase the transmission torque accordingly.

したがつて本発明によれば、構造が比較的簡単
で、変速幅が大きく、伝動トルクも大きい上に、
特にトツプ状態での伝動効率が極めて高い無段変
速装置を比較的安価に提供することができるとい
う効果が得られる。
Therefore, according to the present invention, the structure is relatively simple, the shift width is large, the transmission torque is large, and
Particularly, it is possible to provide a continuously variable transmission with extremely high transmission efficiency in the top state at a relatively low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の縦断側面図、第2図はそ
の一部を第1図の−断面で示す出力軸側より
見た背面図、第3図は第1図の偏心カムが偏心し
た状態を一部断面で示す側面図、第4図は第1図
の−線による部分断面図、第5図は第3図の
−線による部分断面図、第6図は第1図の
−断面図、第7図は第3図の−断面図、第
8図は第1図の−断面図、第9図は本発明装
置の変形例を一部断面で示す側面図である。 1……ケース本体、2……ベース、3……入力
側ケース蓋、5……出力側ケース蓋、8……入力
軸、11……駆動回転体、17……駆動摩擦車、
19……ばね、20……出力軸、27……太陽歯
車、28,29……内歯歯車、30……差動内歯
歯車、32……内側偏心カム、34……外側偏心
カム、36……ウオームホイール、38……ウオ
ーム、42……ハンドル、43……従動回転体、
45……従動摩擦車、46……内歯歯車、50…
…中間伝動歯車、54……遊星キヤリヤ、55…
…遊星歯車。
Fig. 1 is a longitudinal side view of the device of the present invention, Fig. 2 is a rear view of the device as seen from the output shaft side, a part of which is shown in cross-section in Fig. 1, and Fig. 3 is an eccentric cam shown in Fig. 1. 4 is a partial sectional view taken along the - line in FIG. 1, FIG. 5 is a partial sectional view taken along the - line in FIG. 3, and FIG. 6 is a partial sectional view taken along the - line in FIG. 1. 7 is a cross-sectional view taken from FIG. 3, FIG. 8 is a cross-sectional view taken from FIG. DESCRIPTION OF SYMBOLS 1... Case body, 2... Base, 3... Input side case lid, 5... Output side case lid, 8... Input shaft, 11... Drive rotating body, 17... Drive friction wheel,
19... Spring, 20... Output shaft, 27... Sun gear, 28, 29... Internal gear, 30... Differential internal gear, 32... Inner eccentric cam, 34... Outer eccentric cam, 36 ... Worm wheel, 38 ... Worm, 42 ... Handle, 43 ... Followed rotating body,
45... Driven friction wheel, 46... Internal gear, 50...
...Intermediate transmission gear, 54...Planetary carrier, 55...
...Planetary gear.

Claims (1)

【特許請求の範囲】[Claims] 1 入力軸8と一体的に形成した中空円筒状の駆
動回転体11にこれと共に回転する駆動摩擦車1
7を設け、前記入力軸8と同心に出力軸20を設
け、この出力軸20に対して偏心した内側偏心カ
ム32を出力軸20に回転自在に嵌装すると共
に、ケース蓋5に固定して設け、内側偏心カム3
2に対して偏心した外側偏心カム34を内側偏心
カム32に嵌装し、この外側偏心カム34を回動
させることにより外側偏心カム34に嵌装した従
動回転体43を出力軸20に対して偏心量調整自
在にし、この従動回転体43と一体的に設けた従
動摩擦車45を前記駆動摩擦車17に圧接係合さ
せ、この従動摩擦車45と一体的に形成した従動
回転体43に内歯歯車46を設け、前記出力軸2
0と同心の2個の内歯歯車28,29をこの出力
軸20に対して回転自在に設け、この一方の内歯
歯車29と前記従動回転体43と一体の内歯歯車
46を中間伝動歯車50を介して噛合連結し、前
記駆動回転体11を遊星キヤリヤ54として、こ
の遊星キヤリヤ54に枢支した遊星歯車55を前
記他方の内歯歯車28に噛合させると共に、前記
出力軸20と一体に形成した太陽歯車27に噛合
させたことを特徴とする無段変速装置。
1 A drive friction wheel 1 is attached to a hollow cylindrical drive rotor 11 integrally formed with the input shaft 8 and rotates therewith.
7, an output shaft 20 is provided concentrically with the input shaft 8, and an inner eccentric cam 32 eccentric to the output shaft 20 is rotatably fitted to the output shaft 20 and fixed to the case lid 5. Provided with inner eccentric cam 3
The outer eccentric cam 34 that is eccentric with respect to the outer eccentric cam 34 is fitted onto the inner eccentric cam 32, and by rotating the outer eccentric cam 34, the driven rotating body 43 fitted on the outer eccentric cam 34 is moved relative to the output shaft 20. A driven friction wheel 45, which can freely adjust the amount of eccentricity and is integrally formed with the driven rotary body 43, is pressed into engagement with the drive friction wheel 17. A gear 46 is provided, and the output shaft 2
Two internal gears 28 and 29 concentric with the output shaft 20 are provided rotatably with respect to the output shaft 20, and one of the internal gears 29 and the internal gear 46 which is integrated with the driven rotary body 43 is an intermediate transmission gear. 50, the driving rotary body 11 is used as a planetary carrier 54, and the planetary gear 55 pivotally supported by the planetary carrier 54 is meshed with the other internal gear 28, and integrally with the output shaft 20. A continuously variable transmission characterized by meshing with a formed sun gear 27.
JP61292550A 1986-12-10 1986-12-10 Continuously variable transmission Granted JPS63145851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61292550A JPS63145851A (en) 1986-12-10 1986-12-10 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61292550A JPS63145851A (en) 1986-12-10 1986-12-10 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS63145851A JPS63145851A (en) 1988-06-17
JPH0541852B2 true JPH0541852B2 (en) 1993-06-24

Family

ID=17783218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292550A Granted JPS63145851A (en) 1986-12-10 1986-12-10 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS63145851A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454766A (en) * 1994-06-24 1995-10-03 Speed Control, Inc. Continuously variable transmission having a double eccentric shaft and a worm gear adjusting mechanism
US5964677A (en) * 1998-07-02 1999-10-12 Speed Control, Inc. Shift mechanisms, lock assemblies and methods of adjusting a gear ratio of a transmission
US6354976B1 (en) 1998-07-02 2002-03-12 Speed Control, Inc. Transmissions, transmission lock assemblies, methods of adjusting a gear ratio of a transmission, and methods of forming a transmission shift mechanism

Also Published As

Publication number Publication date
JPS63145851A (en) 1988-06-17

Similar Documents

Publication Publication Date Title
GB996933A (en) Improvements in and relating to infinitely variable conical disk transmissions
FR2740523A1 (en) DEVICE FOR CONVERTING ROTATION MOVEMENT IN AXIAL DISPLACEMENT
US5372555A (en) Continuously variable traction roller transmission
JPH0541852B2 (en)
JPH0137623B2 (en)
JPH0248780B2 (en) MUDANHENSOKUSOCHI
US5163884A (en) Friction-type stepless speed change device
US4112788A (en) Torque transmission device
JPH038418B2 (en)
JPH0248781B2 (en) MUDANHENSOKUSOCHI
JPH06174033A (en) Toroidal type continuously variable transmission
US4408502A (en) Traction roller transmission
JPH0541851B2 (en)
JPH039342B2 (en)
JPH038419B2 (en)
JPH0541850B2 (en)
JPH0248782B2 (en) MUDANHENSOKUSOCHI
US6960151B2 (en) Toroidal continuously variable transmission
JPH0634005A (en) Planetary roller type power transmitting device
US5045037A (en) Friction stepless speed change device
JPH038420B2 (en)
JPH0422118Y2 (en)
JPH1089431A (en) Friction transmission gear
JPH0567820B2 (en)
JPH0323780B2 (en)