JPH0353006A - Double hollow cylindrical body - Google Patents

Double hollow cylindrical body

Info

Publication number
JPH0353006A
JPH0353006A JP18634889A JP18634889A JPH0353006A JP H0353006 A JPH0353006 A JP H0353006A JP 18634889 A JP18634889 A JP 18634889A JP 18634889 A JP18634889 A JP 18634889A JP H0353006 A JPH0353006 A JP H0353006A
Authority
JP
Japan
Prior art keywords
hollow cylinder
graphite
thermal expansion
cylindrical body
hollow cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18634889A
Other languages
Japanese (ja)
Other versions
JP3008411B2 (en
Inventor
Kazushi Matsuura
松浦 一志
Masaji Ishihara
正司 石原
Toshio Karikomi
苅込 俊雄
Masao Fukazawa
深沢 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Toyo Carbon Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Toyo Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Toyo Carbon Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP1186348A priority Critical patent/JP3008411B2/en
Publication of JPH0353006A publication Critical patent/JPH0353006A/en
Application granted granted Critical
Publication of JP3008411B2 publication Critical patent/JP3008411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a double hollow cylindrical body without developing plastic deformation, breakage, etc., under high temp. by arranging thermal expansion releasing layer between an inside hollow cylinder of graphite material and an outside hollow cylinder of carbon fiber reinforcing carbon material arranged as fitting to the outside thereof. CONSTITUTION:A mold constituted of the double hollow cylindrical body consisting of the inside hollow cylinder composed of the graphite material and the outside hollow cylindrical mold composed of the carbon fiber reinforcing carbon material arranged as fitting so as to come into contact with the outer surface thereof, is formed. In this mold, sintering powder is charged and pressurized with a graphite piston while heating at about 1000-2400 deg.C and sintered. In the double hollow cylindrical body used for the above hot press, the thermal expansion releasing layer of expanding graphite sheet, etc., is arranged between the inside hollow cylinder having about 3-8X10<-6>/ deg.C coefficient of thermal expansion and the outside hollow cylinder having about 1.5X10<-6>/ deg.C coefficient of thermal expansion. By this method, the plastic deformation, breakage, etc., of the above double hollow cylindrical body under high temp. can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミックス粉体や超硬合金粉等を焼結する
ために用いられるホットプレス用の型や、高温雰囲気下
で使用される機械用治具、支持体等に用いられる二重中
空円筒体に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to hot press molds used for sintering ceramic powder, cemented carbide powder, etc., and machines used in high temperature atmospheres. This article relates to a double hollow cylinder used for tools, supports, etc.

(従来の技術) セラ旦ソクス粉体や超硬合金粉等の材料を焼結処理する
際に用いられるホットプレス法は、これらの材料を中空
円筒状のスリーブとモールドからなる型の中に載置し、
ピストンにより上部及び下部から一様な高圧を加えなが
ら材料を加熱し焼結する方法である。
(Prior technology) The hot press method used to sinter materials such as ceramic powder and cemented carbide powder involves placing these materials into a mold consisting of a hollow cylindrical sleeve and a mold. Place,
This is a method of heating and sintering the material while applying uniform high pressure from the top and bottom using a piston.

この様な方法において使用可能な型材料は加熱温度が1
000〜2400℃と非常に高温であるため、極めて制
限され、従来より黒鉛材料が使用されてきた。
The mold material that can be used in this method has a heating temperature of 1
Due to the extremely high temperature of 000 to 2400°C, graphite materials have traditionally been used.

黒鉛材料は高温下でも強度を維持し、不活性雰囲気下で
は化学的に極めて安定である等の好ましい材料であるが
、近年ホットプレス法において圧力操作を更に高圧にす
る傾向があり、黒鉛材料のみからなる型では強度の点で
問題があるということが顕在化してきたため、型、特に
モールドの肉厚を厚くする方法が考えられてきたが作業
性等で問題があり、決してよい解決策ではなかった。
Graphite material is a desirable material as it maintains its strength even under high temperatures and is extremely chemically stable under an inert atmosphere, but in recent years there has been a trend to use even higher pressures in the hot press method, and graphite materials alone It has become clear that molds made of molds have problems in terms of strength, so methods of increasing the thickness of molds, especially molds, have been considered, but there are problems with workability, etc., and this is by no means a good solution. Ta.

そこで高強度かつ薄肉化が可能な炭素繊維強化炭素材料
(以下C/Cコンポジソトと略す)が黒鉛製モールドの
代替材料として開発されてきた。
Therefore, a carbon fiber-reinforced carbon material (hereinafter abbreviated as C/C composite), which has high strength and can be made thin, has been developed as an alternative material for graphite molds.

すなわち従来の黒鉛材料製ホットプレス用型においては
、モールド(外型)の内側に、モールドの摩耗を防ぐこ
と、焼結品の着脱を容易に行なわれるようにすること、
及びモールドを焼結品との反応から保護すること等の理
由により、スリーブを設け、このスリーブの内側に焼結
粉を入れ、上下から黒鉛製ピストンを用いて焼結してい
る。そしてモールドをC/Cコンボジットで製造した型
も提案されている。
In other words, in conventional hot press molds made of graphite material, the inside of the mold (outer mold) is designed to prevent wear of the mold, to allow easy attachment and detachment of sintered products,
For reasons such as protecting the mold from reaction with the sintered product, a sleeve is provided, and sintering powder is placed inside this sleeve, and sintering is performed using graphite pistons from above and below. A mold made of a C/C composite has also been proposed.

(発明が解決しようとする課題) しかしながら、C/Cコンポジットからなるモールドと
黒鉛材料からなるスリーブとで構戊された型の場合はC
/Cコンボジットの熱膨張は一般に黒鉛材料の熱膨張に
比較して小さいため、この熱膨張差によりC/Cコンポ
ジソトからなるモールドが塑性変形を生じ実用化するに
は問題を有していた。
(Problem to be solved by the invention) However, in the case of a mold made of a C/C composite mold and a sleeve made of graphite material, C
Since the thermal expansion of the C/C composite is generally smaller than that of graphite materials, this difference in thermal expansion causes plastic deformation in molds made of the C/C composite, which poses a problem for practical use.

(課題を解決するための手段) そこで、本発明者等はかかる課題を解決すべく鋭意検討
した結果、異なる熱膨張係数を有する部林間に熱膨張に
よる堆積変化を吸収する層を設けることにより、かかる
問題点が解消されることを見い出し、本発明に到達した
(Means for Solving the Problems) Therefore, as a result of intensive studies to solve the problems, the present inventors have found that by providing a layer that absorbs sedimentation changes due to thermal expansion between areas having different coefficients of thermal expansion, The inventors have discovered that such problems can be solved, and have arrived at the present invention.

すなわち、本発明の目的は熱膨張係数の異なる材料で構
成された二重中空円筒体であって高温下で塑性変形ある
いは、欠損等を生じない実用性の高い二重中空円筒体を
提供することにある。
That is, an object of the present invention is to provide a highly practical double hollow cylindrical body that is made of materials with different coefficients of thermal expansion and that does not undergo plastic deformation or damage under high temperatures. It is in.

そしてその目的は、黒鉛材料からなる内側中空円筒と該
内側中空円筒の外表面と接する様に嵌合配置された炭素
繊維強化炭素材料からなる外側中空円筒で構成された二
重中空円筒体であって、該内側中空円筒と該外側中空円
筒との間に熱膨張緩和層を設けたことを特徴とする二重
中空円筒体、により容易に達威される。
The object is a double hollow cylinder consisting of an inner hollow cylinder made of graphite material and an outer hollow cylinder made of carbon fiber-reinforced carbon material that is fitted and arranged so as to be in contact with the outer surface of the inner hollow cylinder. This can be easily achieved by a double hollow cylinder characterized by providing a thermal expansion relaxation layer between the inner hollow cylinder and the outer hollow cylinder.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

まず、黒鉛材料からなる内側中空円筒は、常法によって
製造される。例えばコークス粉粒体と石炭、もしくは石
炭ピンチ、石油ピッチ等のピッチ類又はフェノール樹脂
、フラン樹脂等の樹脂類を、通常40〜130重量部の
範囲で混練する。この値は粒度によって異なるがコーク
スの平均粒径5μm程度のものであれば40〜70重量
部の範囲でl昆練するのが一般的である。またピンチ類
は混練を容易にするため120〜250℃の加温下で行
なうことが好ましい。
First, an inner hollow cylinder made of graphite material is manufactured by a conventional method. For example, coke powder and coal, or pitches such as coal pinch or petroleum pitch, or resins such as phenol resin and furan resin are kneaded, usually in a range of 40 to 130 parts by weight. This value varies depending on the particle size, but if the coke has an average particle size of about 5 μm, it is generally kneaded in a range of 40 to 70 parts by weight. In addition, pinching is preferably carried out under heating at 120 to 250°C in order to facilitate kneading.

次いで得られた混線物を型込め、押し出しラハープレス
等の常法により成型し、不活性雰囲気中800〜100
0℃で炭化処理を行ない、次いで1000〜3000℃
で黒鉛化する。更に必要に応じてフェノール樹脂、フラ
ン樹脂、エボキシ樹脂等の樹脂類又はピッチ類を含漫後
800〜1000℃で炭化処理という含浸一焼成処理を
複数回繰り返すかあるいはハロゲン炭化水素、炭化水素
等を気相中熱分解させて得られる熱分解炭素によって、
緻密化処理を施こしてもよい。この様にして得られた黒
鉛材料製の中空円筒は通常3〜8×10−”/’Cの熱
膨張係数を有する。
Next, the obtained mixed wire material is molded by a conventional method such as extrusion and Lahar press, and is heated to 800 to 100
Carry out carbonization treatment at 0℃, then 1000-3000℃
Graphitize with Furthermore, if necessary, after impregnating resins such as phenol resins, furan resins, and epoxy resins or pitches, carbonization treatment at 800 to 1000°C is repeated several times, or halogen hydrocarbons, hydrocarbons, etc. By pyrolytic carbon obtained by pyrolysis in the gas phase,
A densification treatment may also be performed. The hollow cylinder made of graphite material thus obtained usually has a coefficient of thermal expansion of 3 to 8 x 10-''/'C.

尚、中空円筒はその形状に特に限定されるものではなく
、用途に応じて若干の変化があってもよい。例えばホッ
トプレス用スリーブに用いる場合には、通常二分割され
て使用される。
Note that the shape of the hollow cylinder is not particularly limited, and may be slightly changed depending on the purpose. For example, when used as a hot press sleeve, it is usually divided into two parts.

次に、C/Cコンポジソトからなる外側中空円筒も通常
の手法で製造される。例えばピッチ系、PAN系あるい
はレーヨン系等の炭素繊維又は黒鉛繊維の長繊維束をフ
ェノール樹脂、フラン樹脂、エポキシ樹脂等の熱硬化性
樹脂類又はピッチ等の熱可塑性樹脂類に含浸した後、円
筒形の型に一定の角度並びに所定の肉厚に巻回する。次
いで硬化処理の必要な場合には150〜250℃で予め
硬化処理を行なった後脱型し、その他の場合には引き続
き脱型して、不活性雰囲気中800〜1000℃で炭化
処理を行ない、次いで1000〜3000℃で黒鉛化す
ることにより製造される。更に必要に応じて上述した様
な方法で緻密化処理を行ない強度の改良を行なってもよ
い。尚、緻密化処理の際に樹脂類、ピンチ頻に炭素又は
黒鉛微粉末を添加してもよい。そして緻密化後最終的に
IO00〜3000℃の温度で黒鉛化処理を行なう。
Next, an outer hollow cylinder made of C/C composite is also manufactured in a conventional manner. For example, after impregnating long fiber bundles of pitch-based, PAN-based, or rayon-based carbon fibers or graphite fibers in thermosetting resins such as phenolic resins, furan resins, and epoxy resins, or thermoplastic resins such as pitch, Wrap it around the mold at a certain angle and with a certain thickness. Then, if a hardening treatment is required, the mold is pre-hardened at 150 to 250°C and then demolded, and in other cases, the mold is subsequently demolded and carbonized at 800 to 1000°C in an inert atmosphere. It is then produced by graphitizing at 1000 to 3000°C. Furthermore, if necessary, the strength may be improved by performing densification treatment by the method described above. Incidentally, during the densification treatment, resins and a pinch of carbon or fine graphite powder may be added. After densification, graphitization treatment is finally performed at a temperature of IO00 to 3000°C.

この様にして得られた中空円筒は円周方向の熱膨張係数
1.5 X 1 0−”/’l:’以下を有している。
The hollow cylinder thus obtained has a coefficient of thermal expansion in the circumferential direction of less than or equal to 1.5 x 1 0-''/'l:'.

本発明はかかる黒鉛材料からなる内側中空円筒とC/C
コンポジソトからなる外側中空円筒からなる二重中空円
筒体であるが、かかる外側中空円筒はその内表面と内側
中空円筒の外表面とが接する様に嵌合されており、本発
明の特徴は各円筒同士の間に熱膨張緩和層を設けたこと
にある。
The present invention provides an inner hollow cylinder made of such a graphite material and a C/C
This is a double hollow cylinder body consisting of an outer hollow cylinder made of composite material, and the outer hollow cylinder is fitted so that its inner surface and the outer surface of the inner hollow cylinder are in contact with each other. The reason is that a thermal expansion relaxation layer is provided between them.

この熱膨張緩和層を構成する材料としては各円筒の熱膨
張差による体積変化を吸収できるものであればよく、具
体的に膨張黒鉛シート、炭素・黒鉛繊維の織物(二次元
、三次元〉や積層剤(織物積層材、一方向積層材)、フ
エルト材等が挙げられ、これらは通常応力に対して弾力
性に冨んだものが使用されるが、更にこれらにピッチや
フェノール樹脂等を含浸・硬化・炭化処理後1000〜
3 0 0 0 ’cの温度で加熱処理して弾力性を調
整したものを使用してもよい。
The material constituting this thermal expansion relaxation layer may be any material as long as it can absorb the volume change due to the difference in thermal expansion of each cylinder, and specific examples include expanded graphite sheets, carbon/graphite fiber fabrics (two-dimensional, three-dimensional), etc. Examples include laminating agents (fabric laminated materials, unidirectional laminated materials), felt materials, etc. These materials are usually used that have high elasticity against stress, but they can also be impregnated with pitch, phenolic resin, etc.・1000~ after hardening/carbonization treatment
A material whose elasticity has been adjusted by heat treatment at a temperature of 3000'c may also be used.

かかる熱膨張緩和層の形状としては、外側中空円筒と内
側中空円筒との間に隙間が生じない様なものであれば特
に限定されるものではない。
The shape of the thermal expansion relaxation layer is not particularly limited as long as it does not create a gap between the outer hollow cylinder and the inner hollow cylinder.

熱膨張緩和層の収縮率は初期の厚さと圧縮応力下の厚さ
の比によって求め、2 0 0 kt7am2圧縮応力
に対して40〜60%が望ましい。さらに復元率は初期
の厚さと圧縮応力下の厚さの差と圧縮応力負荷、除荷後
の厚さと圧縮応力下の厚さの差の比によって求め、2 
0 0 kg/cm”の圧縮応力に対して20%以上が
使用されるが前記数値は特にこの範囲に制限されるもの
ではない。
The shrinkage rate of the thermal expansion relaxation layer is determined by the ratio of the initial thickness to the thickness under compressive stress, and is preferably 40 to 60% with respect to 200 kt7 am2 compressive stress. Furthermore, the recovery rate is determined by the ratio of the difference between the initial thickness and the thickness under compressive stress, the loading of compressive stress, and the difference between the thickness after unloading and the thickness under compressive stress.
20% or more is used for a compressive stress of 0.00 kg/cm'', but the above numerical value is not particularly limited to this range.

尚、本発明をホットプレス用型に適用した場合には、前
記熱膨張緩和層をC/Cコンポジットと(外型として使
用、熱膨張係数1. 5 X 1 0−”/’C以下)
黒鉛スリーブ(内型として使用、熱膨張係数3〜8 x
 1 0−’/℃)の中間に配置し、セラξソクス粉体
を充填後ホットプレス炉内に入れ、所定温度まで昇温、
加圧焼結した時、熱膨張緩和材が熱膨張差を解消できる
In addition, when the present invention is applied to a hot press mold, the thermal expansion relaxation layer is combined with a C/C composite (used as an outer mold, thermal expansion coefficient of 1.5 X 1 0-''/'C or less).
Graphite sleeve (used as inner mold, coefficient of thermal expansion 3-8 x
1 0-'/℃), filled with Cerasox powder, placed in a hot press furnace, heated to a predetermined temperature,
When pressure sintered, the thermal expansion moderating material can eliminate the difference in thermal expansion.

(実施例) 実施例1 1″のテーパーをもち平均外径63+n/mの円筒体を
マンドレルとして用い、炭素繊維4000フィラメント
のメソフェーズピッチをフェノール樹脂(郡栄化学■製
,“レジトップ”PL221))を含浸した後、フィラ
メントワインディング法により巻き角度89″にて、平
均外径73m/mまで巻きつけた。この戒形体を200
℃まで昇温硬化した。次に不活性雰囲気下で1000℃
まで昇温しマトリソクスを炭化した。その後アルゴン雰
囲気中において2400℃まで昇温し、炭素繊維及びマ
トリソクスを黒鉛化した.このC/Cコンボジットは、
緻密化のため含浸用ピッチ(コールタールピッチ,三菱
化成■製〉を含浸し、前記条件でマトリックスを炭化及
び黒鉛化した。この操作を5回くり返し実施して、平均
外径13rm/m平均内径63m/m高さ43m/mの
中空円筒状C/Cコンポジッ1・を得た.このC/Cコ
ンボジットは熱膨張係数0. I X 1 0−”/”
Cを有する。
(Example) Example 1 Using a cylindrical body with a 1" taper and an average outer diameter of 63+n/m as a mandrel, mesophase pitch of carbon fiber 4000 filament was coated with phenol resin (manufactured by Gunei Kagaku, "Regitop" PL221) ) was impregnated, and then wound by filament winding method at a winding angle of 89'' to an average outer diameter of 73 m/m. 200 of this precept form
The temperature was raised to ℃ and cured. Then at 1000℃ under an inert atmosphere.
The matrix was carbonized. Thereafter, the temperature was raised to 2400°C in an argon atmosphere to graphitize the carbon fibers and matrix. This C/C composite is
For densification, impregnation pitch (coal tar pitch, manufactured by Mitsubishi Kasei ■) was impregnated, and the matrix was carbonized and graphitized under the above conditions.This operation was repeated 5 times to obtain an average outer diameter of 13 rm/m and an average inner diameter of 13 rm/m. A hollow cylindrical C/C composite 1.63 m/m in height and 43 m/m in height was obtained. This C/C composite has a thermal expansion coefficient of 0. I
It has C.

一方、黒鉛スリーブは、等方製黒鉛(“AX650”.
東洋カーボン特製)で作られ、形状は平均外径6 2m
/m 、内径45m/m、高さ55m/mであり、熱膨
張係数5. I X 1 0−’/’Cを持つ。熱膨張
緩和のための中間素材は、膨張黒鉛シート(UCC社製
“GRAFO I L”)を用いた。厚さ0843m/
mの黒鉛シートを黒鉛スリーブ外周部全面に密着した。
On the other hand, the graphite sleeve is made of isotropic graphite ("AX650".
Made from Toyo Carbon (specially manufactured by Toyo Carbon), the shape has an average outer diameter of 6.2m.
/m2, inner diameter 45m/m, height 55m/m, and thermal expansion coefficient 5. It has I X 1 0-'/'C. An expanded graphite sheet ("GRAFO I L" manufactured by UCC) was used as an intermediate material for relaxing thermal expansion. Thickness 0843m/
A graphite sheet of m was tightly attached to the entire outer periphery of the graphite sleeve.

これを前記C/Cコンポジソトの内側にセットした。This was set inside the C/C composite.

従って円筒外側にC/Cコンポジソト、内側には黒鉛ス
リーブがあり、その中間に厚さ0.43m/nの膨張黒
鉛シート(熱膨張緩和材)が配置されている。
Therefore, there is a C/C composite on the outside of the cylinder, a graphite sleeve on the inside, and an expanded graphite sheet (thermal expansion moderating material) with a thickness of 0.43 m/n is placed in the middle.

C/Cコンポジットの内径、黒鉛スリーブの外径には、
l゜のテーパーがつけてあり、万能試験機にて15kg
の荷重で黒鉛スリーブ端面に荷重を加えてC/Cコンボ
ジソト、膨張黒鉛シート、黒鉛スリーブを密着させた. これを高温熱処理炉に入れ、アルゴン雰囲気中1700
℃まで昇温し、1700℃3時間保持後、常温まで冷却
したあと取り出し、黒鉛スリーブおよび膨張黒鉛シート
をはずし、C/Cコンポジットの内径寸法変化を測定し
た。結果を表1に示す。
The inner diameter of the C/C composite and the outer diameter of the graphite sleeve are as follows:
It has a l° taper and weighs 15kg on a universal testing machine.
A load was applied to the end face of the graphite sleeve to bring the C/C composite, expanded graphite sheet, and graphite sleeve into close contact. This was placed in a high-temperature heat treatment furnace and heated to 1700°C in an argon atmosphere.
The temperature was raised to 1700°C, held for 3 hours, cooled to room temperature, taken out, the graphite sleeve and expanded graphite sheet were removed, and changes in the inner diameter of the C/C composite were measured. The results are shown in Table 1.

比較例1 C/Cコンポジットと黒鉛スリーブを、実施例lと同じ
材質を用い、同様の方法で作製した。これらの熱膨張係
数はそれぞれ0. 1 X 1 0−”/’c、5. 
I X 1 0−’/’Cの値を有していた。C/Cコ
ンポジットと黒鉛スリーブは実施例lのホットプレス法
とまったく同様に組み合わされた。即ち、C/Cコンボ
ジットに黒鉛スリーブを直接挿入した。
Comparative Example 1 A C/C composite and a graphite sleeve were produced using the same materials and in the same manner as in Example 1. Each of these thermal expansion coefficients is 0. 1 X 1 0-”/'c, 5.
It had a value of IX10-'/'C. The C/C composite and graphite sleeve were assembled exactly as in the hot press method of Example 1. That is, a graphite sleeve was directly inserted into the C/C composite.

従って黒鉛スリーブに平均外径631lノ1m内径45
m/m高さ55m/mのものを使用している他は、実施
例1と同様の形状である。挿入したあとに万能試験機に
て15kgの荷重で黒鉛スリーブ端面に荷重を加え、黒
鉛スリーブをC/Cコンボジソト内に密着させた。実施
例lと同様、高温熱処理炉に入れ、アルゴン雰囲気中1
700″Cまで昇温し、1700℃3時間の保持の後、
常温まで冷却後、取り出し、黒鉛スリーブをはずし、C
/Cコンボジソトの内径寸法変化を測定した6結果を表
1に示す。
Therefore, the graphite sleeve has an average outer diameter of 631 l and an inner diameter of 45 m.
The shape is the same as in Example 1 except that a height of 55 m/m is used. After insertion, a load of 15 kg was applied to the end face of the graphite sleeve using a universal testing machine to bring the graphite sleeve into close contact with the inside of the C/C composite. As in Example 1, it was placed in a high-temperature heat treatment furnace and heated in an argon atmosphere.
After raising the temperature to 700″C and holding it at 1700°C for 3 hours,
After cooling to room temperature, take it out, remove the graphite sleeve, and
Table 1 shows the six results of measuring changes in the inner diameter of the /C composite.

実施例2 1″のテーパーをもち、平均外径190m/mの円筒体
をマンドレルとして、炭素繊維に4000フィラメント
のメソフェーズピッチを使用し、フェノール樹脂(郡栄
化学■製,“レジトップ”PL221))を含浸した後
、フィラメントワインディング法により巻き角度896
にて平均外径240m/mまで巻きつけた。この戒形体
は、その後前記実施例1と同一の条件を経て平均外径2
40m/m平均内径190m/m高さ250m/mの中
空円筒状C/Cコンボジットとした.このC/Cコンボ
ジットの熱膨張係数は0. I X 1 0−’/’C
であった。
Example 2 A cylindrical body with a 1" taper and an average outer diameter of 190 m/m was used as a mandrel, and 4000 filament mesophase pitch was used for carbon fiber, and phenol resin (manufactured by Gunei Kagaku ■, "Regitop" PL221) was used. ), the winding angle is 896 by the filament winding method.
It was wound to an average outer diameter of 240 m/m. This precept-shaped body was then subjected to the same conditions as in Example 1, with an average outer diameter of 2.
A hollow cylindrical C/C composite with an average inner diameter of 40 m/m and an average inner diameter of 190 m/m and a height of 250 m/m was used. The thermal expansion coefficient of this C/C composite is 0. I X 1 0-'/'C
Met.

一方、内部に挿入する黒鉛スリーブは、実施例1と同様
の等方性黒鉛(“AX650”,東洋カーボン■製)、
平均外径189m/m内径135m/m高さ270m/
mを使用した。この黒鉛スリーブの熱膨張係数は5. 
1 x 1 0−6/’cであった。熱膨張緩和のため
の中間素材は、前記実施例1と同し膨張黒鉛シー}<v
cc社製″GRAFO I L”)を用いた.厚さ0.
50m/mの膨張黒鉛シートを黒鉛スリーブ外周部全面
に密着し、前記C/Cコンボジソトの内側にセットした
。C/Cコンポジソトの内径、黒鉛スリーブの外径には
、■6のテーバーがつけてある。C/Cコンポジットの
内側に膨張黒鉛シート、その内側に黒鉛スリーブを配置
し、それぞれは隙間のないよう充分に密着してある。
On the other hand, the graphite sleeve inserted inside is the same isotropic graphite as in Example 1 ("AX650", manufactured by Toyo Carbon ■),
Average outer diameter 189m/m Inner diameter 135m/m Height 270m/
m was used. The coefficient of thermal expansion of this graphite sleeve is 5.
It was 1 x 10-6/'c. The intermediate material for thermal expansion relaxation is the same expanded graphite sheet as in Example 1}<v
"GRAFO I L" manufactured by cc was used. Thickness 0.
A 50 m/m expanded graphite sheet was tightly attached to the entire outer circumference of the graphite sleeve and set inside the C/C composite. A taper of ■6 is attached to the inner diameter of the C/C composite and the outer diameter of the graphite sleeve. An expanded graphite sheet is placed inside the C/C composite, and a graphite sleeve is placed inside the expanded graphite sheet, and the two are placed in close contact with each other with no gaps.

こうして得た、次に黒鉛スリーブ内側に窒化ホウ素(ス
タルク社製,粒径0.5μm)を960g入れ上部及び
下部に黒鉛ピストンをセント、予備加圧後ホントプレス
内にセットした。炉内で不活性雰囲気中で温度1700
℃まで昇温し、1700℃3時間保持、圧力4 Q O
 kg/ctn2で窒化ホウ素を加圧焼結した。これは
常温まで冷却したあと、焼結体、黒鉛スリーブおよび膨
張黒鉛シートをは丁し、C/Cコンボジットの内径寸法
変化を測定した。結果を表1に示す。
Next, 960 g of boron nitride (manufactured by Starck, particle size: 0.5 μm) was placed inside the graphite sleeve obtained in this way, graphite pistons were placed at the top and bottom, and after preliminary pressurization, the tube was set in a real press. Temperature 1700 in inert atmosphere in furnace
Raise the temperature to ℃, hold at 1700℃ for 3 hours, pressure 4 Q O
Boron nitride was pressure sintered at kg/ctn2. After this was cooled to room temperature, the sintered body, graphite sleeve, and expanded graphite sheet were separated, and the change in the inner diameter dimension of the C/C composite was measured. The results are shown in Table 1.

比較例2 C/Cコンポジソトと黒鉛スリーブを、実施例2と同し
材質を用い、同様の方法で作製した。これらの熱膨張係
数はそれぞれ0. l x l O−6/℃、5. l
 x L O−6,z”cであった。前記C/C:1)
7ボジントと黒鉛スリーブは、直接密着させた。
Comparative Example 2 A C/C composite and a graphite sleeve were manufactured using the same materials and in the same manner as in Example 2. Each of these thermal expansion coefficients is 0. l x l O-6/°C, 5. l
x L O-6,z”c. Said C/C: 1)
7 The bosint and graphite sleeve were brought into direct contact with each other.

従って黒鉛スリーブに平均外径190m/m内径135
m/m高さ270m/mを使用している他、C/Cコン
ボジソトは実施例2と同様の形状である。
Therefore, the graphite sleeve has an average outer diameter of 190 m/m and an inner diameter of 135 m/m.
The C/C combo has the same shape as in Example 2, except that the m/m height is 270 m/m.

次にこれは実施例2と同様、窒化ホウ素(スタルク社製
、粒径0. 5μm)960gを黒鉛スリーブ内に入れ
、上部及び下部に黒鉛ピストンをセントした、他は実施
例2と同一条件にて窒化ホウ素を加圧焼結した。
Next, as in Example 2, 960 g of boron nitride (manufactured by Starck, particle size 0.5 μm) was placed in a graphite sleeve, and graphite pistons were placed in the upper and lower parts, but the other conditions were the same as in Example 2. Boron nitride was sintered under pressure.

これを常温まで冷却したあと、焼結体、黒鉛スリーブを
はずし、C/Cコンボジットの内径寸法変化を測定した
。結果を表1に示す。
After cooling this to room temperature, the sintered body and graphite sleeve were removed, and changes in the inner diameter of the C/C composite were measured. The results are shown in Table 1.

表1からわかるように熱膨張緩和材をC/Cコンボジソ
トモールドと黒鉛スリーブの中間に用いた場合は、内径
の寸法変化(膨張)は認められるず膨張黒鉛シートが収
縮した。
As can be seen from Table 1, when the thermal expansion moderating material was used between the C/C composite soto mold and the graphite sleeve, no dimensional change (expansion) in the inner diameter was observed and the expanded graphite sheet shrank.

一方、比較例で示したものはそれぞれ、内径の寸法変化
(膨張)が認められた。
On the other hand, in each of the comparative examples, a dimensional change (expansion) in the inner diameter was observed.

以上から熱膨張緩和材の効果が明らかとなった。From the above, the effect of the thermal expansion moderating material has become clear.

Claims (2)

【特許請求の範囲】[Claims] (1)黒鉛材料からなる内側中空円筒と該内側中空円筒
の外表面と接する様に嵌合配置された炭素繊維強化炭素
材料からなる外側中空円筒で構成された二重中空円筒体
であって、該内側中空円筒と該外側中空円筒との間に熱
膨張緩和層を設けたことを特徴とする二重中空円筒体。
(1) A double hollow cylindrical body composed of an inner hollow cylinder made of graphite material and an outer hollow cylinder made of carbon fiber-reinforced carbon material that is fitted and arranged so as to be in contact with the outer surface of the inner hollow cylinder, A double hollow cylinder, characterized in that a thermal expansion relaxation layer is provided between the inner hollow cylinder and the outer hollow cylinder.
(2)二重中空円筒体が、ホットプレス用型である請求
項1記載の二重中空円筒体。
(2) The double hollow cylindrical body according to claim 1, wherein the double hollow cylindrical body is a hot press mold.
JP1186348A 1989-07-19 1989-07-19 Double hollow cylinder Expired - Lifetime JP3008411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186348A JP3008411B2 (en) 1989-07-19 1989-07-19 Double hollow cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186348A JP3008411B2 (en) 1989-07-19 1989-07-19 Double hollow cylinder

Publications (2)

Publication Number Publication Date
JPH0353006A true JPH0353006A (en) 1991-03-07
JP3008411B2 JP3008411B2 (en) 2000-02-14

Family

ID=16186784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186348A Expired - Lifetime JP3008411B2 (en) 1989-07-19 1989-07-19 Double hollow cylinder

Country Status (1)

Country Link
JP (1) JP3008411B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528037A (en) * 2011-12-30 2012-07-04 宁波江丰电子材料有限公司 Sintering mold and manufacturing method thereof
JP2016168676A (en) * 2015-03-11 2016-09-23 日本碍子株式会社 Jig and molding tool
JP2019112698A (en) * 2017-12-25 2019-07-11 イビデン株式会社 Manufacturing method of sintered magnetic and mold for hot press
JP2021046339A (en) * 2019-09-19 2021-03-25 イビデン株式会社 Carbon composite

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123313A (en) * 1997-10-21 1999-05-11 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizing plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492116A (en) * 1972-04-20 1974-01-10
JPS6267734U (en) * 1985-10-16 1987-04-27
JPS62107907U (en) * 1985-12-25 1987-07-10
JPH02136026U (en) * 1989-04-18 1990-11-13

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492116A (en) * 1972-04-20 1974-01-10
JPS6267734U (en) * 1985-10-16 1987-04-27
JPS62107907U (en) * 1985-12-25 1987-07-10
JPH02136026U (en) * 1989-04-18 1990-11-13

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528037A (en) * 2011-12-30 2012-07-04 宁波江丰电子材料有限公司 Sintering mold and manufacturing method thereof
JP2016168676A (en) * 2015-03-11 2016-09-23 日本碍子株式会社 Jig and molding tool
JP2019112698A (en) * 2017-12-25 2019-07-11 イビデン株式会社 Manufacturing method of sintered magnetic and mold for hot press
JP2021046339A (en) * 2019-09-19 2021-03-25 イビデン株式会社 Carbon composite

Also Published As

Publication number Publication date
JP3008411B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
KR101472850B1 (en) High-temperature-resistant composite
US4581263A (en) Graphite fiber mold
US20080025906A1 (en) Method for Preparing a Carbon/Carbon Composite
CN112225575B (en) High-performance carbon/carbon combined hot pressing die
JPH01252577A (en) Production of carbon/carbon composite material
CN113416087B (en) Preparation method of high-strength combined carbon/carbon hot-pressing mold
US3728423A (en) Matching the volume shrinkage of organic fibers to that of the resin matrix in carbon or graphite composites
JPH0353006A (en) Double hollow cylindrical body
US3295559A (en) Induction heating susceptor and method for producing same
JP3203651B2 (en) Double hollow cylinder made of carbon fiber reinforced carbon composite
JPH01224570A (en) Press cylinder of high temperature high pressure pressing machine
CN113927714A (en) Carbon-carbon combined hot-pressing mold and preparation method thereof
JPH04149067A (en) Double hollow cylinder made of carbon
JPS6360156A (en) High carbon composite material
JP2762291B2 (en) Manufacturing method of carbonaceous push rod
JPH0754260Y2 (en) Press cylinder of high temperature high pressure press
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPH0627615Y2 (en) Press cylinder of high temperature high pressure press
JPH0788261B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JPH0455991B2 (en)
CN117776756A (en) Preparation process of high-performance carbon-carbon composite material
JPH03261661A (en) Production of carbon fiber-reinforced carbon composite material
JPH03271163A (en) Carbon fiber/carbon composite material and production thereof
JPH0426547A (en) Production of carbon reinforced carbon composite material