JPH0534591B2 - - Google Patents

Info

Publication number
JPH0534591B2
JPH0534591B2 JP62254632A JP25463287A JPH0534591B2 JP H0534591 B2 JPH0534591 B2 JP H0534591B2 JP 62254632 A JP62254632 A JP 62254632A JP 25463287 A JP25463287 A JP 25463287A JP H0534591 B2 JPH0534591 B2 JP H0534591B2
Authority
JP
Japan
Prior art keywords
carbon fiber
carbon
resin
fibers
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62254632A
Other languages
Japanese (ja)
Other versions
JPH0198893A (en
Inventor
Satoshi Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP62254632A priority Critical patent/JPH0198893A/en
Publication of JPH0198893A publication Critical patent/JPH0198893A/en
Publication of JPH0534591B2 publication Critical patent/JPH0534591B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、高圧(300Kgf/cm2以上)または高
真空下、かつ、高温(2000℃以上)で使用するの
に適した焼結炉用ダイス材に関する。 [従来の技術] 従来、2000℃以上の高温で使用するダイス材は
炭素材が主であるが、近年、焼結条件が高まり、
炭素材では強度に限界がでてきた。そこで、高い
引張り強度を有する炭素繊維(高弾性タイプ250
Kgf/mm2)をフイラー材料とし、マトリツクスに
ガラス状炭素、炭素、黒鉛、熱分解炭素を使つた
炭素繊維強化炭素複合材によるダイス材の要求が
高まつている。 炭素繊維強化炭素複合材料によるダイスの成形
法として、炭素繊維の強度を最も有効に引きだす
ためにフイラメントワインデイング法(以下FW
法という)が用いられる。FW法は成形体の内形
状を決定するマンドレルに樹脂含浸槽を通過させ
た炭素繊維を一定の張力下で巻きつけて、成形す
る方法である。ダイス材の製造は、その後の炭化
処理、黒鉛化処理により完成する。 ここでダイス材は円周方向に高い内圧強度が必
要とされ、そのため炭素繊維強化炭素複合材にお
ける炭素繊維の配向は、円周方向にワインデイン
グした場合最も有効である。また、炭素繊維の熱
膨張は小さく(線膨張係数−0.1×10-6/℃)、円
周方向の寸法変化が小さく、内径寸法の安定性も
よい。 [発明が解決しようとする問題点] 上記炭素繊維強化炭素複合材は軸方向に対する
強度は弱く、僅かな衝撃や高圧が負荷された時に
亀裂や破壊が生じやすい欠点を有する。 そのために従来FW成形時に一部繊維の巻き角
を変える等の対応が一般的である。しかし、繊維
の巻き角を変える事は内圧に対するダイス材の強
度を損なう事になる。又、ダイス材を製造するに
あたり、繊維の配向を自由に変えることができる
コンピユーター等を有する高価な設備が必要とな
る。 本発明は従来技術の上記問題を解決し、比較的
簡単な方法で円周方向と共に、長さ方向にも強化
された焼結炉用ダイス材を提供しようとするもの
である。 [問題点を解決するための手段] すなわち、本発明により提供される焼結炉用ダ
イス材は、炭素繊維を円筒の円周方向に巻回した
FW積層部と樹脂を塗布した炭素繊維の織布また
は一方向プリプレグを、その繊維の方向が上記円
筒の長さ方向に整列するように巻回したシート層
部とを重ね合せて基材とする炭素繊維強化炭素材
からなることを特徴とする。 本発明では基材の段階で、FWによる炭素繊維
の巻き角を主に90゜とすると共に炭素繊維の織布
または一方向プリプレグを数層、間にはさむ事に
より、安価な設備でしかも繊維の強度を充分生か
し、寸法安定性に優れた高温高圧炉に適する炭素
繊維強化炭素材製の焼結炉用ダイスを開発したも
のである。 本発明で用いる炭素繊維はポリアクリロニトリ
ル(PAN)系、ピツチ形、レーヨン系の高強度、
高弾性繊維等があるが、ダイス材の使用温度が
2000℃以上であることから高弾性タイプの使用が
好適である。 FW積層部の間にはさむシート層も同様に高弾
性タイプの炭素繊維織布を使用し、FWに用いら
れるフイラメントと同じ品質の物の使用が好まし
い。織布の種類は平織り、朱子織り等があるが、
特に限定はない。 マトリツクスの出発物となる樹脂は、炭化収率
が高く、マトリツクスとしてフイラー材料と接着
性の高い物が良い。通常フエノール樹脂、フラン
樹脂、ポリイミド樹脂等を使用する。 以下、図面を参照して本発明のダイス材を製造
する一例を具体的に説明する。 まず第1図に示すように、炭素繊維1をテンシ
ヨン部2によつて一定の張力を負荷しながら樹脂
含浸槽3の中に通し、樹脂を含浸させた後、マン
ドレル4に巻き付け、円周方向の補強層すなわち
FW積層部5を形成する。 次に、第2図に示すように、樹脂を含浸した炭
素繊維の織布または一方向プリプレグ6を上記
FW積層部5の上に重ね合せて貼り付け長さ方向
の補強層すなわちシート層7(第4図参照)を形
成する。 更に、第3図に示すように、炭素繊維1に樹脂
を含浸させながら、この炭素繊維を円周方向に巻
き付け、FW積層部5を形成する。 こうして、第4図に示すようにFW積層部5と
シート層7によつて円周方向と長さ方向とが補強
されたダイス材の基材が形成できる。 炭素繊維フイラメントを巻き付ける工程と炭素
繊維織布または一方向プリプレグを巻き付ける工
程とを適当に組み合わせて繰り返すこと、また
は、炭素繊維フイラメントや炭素繊維織布または
一方向プリプレグの量や種類を選択して使用する
ことによつて、目的に合つた補強シート層を有す
るダイス材の基材を形成できる。 こうして形成された基材を普通の炭素繊維強化
炭素複合材と同様に、硬化、脱芯、炭化処理
(1000℃以上)をする。必要に応じて、樹脂やピ
ツチを1〜3回含浸、焼成を繰り返すか、CVD
法で緻密化し、最後に黒鉛化処理(2000℃以上)
をすることによつて炭素繊維強化炭素材からなる
焼結炉用ダイス材を製造することができる。 [実施例] 以下、実施例によつて本発明を具体的に説明す
る。 実施例 1 内径50mmφの黒鉛マンドレルにFW法により炭
素繊維のトウ(東邦レーヨン製、高弾性タイプ
HM−35K)を1.5Kg/束で、フエノール樹脂(大
日本インキ製、P5900、不揮発分58.5%)と共に
6層巻きつけた。 次に、炭素繊維クロス(東邦レーヨン製、高弾
性タイプW6101)のシート層を巻きつけた。 このシート層上に、最初の工程と同様にFW法
によつて、6層巻きつけた。 再び、同様にFW積層部とシート層部を重ね、
全層が20層になるように重ね合せて接合した。 このようにして形成した基材を1〜2日風乾
し、20℃/日の昇温速度で50゜〜170℃まで昇温、
硬化した。その後、5℃/日(窒素ガス雰囲気)
の昇温速度で1000℃になるまで昇温、焼成した。 次にこの焼成物にフラン樹脂(住友デユレス、
FR16470、不揮発分56%)を真空、加圧含浸し、
20℃/日で50゜〜170℃まで硬化させ、再び1000℃
になるまで焼成炭化した。 これを3回繰り返した後、2000℃まで加熱、黒
鉛化した。 得られたダイス用炭素繊維強化炭素材(黒鉛化
後)および基材(CFRP)の曲げ強度を対比して
表1に示した。 比較例 1 FW成形法(巻き角90゜)のみで、20層の補強層
を形成した以外は、すべて実施例1と同じ成形体
の形成、焼成、黒鉛化した。 その結果を下記表1に示す。
[Industrial Application Field] The present invention relates to a die material for a sintering furnace suitable for use under high pressure (300 Kgf/cm 2 or higher) or high vacuum and at high temperature (2000° C. or higher). [Conventional technology] Traditionally, carbon materials have been the main die material used at high temperatures of 2000°C or higher, but in recent years, sintering conditions have increased,
Carbon materials have reached their limits in strength. Therefore, carbon fiber with high tensile strength (high elasticity type 250)
There is an increasing demand for die materials made of carbon fiber-reinforced carbon composites, which use Kgf/mm 2 ) as the filler material and glassy carbon, carbon, graphite, and pyrolytic carbon as the matrix. As a molding method for dies made of carbon fiber-reinforced carbon composite materials, the filament winding method (hereinafter referred to as FW
law) is used. The FW method is a method in which carbon fibers that have passed through a resin impregnation tank are wound under constant tension around a mandrel that determines the internal shape of the molded object. Manufacturing of the die material is completed by subsequent carbonization and graphitization treatments. Here, the die material is required to have high internal pressure strength in the circumferential direction, and therefore the orientation of the carbon fibers in the carbon fiber reinforced carbon composite material is most effective when wound in the circumferential direction. Further, the thermal expansion of carbon fiber is small (linear expansion coefficient -0.1×10 −6 /° C.), the dimensional change in the circumferential direction is small, and the stability of the inner diameter dimension is good. [Problems to be Solved by the Invention] The carbon fiber-reinforced carbon composite material has a weak strength in the axial direction, and has the disadvantage that it is easily cracked or destroyed when a slight impact or high pressure is applied. To this end, it is common to take measures such as changing the winding angle of some fibers during conventional FW molding. However, changing the winding angle of the fibers impairs the strength of the die material against internal pressure. Furthermore, in manufacturing the die material, expensive equipment including a computer and the like that can freely change the orientation of the fibers is required. The present invention aims to solve the above-mentioned problems of the prior art and provide a die material for a sintering furnace which is strengthened not only in the circumferential direction but also in the longitudinal direction by a relatively simple method. [Means for Solving the Problems] That is, the die material for a sintering furnace provided by the present invention is made by winding carbon fibers in the circumferential direction of a cylinder.
The FW laminated part and a sheet layer part made by winding a resin-coated carbon fiber woven cloth or unidirectional prepreg so that the fiber direction is aligned in the length direction of the cylinder are used as a base material. It is characterized by being made of carbon fiber reinforced carbon material. In the present invention, at the base material stage, the winding angle of the carbon fiber by FW is mainly 90°, and several layers of carbon fiber woven fabric or unidirectional prepreg are sandwiched between them. We have developed a sintering furnace die made of carbon fiber-reinforced carbon material that is suitable for high-temperature, high-pressure furnaces and has excellent strength and dimensional stability. The carbon fibers used in the present invention are polyacrylonitrile (PAN) type, pitch type, rayon type high strength,
There are high elastic fibers, etc., but the operating temperature of the die material is
Since the temperature is 2000°C or higher, it is preferable to use a high elastic type. Similarly, the sheet layer sandwiched between the FW laminated parts should be made of high elasticity carbon fiber woven fabric, preferably of the same quality as the filament used in the FW. Types of woven fabric include plain weave, satin weave, etc.
There are no particular limitations. The resin used as the starting material for the matrix should preferably have a high carbonization yield and be highly adhesive to the filler material as a matrix. Usually, phenolic resin, furan resin, polyimide resin, etc. are used. Hereinafter, an example of manufacturing the die material of the present invention will be specifically described with reference to the drawings. First, as shown in FIG. 1, the carbon fiber 1 is passed through a resin impregnating bath 3 while applying a constant tension by the tension part 2, and after being impregnated with resin, it is wound around a mandrel 4, and is wound in the circumferential direction. The reinforcing layer of i.e.
A FW laminated portion 5 is formed. Next, as shown in FIG. 2, the resin-impregnated carbon fiber woven fabric or unidirectional prepreg 6 is
A reinforcing layer in the longitudinal direction of attachment, that is, a sheet layer 7 (see FIG. 4) is formed by overlapping the FW laminated portion 5. Furthermore, as shown in FIG. 3, the carbon fibers 1 are impregnated with resin and wound in the circumferential direction to form the FW laminated portion 5. In this way, as shown in FIG. 4, a base material of the die material reinforced in the circumferential direction and the length direction by the FW laminated portion 5 and the sheet layer 7 can be formed. The process of winding the carbon fiber filament and the process of winding the carbon fiber woven fabric or unidirectional prepreg can be appropriately combined and repeated, or the amount and type of carbon fiber filament, carbon fiber woven fabric, or unidirectional prepreg can be selected and used. By doing so, it is possible to form a base material of the die material having a reinforcing sheet layer suitable for the purpose. The base material thus formed is cured, cored, and carbonized (at 1000°C or higher) in the same way as ordinary carbon fiber-reinforced carbon composites. If necessary, impregnate with resin or pitch one to three times and repeat firing or CVD.
densified by a method and finally graphitized (2000℃ or higher)
By doing this, a die material for a sintering furnace made of carbon fiber reinforced carbon material can be manufactured. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 Carbon fiber tow (manufactured by Toho Rayon, high elasticity type) was attached to a graphite mandrel with an inner diameter of 50 mmφ using the FW method.
HM-35K) was wound at 1.5 kg/bundle in 6 layers together with a phenol resin (manufactured by Dainippon Ink, P5900, nonvolatile content 58.5%). Next, a sheet layer of carbon fiber cloth (manufactured by Toho Rayon, high elasticity type W6101) was wrapped around it. Six layers were wound on this sheet layer by the FW method in the same manner as in the first step. Again, overlap the FW laminated part and sheet layer part in the same way,
They were stacked and bonded so that the total number of layers was 20. The base material thus formed was air-dried for 1 to 2 days, and then heated to 50° to 170°C at a rate of 20°C/day.
Hardened. After that, 5℃/day (nitrogen gas atmosphere)
The temperature was raised to 1000℃ at a heating rate of Next, furan resin (Sumitomo Dures,
Impregnated with FR16470 (nonvolatile content 56%) under vacuum and pressure,
Cured at 20°C/day to 50° to 170°C, then heated again to 1000°C
It was fired and carbonized until it became carbonized. After repeating this three times, it was heated to 2000°C and graphitized. Table 1 shows a comparison of the bending strengths of the obtained carbon fiber-reinforced carbon material for dies (after graphitization) and the base material (CFRP). Comparative Example 1 A molded body was formed, fired, and graphitized in the same manner as in Example 1, except that 20 reinforcing layers were formed using only the FW molding method (winding angle 90°). The results are shown in Table 1 below.

【表】 上記結果からシート層を介在させた実施例1の
方法による製品は比較例1の製品に比較して、基
材(CFRP)の曲げ強度で21%、黒鉛化後で16%
強度が向上していることが認められる。 実施例 2 内径100mmφの黒鉛マンドレルに、実施例1と
同じ炭素繊維のFW積層部、炭素繊維クロスのシ
ート層部を下記の条件で巻きつけた。 (1) クロス2層の上にFW成形(90゜巻き)を8層
重ね、これを繰り返し、40層とした。 (2) クロス2層の上にFW成形(90゜巻き)を2層
重ね、これを繰り返し、40層とした。 上記(1)および(2)の各成形体を実施例1と同じ条
件で硬化、焼成、黒鉛化した。 得られたダイス用炭素繊維強化炭素材の強度特
性を表2に示す。 比較例 2 実施例2と同じFW成形(90゜巻き)のみを40層
形成した以外は、すべて実施例2と同じ条牛で成
形体をつくり、硬化、焼成、黒鉛化した。 その結果を下記表2に示す。
[Table] From the above results, the bending strength of the base material (CFRP) of the product produced by the method of Example 1 with a sheet layer interposed is 21% and 16% after graphitization compared to the product of Comparative Example 1.
It is recognized that the strength has improved. Example 2 The same carbon fiber FW laminated portion and carbon fiber cloth sheet layer portion as in Example 1 were wound around a graphite mandrel with an inner diameter of 100 mm under the following conditions. (1) Layer 8 layers of FW molding (90° wrap) on top of 2 layers of cloth, and repeat this process to make 40 layers. (2) Two layers of FW molding (90° wrap) were placed on top of the two layers of cloth, and this was repeated to make 40 layers. Each of the molded bodies (1) and (2) above was cured, fired, and graphitized under the same conditions as in Example 1. Table 2 shows the strength characteristics of the obtained carbon fiber reinforced carbon material for dies. Comparative Example 2 A molded body was made from the same strips as in Example 2, except that only 40 layers of FW molding (90° winding) were formed as in Example 2, and the molded body was hardened, fired, and graphitized. The results are shown in Table 2 below.

【表】 上記結果からシート層を数層介在させることに
よつて、円周方向における引張り強度の低下の割
には長さ方向の曲げ強度の向上が大きくなること
が明らかである。 [発明の効果] 以上説明したように、本発明によれば円周方向
の強度を保持しながら長さ方向の強度を著しく向
上した炭素繊維強化炭素材からなる焼結用ダイス
材が提供されるから、2000℃以上および300Kg
f/cm2を越える苛酷な高温高圧条件においても十
分に適用することが可能となる。
[Table] From the above results, it is clear that by interposing several sheet layers, the bending strength in the longitudinal direction is greatly improved compared to the decrease in the tensile strength in the circumferential direction. [Effects of the Invention] As explained above, according to the present invention, there is provided a sintering die material made of a carbon fiber-reinforced carbon material that has significantly improved strength in the longitudinal direction while maintaining strength in the circumferential direction. From, over 2000℃ and 300Kg
It can be sufficiently applied even under severe high temperature and high pressure conditions exceeding f/cm 2 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は、本発明に係る焼結炉用
ダイス材の製造方法の各工程の説明図、第4図は
本発明の方法で製造される焼結炉用ダイス材の長
さ方向に対して垂直な断面図である。 1…炭素繊維、2…テンシヨン部、3…樹脂含
浸層、4…マンドレル、5…FW積層部、6…炭
素繊維織布または一方向プリプレグ、7…シート
層。
Figures 1 to 3 are explanatory diagrams of each step of the method for manufacturing a die material for a sintering furnace according to the present invention, and Figure 4 shows the length of the die material for a sintering furnace manufactured by the method of the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Carbon fiber, 2... Tension part, 3... Resin impregnated layer, 4... Mandrel, 5... FW laminated part, 6... Carbon fiber woven fabric or unidirectional prepreg, 7... Sheet layer.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素繊維を円筒の円周方向に巻回したFW積
層部と、樹脂を塗布した炭素繊維の織布または一
方向プリプレグを、その繊維の方向が上記円筒の
長さ方向に整列するように巻回したシート層部と
を重ね合せて基材とする炭素繊維強化炭素材から
なる焼結炉用ダイス材。
1. A FW laminated part in which carbon fibers are wound in the circumferential direction of a cylinder, and a resin-coated carbon fiber woven fabric or unidirectional prepreg are wound so that the direction of the fibers is aligned in the length direction of the cylinder. A die material for sintering furnaces made of carbon fiber-reinforced carbon material, which is made of a carbon fiber-reinforced carbon material made by overlapping the rolled sheet layer parts.
JP62254632A 1987-10-12 1987-10-12 Dice material for sintering furnace Granted JPH0198893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62254632A JPH0198893A (en) 1987-10-12 1987-10-12 Dice material for sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62254632A JPH0198893A (en) 1987-10-12 1987-10-12 Dice material for sintering furnace

Publications (2)

Publication Number Publication Date
JPH0198893A JPH0198893A (en) 1989-04-17
JPH0534591B2 true JPH0534591B2 (en) 1993-05-24

Family

ID=17267716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62254632A Granted JPH0198893A (en) 1987-10-12 1987-10-12 Dice material for sintering furnace

Country Status (1)

Country Link
JP (1) JPH0198893A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6947625B2 (en) * 2017-12-25 2021-10-13 イビデン株式会社 Manufacturing method of sintered magnet, graphite mold for hot press and graphite mold for hot press

Also Published As

Publication number Publication date
JPH0198893A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
US3462289A (en) Process for producing reinforced carbon and graphite bodies
JP4808862B2 (en) Deployable structural parts and manufacturing method thereof
US7175787B2 (en) Method for producing a fiber composite component, and apparatus for producing such a component
EP1908740B1 (en) CARBON-FIBER-REINFORCED SiC COMPOSITE MATERIAL AND SLIDE MEMBER
GB2212824A (en) Making a hollow composite article
KR960000558B1 (en) Oriented prepreg and carbon fiber reinforced composite
US20170015594A1 (en) Process for producing shaped bodies of carbon fiber reinforced carbon
JPS6225094B2 (en)
JPS631265B2 (en)
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
JPH0534591B2 (en)
JPH01224570A (en) Press cylinder of high temperature high pressure pressing machine
JPH0255393B2 (en)
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
JP2762291B2 (en) Manufacturing method of carbonaceous push rod
JPH0143621B2 (en)
JP3249141B2 (en) Tubular composite structure
JPH07186117A (en) Production of carbon/carbon composite material
JPH0353006A (en) Double hollow cylindrical body
JPH04149068A (en) Double hollow cylinder made of carbon fiber-reinforced carbon composite
JP3288402B2 (en) High strength ribbed carbon fiber reinforced carbon composite material structure
JP3232498B2 (en) Carbon fiber reinforced carbon material with high thermal conductivity in one direction
JP2000001377A (en) Carbon composite material structural body
JP2000130428A (en) Composite roll and its manufacture