JPH0534786B2 - - Google Patents

Info

Publication number
JPH0534786B2
JPH0534786B2 JP56154318A JP15431881A JPH0534786B2 JP H0534786 B2 JPH0534786 B2 JP H0534786B2 JP 56154318 A JP56154318 A JP 56154318A JP 15431881 A JP15431881 A JP 15431881A JP H0534786 B2 JPH0534786 B2 JP H0534786B2
Authority
JP
Japan
Prior art keywords
cobalt
negative electrode
capacity
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56154318A
Other languages
Japanese (ja)
Other versions
JPS5854570A (en
Inventor
Isao Matsumoto
Minoru Yamaga
Hideo Kaiya
Mamoru Ishitobi
Shingo Tsuda
Yoshuki Umeo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56154318A priority Critical patent/JPS5854570A/en
Publication of JPS5854570A publication Critical patent/JPS5854570A/en
Publication of JPH0534786B2 publication Critical patent/JPH0534786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、ニツケル正極を用いた密閉形アルカ
リ蓄電池、とくにニツケル−カドミウム蓄電池の
構成法に関するもので、負極に対する特別な操作
を施さずに、密閉条件を満足する電池を提供する
ことを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for constructing a sealed alkaline storage battery using a nickel positive electrode, particularly a nickel-cadmium storage battery. The purpose is to provide.

最近、各種機器のコードレス化が進み、比較的
高出力を要する場合の電源や高信頼性を要求され
る防災用電源等にアルカリ蓄電池、とくに円筒密
閉形ニツケル・カドミウミム蓄電池が広く使用さ
れている。現実にアルカリ蓄電池のうち約8割が
この密閉形蓄電池が占めるようになつてきた。工
業的には、円筒密閉形蓄電池のほとんどが、正極
にニツケル極、負極にカドミウム極、電解液にア
ルカリ水溶液、セパレータにポリアミド系もしく
はポリプロピレン系の不織布を使用している。そ
して正極としては、大半が焼結式ニツケル正極、
負極としては焼結式カドミウム負極もしくは非焼
結式、とくにペースト式負極が使用され、密閉電
池の構成は、負極の容量を正極容量よりも大きく
し、過充電時に正極から発生する酸素ガスを負極
が吸収除去する、いわゆるノイマン方式を採用し
ている。
Recently, various types of equipment have become cordless, and alkaline storage batteries, especially sealed cylindrical nickel-cadmium storage batteries, are widely used as power sources for situations that require relatively high output, and for disaster prevention power sources that require high reliability. In reality, sealed storage batteries now account for approximately 80% of all alkaline storage batteries. Industrially, most sealed cylindrical storage batteries use a nickel electrode for the positive electrode, a cadmium electrode for the negative electrode, an alkaline aqueous solution for the electrolyte, and a polyamide-based or polypropylene-based nonwoven fabric for the separator. Most of the positive electrodes are sintered nickel positive electrodes,
As the negative electrode, a sintered cadmium negative electrode or a non-sintered type, especially a paste type negative electrode, is used.The configuration of a sealed battery is such that the capacity of the negative electrode is larger than that of the positive electrode, and the oxygen gas generated from the positive electrode during overcharging is transferred to the negative electrode. The so-called Neumann method is adopted, in which the particles are absorbed and removed.

現在工業的に生産されている円筒密閉形ニツケ
ル・カドミウム蓄電池においては、このノイマン
方式の構成を満たす正極と負極の容量バランスの
他に、正極容量規則の電池構成にする必要から、
極板群構成時点において負極を一部充電し、高率
放電の場合においても、正極で電池の容量規制が
できるようにしている。この理由は、一般に負極
容量規制の場合は、充放電の繰返しによる負極の
劣化が大きく、長期にわたる充放電の繰返しで電
池容量の劣化の原因となるからであり、負極活物
質の一部を充電状態にして放電状態の正極と組み
合わせるのは、高率放電になるにつれ正極より負
極の容量低下が著しく、その低下に見合う容量を
負極にあらかじめ加えておく必要性があるからで
ある。
In the currently industrially produced sealed cylindrical nickel-cadmium storage batteries, in addition to the capacity balance between the positive and negative electrodes that satisfies the Neumann configuration, it is also necessary to create a battery configuration that follows the positive electrode capacity rules.
The negative electrode is partially charged at the time of forming the electrode plate group, so that even in the case of high rate discharge, the capacity of the battery can be regulated by the positive electrode. The reason for this is that, in general, when negative electrode capacity is regulated, the negative electrode deteriorates significantly due to repeated charging and discharging, and repeated charging and discharging over a long period of time causes deterioration of battery capacity. The reason why the negative electrode is combined with the positive electrode in the discharged state is that as the rate of discharge increases, the capacity of the negative electrode decreases more significantly than that of the positive electrode, and it is necessary to add a capacity to the negative electrode in advance to compensate for this decrease.

正極は現在のところ前述したとおり、その大半
に焼結式ニツケル正極が採用されている。この正
極は一般に電極特性に優れ、極板強度も大きく、
非常に優秀な電極であるが、やや製造工程が複雑
で、比較的高価格な電極である。他の正極の製法
としては、工業的にはポケツト式があるが、電極
群の捲回構成に不適なことから現状では採用され
ていない。
As mentioned above, most of the positive electrodes currently use sintered nickel positive electrodes. This positive electrode generally has excellent electrode properties and high plate strength.
Although it is an extremely excellent electrode, the manufacturing process is somewhat complicated and it is relatively expensive. As another positive electrode manufacturing method, there is a pocket method industrially, but it is not currently adopted because it is unsuitable for the winding structure of the electrode group.

ところが、最近になつて電極基板に用いられる
焼結基板に代わるものとして、スポンジ状の金属
多孔体基板が市販されるようになり、この基板を
利用する電極について種々検討されている。この
電極の特徴としては、高多孔体基板であることか
ら、活物質の高密度充填が可能であり、活物質の
充填方法に水酸化ニツケル粉末を主とするペース
ト状練合物を基板内部に直接充填でき、従つて製
法が簡単になる点が挙げられる。
However, recently, sponge-like metal porous substrates have become commercially available as an alternative to the sintered substrates used as electrode substrates, and various electrodes using this substrate have been studied. A feature of this electrode is that it has a highly porous substrate, which allows for high-density filling of the active material. The advantage is that it can be directly filled, which simplifies the manufacturing process.

このような特徴を有するスポンジ状ニツケル基
板を使用したニツケル正極を種々検討してみる
と、活物質利用率の向上にコバルト、とくに微粒
子状のカーボニルコバルトの添加が有効であるこ
とがわかつた。これは微粉末で形状も変化に富
み、反応上活性であるためと考えられる。
After examining various nickel positive electrodes using sponge-like nickel substrates having these characteristics, it was found that the addition of cobalt, particularly carbonyl cobalt in the form of fine particles, is effective in improving the active material utilization rate. This is thought to be because it is a fine powder with a wide variety of shapes and is reactively active.

本発明者らは、この検討中に、さらにつぎのよ
うな現象を見いだした。つまり、カーボニルコバ
ルトが初充電の際に電位差の点から水酸化ニツケ
ルよりも先に充電されて酸化物になる。しかしな
がら、コバルト自身は電池の放電に関与せず、2
回目以後の充電では、この現象がみられない。つ
まりコバルトは初充電時に安定な酸化物を形成す
る。そして、このコバルトの挙動により、負極が
初充電時にのみ充電され、前記の一部充電状態に
相当する充電部を電池内でつくることができるこ
とである。
During this study, the present inventors further discovered the following phenomenon. In other words, during initial charging, carbonyl cobalt is charged earlier than nickel hydroxide due to the potential difference and becomes an oxide. However, cobalt itself does not participate in battery discharge;
This phenomenon is not observed after the first charge. In other words, cobalt forms a stable oxide during initial charging. Due to this behavior of cobalt, the negative electrode is charged only during the initial charge, and a charged portion corresponding to the above-mentioned partially charged state can be created within the battery.

そして、この充電部の量は、後述する第1図に
示すように、正極中のカーボニルコバルト量に比
例することが確認できた。また、第2図は電池の
初充電時の充電電圧を示すものであるが、この図
からも正極の初充電電圧は、コバルトの量に比例
してニツケル活物質の充電電圧に達するのに時間
を要することがわかる。つまり、第1図、第2図
から、電池の放電状態の負極には、正極中のコバ
ルト量に比例した充電部が形成できることが明ら
かになつた。そして、この充電部の形成は、ほぼ
金属コバルトが3価のコバルト酸化物に変化する
までの酸化量に相当する容量であることもわかつ
た。
It was confirmed that the amount of this charged portion was proportional to the amount of carbonyl cobalt in the positive electrode, as shown in FIG. 1, which will be described later. In addition, Figure 2 shows the charging voltage at the time of initial charging of the battery, and this figure also shows that the initial charging voltage of the positive electrode takes a long time to reach the charging voltage of the nickel active material in proportion to the amount of cobalt. It can be seen that it requires In other words, from FIGS. 1 and 2, it has become clear that a charged portion proportional to the amount of cobalt in the positive electrode can be formed in the negative electrode of the battery in a discharged state. It has also been found that the formation of this charged portion has a capacity approximately corresponding to the amount of oxidation required to transform metallic cobalt into trivalent cobalt oxide.

本発明は、この現象を利用して、還元状態のコ
バルト粉末を含有する正極と、充電部を持たない
負極を組み合わせて密閉形電池を構成する方法を
提供するものであり、高率放電においても性能の
安定した密閉形電池を提供することができる。
The present invention takes advantage of this phenomenon to provide a method for constructing a sealed battery by combining a positive electrode containing reduced cobalt powder and a negative electrode without a live part, and is capable of forming a sealed battery even in high rate discharge. A sealed battery with stable performance can be provided.

さらに詳しく説明すれば、還元状態、すなわち
金属状態のコバルトを含有する放電状態のニツケ
ル正極と、負極と、アルカリ電解液を含浸したセ
パレータを備え、ニツケル正極におけるニツケル
の充電可能容量をCNmAh、コバルトの充電可能
容量をCCmAh、電池構成時の負極の充電可能容
量をCxmAh、ならびに放電可能容量をCymAh、
電池の高率放電時における正極容量に見合う負極
容量を保つに必要な負極の補足容量をCZmAhと
したとき(CZの値は電池の用途により、即ちど
の程度まで高率放電で使用するかにより、その値
は変動する)、次式 CX≧CN+CC CZ>Cy≧CZ−CC の関係を満足するように電池を構成することを特
徴とする。
More specifically, it includes a nickel positive electrode in a discharged state containing cobalt in a reduced state, that is, a metallic state, a negative electrode, and a separator impregnated with an alkaline electrolyte, and the chargeable capacity of nickel in the nickel positive electrode is C N mAh, The chargeable capacity of cobalt is C C mAh, the chargeable capacity of the negative electrode in battery configuration is C x mAh, and the dischargeable capacity is C y mAh,
When the supplementary capacity of the negative electrode required to maintain the negative electrode capacity commensurate with the positive electrode capacity during high rate discharge of the battery is C Z mAh (the value of C Z depends on the purpose of the battery, i.e. to what extent it is used at high rate discharge). The battery is characterized in that the battery is configured to satisfy the following relationship: C X ≧C N +C C C Z >C y ≧C Z −C C

なお、焼結式ニツケル正極を用いた場合も、コ
バルトの添加に関して種々検討と提案がなされて
いるが、この正極は製造工程の関係で、工程中で
コバルトが酸化されるので、上記のような現象は
みられない。上記のような負極の一部充電部を得
るため、電解液中にアルコールを添加し、初充電
時にアルコールを酸化して本発明と同様な負極の
状態にする提案はすでにされている。しかし、有
機物の添加による自己放電の増加、電解液の変質
などの危険性を有しているので、実用的ではな
い。
Various studies and proposals have been made regarding the addition of cobalt when using a sintered nickel positive electrode, but due to the manufacturing process of this positive electrode, cobalt is oxidized during the process. No phenomena observed. In order to obtain a partially charged part of the negative electrode as described above, there have already been proposals to add alcohol to the electrolytic solution and oxidize the alcohol during initial charging to obtain a negative electrode state similar to that of the present invention. However, this method is not practical because there are risks such as an increase in self-discharge and deterioration of the electrolyte due to the addition of organic substances.

本発明による正極は、スポンジ状金属基板を用
いるのがよく、この場合には活物質粉末を直接基
板に充填できるので、工程中に酸やアルカリ水溶
液および電圧の印加を必要としない。このため還
元状態のコバルト粉末を電極中に添加することが
でき、このコバルト量を調節することによつて高
率放電に必要な負極の予備充電量を確保すること
ができる。またコバルト粉末はカーボニルコバル
トなどの微粉末の方が充電時酸化されやすい傾向
にあり、有利である。
The positive electrode according to the present invention preferably uses a sponge-like metal substrate, and in this case, since the active material powder can be directly filled into the substrate, there is no need to apply an acid or alkaline aqueous solution or voltage during the process. Therefore, cobalt powder in a reduced state can be added to the electrode, and by adjusting the amount of cobalt, it is possible to secure the amount of preliminary charge of the negative electrode necessary for high rate discharge. Further, as for cobalt powder, fine powder such as carbonyl cobalt tends to be more easily oxidized during charging and is therefore advantageous.

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例 1 多孔度約94%、平均孔径約150μmのスポンジ
状ニツケル多孔体を正極基板に用いる。また、平
均粒径約70μmの水酸化ニツケル粉末85重量%
と、平均粒径数μmのニツケル粉末10重量%、及
び平均粒径数μmのカーボニルコバルト5重量%
の混合粉末に、カルボキシメチルセルロースの
0.3重量%水溶液を加えてペースト状練合物を得
る。この連合物中の水溶液量は約29重量%であ
る。
Example 1 A sponge-like porous nickel material with a porosity of about 94% and an average pore diameter of about 150 μm is used as a positive electrode substrate. In addition, 85% by weight of nickel hydroxide powder with an average particle size of approximately 70μm
10% by weight of nickel powder with an average particle size of several μm, and 5% by weight of carbonyl cobalt with an average particle size of several μm.
of carboxymethyl cellulose to the mixed powder of
A 0.3% by weight aqueous solution is added to obtain a paste-like mixture. The amount of aqueous solution in this combination is approximately 29% by weight.

この練合物を前記の基板に充填し、加圧圧縮し
た後乾燥し、切断して厚さ0.7mm、幅38mm、長さ
210mmのニツケル極とする。
This mixture was filled into the above-mentioned substrate, compressed under pressure, dried, and cut into pieces with a thickness of 0.7 mm, width of 38 mm, and length.
Use 210mm nickel poles.

一方、厚さ0.09mmの穴あき板に、平均粒径数μ
mの酸化カドニウム粉末75重量%と平均粒径数μ
mのニツケル粉末24.5重量%と樹脂繊維約0.5重
量%の混合物をエチレングリコールでペースト状
にした連合物を、正極よりも充分大きな容量相当
量を塗着し、乾燥した後、ロールプレスにより約
0.55mmの厚さに調整し、ついで大きさ38mm×260
mmに切断する。
On the other hand, on a perforated plate with a thickness of 0.09 mm, an average particle size of several μ
75% by weight of cadmium oxide powder and an average particle size of several microns
A mixture of 24.5% by weight of nickel powder and about 0.5% by weight of resin fibers made into a paste with ethylene glycol was applied in an amount equivalent to a volume sufficiently larger than that of the positive electrode, dried, and then rolled using a roll press to form a paste.
Adjust the thickness to 0.55mm, then size 38mm x 260
Cut into mm.

上記正極と、正極より充分に大きな容量を有す
る負極をポリアミド系不織布を介して渦巻状に捲
回して群構成をしたのち、耐アルカリ性を有する
円筒状金属電槽に挿入し、比重1.28のか性カリ水
溶液を注入し、ついで封口を施し、KR−C形式
電池を得る。
The above positive electrode and a negative electrode having a sufficiently larger capacity than the positive electrode were wound spirally through a polyamide nonwoven fabric to form a group, and then inserted into a cylindrical metal container with alkali resistance, and placed in a caustic solution with a specific gravity of 1.28. An aqueous solution is injected and then sealed to obtain a KR-C type battery.

実施例 2 実施例1において、混合粉末中のカーボニルコ
バルト量を10重量%、水酸化ニツケル量を76重量
%とした正極を用いて、実施例1と同様の操作で
KR−C形式電池を得る。
Example 2 The same procedure as in Example 1 was carried out using a positive electrode in which the amount of carbonyl cobalt in the mixed powder was 10% by weight and the amount of nickel hydroxide was 76% by weight.
Obtain a KR-C type battery.

実施例 3 実施例1の負極を比重1.15のか性カリ水溶液中
で100mAh相当充填し、水洗、乾燥した後実施例
1と同様の操作で電池を構成する。
Example 3 The negative electrode of Example 1 was filled in an aqueous solution of caustic potassium with a specific gravity of 1.15 in an amount equivalent to 100 mAh, washed with water, dried, and then carried out in the same manner as in Example 1 to construct a battery.

第1図は、実施例1に準じて正極中のコーボニ
ルコバルト量を各種変えてつくつた電池につい
て、20℃において250mAで16時間充電した後、
放電状態にしたときの負極中の未放電容量(電気
量)を示すものである。図からわかるように、電
池構成前の負極は、酸化状態であつたものが、充
放電を1回繰返し電池を放電状態にすると、負極
の未放電容量は増加している。第2図は同様の電
池を20℃において250mAで充電したときの充電
電圧と正極中のコバルト量との関係を示してい
る。なお、コバルト量は正極1枚当たりの量を表
す。
Figure 1 shows that batteries made according to Example 1 with various amounts of cobonyl cobalt in the positive electrode were charged at 250 mA at 20°C for 16 hours.
It shows the undischarged capacity (amount of electricity) in the negative electrode when it is in a discharged state. As can be seen from the figure, the negative electrode before battery construction was in an oxidized state, but when charging and discharging was repeated once to bring the battery into a discharged state, the undischarged capacity of the negative electrode increased. Figure 2 shows the relationship between the charging voltage and the amount of cobalt in the positive electrode when a similar battery was charged at 250 mA at 20°C. Note that the amount of cobalt represents the amount per positive electrode.

つぎに、実施例1で得たKR−C形式電池を20
℃において250mAで16時間充電し、500mAで放
電したときの放電曲線を第3図に曲線aで示す。
比較例として正極は実施例1と同じものを使用
し、負極は約1000mAh充電状態のものを使用し
た電池の放電曲線をbで示す。また、実施例1の
正極と同量のコバルトを含む汎用の焼結式ニツケ
ル正極と、実施例1に用いた負極を組み合わせた
場合および前記bに示した電池に用いた負極と組
み合わせた場合の特性を各々cおよびdで示す。
この結果、焼結式ニツケル正極では、充電部を有
しない負極と組み合わせた場合、放電容量の低下
と放電末期の電圧低下がみられるが、本発明の正
極を使用した場合はそういう現象がみられない。
Next, 20% of the KR-C type battery obtained in Example 1 was used.
The discharge curve when the battery was charged at 250 mA for 16 hours at ℃ and discharged at 500 mA is shown as curve a in Fig. 3.
As a comparative example, the same positive electrode as in Example 1 was used, and the negative electrode was charged to approximately 1000 mAh. The discharge curve of the battery is shown in b. In addition, when a general-purpose sintered nickel positive electrode containing the same amount of cobalt as the positive electrode of Example 1 was combined with the negative electrode used in Example 1, and when combined with the negative electrode used in the battery shown in b. The properties are designated c and d, respectively.
As a result, when a sintered nickel positive electrode is combined with a negative electrode that does not have a live part, a decrease in discharge capacity and a voltage drop at the end of discharge are observed, but such phenomena are not observed when the positive electrode of the present invention is used. do not have.

以上のように本発明によれば、負極に特別な操
作を施してその一部を充電状態にする必要はな
く、とくに高率放電を要する電池においては、従
来よりも小量の充電量を有する負極で満足させる
ことができることから、負極の製造工程が簡易化
できる。また充電するとしても少量の充電でよい
ことから、充電量のバラツキも従来より低減する
ことができる。
As described above, according to the present invention, there is no need to perform special operations on the negative electrode to bring a part of it into a charged state, and in particular, in batteries that require high rate discharge, the amount of charge is smaller than that of conventional batteries. Since this can be satisfied with a negative electrode, the manufacturing process of the negative electrode can be simplified. Furthermore, since only a small amount of charging is required, variations in the amount of charging can be reduced compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電池の正極中のカーボニ
ルコバルト量と放電状態の電池における負極の充
電電気量との関係を示す図、第2図は正極中のコ
バルト量を変えた場合の初充電電気量と充電電圧
との関係を示す図、第3図は各種電池の放電曲線
を示す。
Figure 1 is a diagram showing the relationship between the amount of carbonyl cobalt in the positive electrode of a battery according to the present invention and the amount of electricity charged in the negative electrode in a battery in a discharged state, and Figure 2 shows the initial charging electricity when the amount of cobalt in the positive electrode is changed. FIG. 3, which is a diagram showing the relationship between charge amount and charging voltage, shows discharge curves of various batteries.

Claims (1)

【特許請求の範囲】 1 還元状態のコバルトを含有する放電状態のニ
ツケル正極と、負極と、アルカリ電解液を備え、
前記正極のニツケルの充電可能容量をCN、コバ
ルトの充電可能容量をCC、電池構成時の負極の
充電可能容量をCXならびに放電可能容量をCy
電池の高率放電時における正極容量に見合う負極
容量を保つに必要な負極の補足容量をCZとした
とき、電池の構成時点で、次式 CX≧CN+CC CZ>Cy≧CZ−CC を満足する関係にあることを特徴とする高率放電
時にも安定な密閉形アルカリ蓄電池の構成法。 2 前記正極が、スポンジ状金属多孔体基板と、
この基板に充填された金属コバルトを含む活物質
混合物からなる特許請求の範囲第1項記載の密閉
形アルカリ蓄電池の構成法。 3 前記コバルトが、カーボニルコバルトである
特許請求の範囲第1項または第2項記載の密閉形
アルカリ蓄電池の構成法。
[Claims] 1. A nickel positive electrode in a discharged state containing cobalt in a reduced state, a negative electrode, and an alkaline electrolyte,
The chargeable capacity of nickel of the positive electrode is C N , the chargeable capacity of cobalt is C C , the chargeable capacity of the negative electrode in battery configuration is C X and the dischargeable capacity is C y ,
When the supplementary capacity of the negative electrode required to maintain the negative electrode capacity commensurate with the positive electrode capacity during high rate discharge of the battery is C Z , at the time of battery configuration, the following formula C X ≧C N +C C C Z >C y ≧ A method for constructing a sealed alkaline storage battery that is stable even during high rate discharge and is characterized by a relationship that satisfies C Z −C C. 2. The positive electrode comprises a sponge-like porous metal substrate;
A method for constructing a sealed alkaline storage battery according to claim 1, comprising an active material mixture containing metallic cobalt filled in this substrate. 3. The method for constructing a sealed alkaline storage battery according to claim 1 or 2, wherein the cobalt is carbonyl cobalt.
JP56154318A 1981-09-28 1981-09-28 Sealed alkaline storage battery Granted JPS5854570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56154318A JPS5854570A (en) 1981-09-28 1981-09-28 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56154318A JPS5854570A (en) 1981-09-28 1981-09-28 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS5854570A JPS5854570A (en) 1983-03-31
JPH0534786B2 true JPH0534786B2 (en) 1993-05-24

Family

ID=15581500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56154318A Granted JPS5854570A (en) 1981-09-28 1981-09-28 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS5854570A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857148B2 (en) * 1987-03-25 1999-02-10 松下電器産業株式会社 Construction method of sealed nickel-hydrogen storage battery
JP2730121B2 (en) * 1988-01-22 1998-03-25 日本電池株式会社 Alkaline secondary battery and manufacturing method thereof
JPH02144850A (en) * 1988-11-26 1990-06-04 Yuasa Battery Co Ltd Nickel electrode and alkali battery using same
JP4834641B2 (en) * 2007-10-04 2011-12-14 株式会社ソフイア Game machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270338A (en) * 1975-12-08 1977-06-11 Japan Storage Battery Co Ltd Sealed nickel cadmium battery
JPS52150526A (en) * 1976-06-10 1977-12-14 Matsushita Electric Ind Co Ltd Nickel electrode
JPS5514666A (en) * 1978-07-17 1980-02-01 Matsushita Electric Ind Co Ltd Electric pole of nickel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270338A (en) * 1975-12-08 1977-06-11 Japan Storage Battery Co Ltd Sealed nickel cadmium battery
JPS52150526A (en) * 1976-06-10 1977-12-14 Matsushita Electric Ind Co Ltd Nickel electrode
JPS5514666A (en) * 1978-07-17 1980-02-01 Matsushita Electric Ind Co Ltd Electric pole of nickel

Also Published As

Publication number Publication date
JPS5854570A (en) 1983-03-31

Similar Documents

Publication Publication Date Title
JPS6157661B2 (en)
JP2003526877A (en) Rechargeable nickel zinc battery
JPH0534786B2 (en)
JPH11144723A (en) Non-sintered nickel electrode for sealed alkaline storage battery
JP2584280B2 (en) Alkaline storage battery and method of manufacturing the same
JPS5983347A (en) Sealed nickel-cadmium storage battery
JPH11297352A (en) Alkaline storage battery
US6926998B2 (en) Nickel-metal hydride storage battery
US7364818B2 (en) Nickel positive electrode plate and alkaline storage battery
JP2884570B2 (en) Sealed alkaline secondary battery
JP2001283902A (en) Alkaline battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP2530281B2 (en) Alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS6097560A (en) Sealed type alkaline storage battery
JPH1021904A (en) Alkaline storage battery
JPH0232750B2 (en)
JP2003017116A (en) Alkali storage battery and manufacturing method of the same
JP2794825B2 (en) Chemical formation method of nickel hydroxide electrode
JP3863703B2 (en) Hydrogen storage alloy electrode and alkaline storage battery
JPH1064531A (en) Cadmium negative electrode for alkaline storage battery and manufacture thereof
JPS6332856A (en) Closed nickel-hydrogen storage battery
JP2000228190A (en) Sintered nickel positive electrode for alkaline storage battery and alkaline storage battery using it
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery