JP4245725B2 - High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same - Google Patents

High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same Download PDF

Info

Publication number
JP4245725B2
JP4245725B2 JP08851899A JP8851899A JP4245725B2 JP 4245725 B2 JP4245725 B2 JP 4245725B2 JP 08851899 A JP08851899 A JP 08851899A JP 8851899 A JP8851899 A JP 8851899A JP 4245725 B2 JP4245725 B2 JP 4245725B2
Authority
JP
Japan
Prior art keywords
carbon fiber
sheet
molding furnace
spun yarn
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08851899A
Other languages
Japanese (ja)
Other versions
JPH11343177A (en
Inventor
慶宜 鈴木
直恭 松村
賢司 島崎
哲郎 繁井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP08851899A priority Critical patent/JP4245725B2/en
Publication of JPH11343177A publication Critical patent/JPH11343177A/en
Application granted granted Critical
Publication of JP4245725B2 publication Critical patent/JP4245725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維強化炭素複合材料からなる高温加圧成型炉部材に関するものである。更に詳しくは、セラミックスの焼結等に好適に用いられる取扱性、耐久性に優れた円筒状の高温加圧成型炉部材に関するものである。
【0002】
【従来の技術】
従来高温(1000〜3000℃)下で用いられる耐熱部材としては、耐熱金属或いは黒鉛材が使用されてきたが、耐熱金属は1600℃以上の高温下では強度が低下し、また、黒鉛材は引張強度が低いために、容積が大きく且つ重量が過大となる。
【0003】
このため近年、炭素繊維で強化した炭素材料、即ち炭素繊維強化炭素複合材料(以下「C/C」と略す)が、高強度の耐熱部材として種々の分野で実用化されてきている。
また、C/Cを炉材に用いることで、従来の材料と比較して体積を減少させることができるため、従来の大きさの装置でより大きな成型品が得ることや、同じ大きさの成型品の場合にはより小型の装置で得ること、そして、炉材自体の軽量化が可能となるという利点も持っている。
【0004】
C/C製の耐熱容器として、特開平9−30869号にフィラメントワイディング法(以下「FW法」と略す)による円筒状耐熱容器の製造方法が開示されている。FW法によるC/Cの製造は、連続繊維の使用により非常に高強度の製品が得られる反面、炭素繊維束をマンドレルに巻き付けて製造するために、C/Cの前駆体(中間形態)であるプリフォームの製造に長時間を要する事が多く、コスト高になる問題がある。
【0005】
また、連続繊維を用いたシートあるいは連続繊維束を用いた織物をシートワインド法により積層したプリフォームの成形・硬化においては、繊維とマトリックス樹脂の伸張・収縮率の差によりシートあるいは織物の積層間の剥離が発生しやすいという問題があった。
【0006】
FW法ならびに連続繊維シートもしくは連続繊維束を用いた織物を用いて製作されたC/Cにおいては、繰り返し使用に際し連続繊維の端末がささくれ立ち、取り扱い性に問題を生じていた。
【0007】
また、繊維の剥離或いは脱離の少ない材料として、従来から航空機ブレーキ材のような摩擦材料には短繊維紡績糸織物が使用されてきた。
ストランドのささくれ立ち防止のためにこの短繊維紡績糸織物を使用することもできるが、引張強度が低く、高温加圧成型炉部材に用いた場合には、使用時に変形、破損等が生じるという問題点がある。
【0008】
【発明の目的】
本発明は、これらの課題を克服するため、強度低下の要因となる製造時の積層間の剥離を防止し、長時間の繰り返し使用にも耐え得るだけの強度を有し、且つささくれ立ち等の問題の無いC/Cからなる高温加圧成型炉用部材を提供すること、且つその製造方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明のC/Cからなる高温加圧成型炉部材は、次の構成からなる。
【0010】
(請求項1)
周方向に巻回積層された炭素繊維シートの強化層を有する炭素繊維強化炭素複合材料からなる円筒状の高温加圧成型炉部材であり、且つ前記の強化層が少なくとも3層にて構成され、内層と外層とが下記aを巻回積層した強化層で、中間層が下記aとbとを交互に巻回積層した複合強化層であることを特徴とし、熱分解炭素質をマトリックスとする高温加圧成型炉部材。
a:短繊維紡績糸から構成される炭素繊維シート
b:連続繊維又は連続繊維束を含む炭素繊維シート
(請求項2)炭素繊維シートaが短繊維紡績糸織物である請求項1記載の高温加圧成型炉部材。
(請求項3)炭素繊維シートaにおける短繊維紡績糸が表面に露出している織物であることを特徴とする請求項1記載の高温加圧成型炉部材。
(請求項4)炭素繊維シートaにおける短繊維紡績糸織物の経糸又は緯糸が周方向に配向していることを特徴とする請求項1記載の高温加圧成型炉部材。
(請求項5)炭素繊維シートbが連続繊維又は連続繊維束から構成される一方向配向シートもしくは織物である請求項1記載の高温加圧成型炉部材。
(請求項6)炭素繊維シートbを構成する連続繊維又は連続繊維束が周方向に配向していることを特徴とする請求項1記載の高温加圧成型炉部材。
(請求項7)周方向に巻回積層された炭素繊維シートで強化されている炭素繊維強化炭素複合材料からなる円筒状の高温加圧成型炉部材の製造方法において、aをマンドレルに巻回して内層を形成した後、aとbを重ねたシートを巻回して中間層を形成し、更にaを巻回して外層を形成した後、プリフォーム作製時のいずれかの段階で炭素繊維シート材に含浸した熱分解炭素質の前駆体となる樹脂を加熱硬化して少なくとも3層構造の円筒状物を形成後、不活性雰囲気中で熱処理することを特徴とする請求項1乃至請求項6記載の高温加圧成型炉部材の製造方法。
a:短繊維紡績糸から構成される炭素繊維シート
b:連続繊維又は連続繊維束を含む炭素繊維シート
【0011】
本発明のC/Cからなる円筒状の高温加圧成型炉部材は、周方向に巻回積層されたシート状炭素繊維材の強化層の外層及び内層に短繊維紡績糸を用いたシートが配されているため、ストランド端末のささくれ立ちがなく、また、連続繊維を用いたシート層を内部に配置しているので、高温加圧成型炉部材として使用した場合の耐圧性が高い効果を有している。
【0012】
さらに、連続繊維シートと短繊維紡績糸シートを交互に積層した構造を有する中間層のため、中間層を構成する各層を薄くすることができ、また、短繊維紡績糸が熱による伸縮を吸収するため積層間の剥離が発生しにくい効果を有する。
本発明の構成は、上記の層構造を1単位とし繰り返し積層しても良い。
【0013】
【発明の概要】
以下、本発明をその構成に基づいて説明する。
本発明において使用される炭素繊維は、石油系ピッチ、石炭系ピッチ、リグニン系ピッチ及び芳香族系合成ピッチからなる群より選ばれる等方性ピッチから得られた繊維、ポリアクリロニトリル繊維、レーヨン繊維、フェノール樹脂繊維から常法に従い誘導されたものである。
【0014】
本発明における炭素繊維短繊維紡績糸シートは、炭素繊維短繊維紡績糸の不織布、織物、編み物、一方向配向シート等のいずれの形態でも良い。
嵩高性や、経糸および緯糸がそれぞれ拘束して繊維の解れを防止する点から、特に織物が好ましい。短繊維紡績糸であることによって、解れたときにシートもしくはヤーン単位で分離するため、皮膚に対する刺激が少ない。これによって使用時、製造時に於いて応力集中の吸収と変形防止の効果がある。
また織物であることによって、ヤーン相互の拘束が強くこのため繊維の解れを防止する効果がある。
【0015】
炭素繊維短繊維紡績糸織物の組織は、平織り、綾織り、朱子織りの何れでも良い。通常は、織物の経糸、緯糸共に炭素繊維の紡績糸にて構成されているものが使用される。
炭素繊維短繊維紡績糸織物の配向は、高温加圧成型炉部材の周方向と経糸又は緯糸が一致するように配設するのが好ましい。
炭素繊維短繊維紡績糸織物は紡績糸と連続繊維束の双方から構成される織物を使用することが出来る。この場合連続繊維束を経糸として使用し緯糸に紡績糸を使用した織物であり、連続繊維束で構成された経糸が円筒の周方向に配向する様に配置するのがよい。
また、連続繊維束と短繊維紡績糸とからなる織物にて構成した場合、炭素繊維シートにおける短繊維紡績糸が表面に露出している織物であることが好ましい。
【0016】
炭素繊維短繊維紡績糸シートの目付は100〜500g/m2のものが好適である。
その理由は100g/m2未満では、シートが薄くなり、巻回積層に時間がかかり、また層間剥離が生じ易くなり量産には不向きである。
一方、500g/m2を超えると一層毎の厚みが増し、巻回積層時に層間剥離が生じ易くなると共に、プリプレグの製造時に溶剤除去が困難になり、硬化時或いは炭素化時に層間剥離の原因となるからである。
【0017】
この炭素繊維短繊維紡績糸シートに用いる炭素繊維紡績糸は、原料有機繊維から炭素繊維に至るいずれかの段階で短繊維となし、これを紡績して紡績糸としたものを、製織及び炭化することにより得られる。
【0018】
例えば、代表的な炭素繊維であるアクリル系炭素繊維紡績糸の場合、原料有機繊維であるアクリロニトリル繊維を酸化性雰囲気中で耐炎化処理後切断工程を経て耐炎繊維の紡績糸となし、次いで不活性雰囲気中で炭化することにより得られる。b
【0019】
特に、炭素繊維短繊維紡績糸織物は、先ず炭素化する前の耐炎化糸を短繊維に切断し、紡績糸とした後に織物とし、この織物を1000℃以上の不活性雰囲気中にて焼成して炭素化した場合に、伸縮性に富み、また柔軟性を有しドレープ性も高い織物が得られる。
【0020】
本発明における連続繊維シートは、一方向配向シート、織物等である。
一方向配向連続繊維シートは、炭素繊維の連続繊維が一方向に配向した、所謂UDシートである。
織物は、炭素繊維の連続繊維束を平織り、綾織り、朱子織りにした炭素繊維織物シートである。使用する炭素繊維の引張強度は3GPa、弾性率は200GPa以上のものが好ましい。
これは、引張強度については耐圧容器、例えばセラミックス焼結用容器では、温度1000〜2000℃、円筒内部に圧力10〜30MPaがかかるからである。
【0021】
一方向炭素繊維シートの繊維目付は100〜500g/m2のものが望ましい。
この理由としては、目付が100g/m2未満では、プリプレグ製造時に目開きが発生しやすく、C/C製造時或いは使用時に層間剥離等が生じ強度上問題となる。一方、500g/m2を超えると厚さが増し、プリプレグの製造時に溶剤除去が困難になり、硬化時或いは炭素化時に層間剥離の原因となるからである。
【0022】
本発明におけるプリプレグは、後の熱処理でC/Cのマトリックスを構成する熱分解炭素質を誘導する熱硬化性樹脂等の樹脂を、例えば、含浸浴と呼ばれる装置を通過させることで予め均一に炭素繊維シートに付着せしめたものである。樹脂を均一に付着させる方法は様々な方法があり、限定されない。
プリプレグの製造方法は、炭素繊維がシートを形成する前に均一に樹脂を付着せしめた炭素繊維をシート状に加工する方法。炭素繊維をシート状に加工した後に、均一に樹脂を付着せしめる方法とがある。
【0023】
以下、本発明において用いられる炭素繊維短繊維紡績糸シート或いは連続繊維シート等の炭素繊維シートには、炭素繊維のみから構成されるシート及び炭素繊維と樹脂等から構成されるプリプレグの双方、もしくはどちらか一方を表すものとする。
【0024】
本発明において熱分解炭素質とは、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエーテル樹脂、ビスマレイミド樹脂、トリアジン樹脂等の熱硬化性樹脂、等方性ピッチ、異方性ピッチ等の有機化合物が不活性雰囲気中で熱処理されることによって生じる主に炭素からなる無定形炭素並びに黒鉛のことである。
【0025】
以上の樹脂や有機化合物は熱分解時の炭素収率が高いものが好ましく、50%以上となるものがより好ましい。また、30%以下のものを用いると、熱分解時の急激な体積の減少やマトリックスの形態保持効果の低下に伴い、変形が起こりやすくなる。
熱分解炭素質からなるマトリックスは、無定形であっても黒鉛であっても良いが、使用する温度と環境により黒鉛である方が耐久性が増加するため好ましい。
【0026】
C/Cの製造においては、炭素繊維シートとフェノール樹脂等前記熱硬化性樹脂からなるプリフォームを熱硬化並びに不活性雰囲気中で炭化または黒鉛化処理を行い、更に密度を上げるため、炭化、黒鉛化する際に熱硬化性樹脂の熱分解によって生じた空隙に再び樹脂やピッチを含浸しおよび/またはCVIによって炭化、黒鉛化し、緻密化処理を複数回繰り返すことが行われる。
【0027】
一方向炭素繊維シート、炭素繊維短繊維紡績糸シート共に目付の低いものを多層巻回積層するのが上記の熱処理中における層間剥離を防止する点で好ましい。また、一方向炭素繊維シート/炭素繊維短繊維紡績糸シートの目付の比は、特に問題とはならないが、上記目付で得られる最大比と最小比という観点から「1/(1〜5)」が望ましい。
【0028】
【発明の実施の形態】
本発明のC/Cからなる高温加圧成型炉部材の積層構成を図面によって説明する。
図1は、本発明のC/Cからなる高温加圧成型炉部材の断面概念図を示したものである。図1において各部位は次の通りである。
A:外層、B:中間層、C:内層
AとCに炭素繊維短繊維紡績糸織物を用いる場合は、織物の経糸或いは緯糸の方向が、円筒状の部材の軸方向に対し0度(軸方向)或いは90度方向に一致するように配設するのがよい。
【0029】
織物の打ち込み本数が経糸と緯糸で異なる場合は、打ち込み本数が多い方を円筒の周方向に一致させるように配設するのがよい。これは、使用時には円筒の周方向に力が掛かるからであり、この力を効率よく吸収するには、円筒の周方向の繊維配列をより密にする方が効果的であるとの理由による。
巻回時の生産効率の面から、緯糸より経糸の織り密度が高い織物を用いるのが好ましい。
【0030】
Bは、炭素繊維短繊維紡績糸シートと連続繊維シートとが、一層ごとに交互になるように積層された複合強化層であり、しかも各層は連続し少なくとも一周以上、巻回していることが必要である。その理由は一周以上巻回させなければ、高内圧が負荷したときに膨張に耐えられず、耐圧炉部材として役割を果たさないからである。この中間層には、第三成分として嵩高い不織布等を更に加えることもできる。
【0031】
A、B及びCは共に、繊維間には炭素質マトリックスが充填されている。炭素繊維を強化繊維とし、炭素をマトリックスとするいわゆるC/Cは、1回の炭素化だけでは、嵩密度(重量の見かけ体積に対する比)が低く、この嵩密度を高めるために樹脂含浸と焼成炭素化を繰り返す工程、即ち緻密化工程が行われる。
【0032】
この緻密化工程は製造時間、コストを要するために、初期嵩密度(最初の焼成炭素化時の嵩密度)を高めることが重要である。初期嵩密度が高ければ高いほど、目標嵩密度達成に要する緻密化回数が減らす事ができ、時間と経費の節減になる。
【0033】
本発明のC/Cからなる円筒状の高温加圧成型炉部材の製造方法について説明する。
本発明の強化材に対する樹脂の含浸は、所定の構成に強化材繊維を配設後、加圧含浸によって樹脂を浸透させてもよいが、マトリックス樹脂を含浸させた不織布或いは織物、編み物、一方向配向シートから構成される、いわゆるプリプレグを使用し所望の積層構成に巻回積層するのがよい。
【0034】
プリプレグの製造は、マトリックス樹脂の特性に応じ、通常一般に採用されている溶剤法又はホットメルト法にて製造することが出来る。
マトリックス樹脂としては、フェノール樹脂、フラン樹脂、ビスマレイミド系樹脂等の熱硬化性樹脂、および、ポリエーテルエーテルケトン、石油系或いは石炭系のピッチなどの熱可塑性樹脂が使用できる。製造面からは、最初の成形時には熱硬化性樹脂を用いることが好ましい。緻密化時の含浸樹脂としては熱可塑性樹脂を用いることもできる。
【0035】
プリフォームの成形は例えば、以下の方法で行うことができる。
まず、炭素繊維短繊維紡績糸シートに熱硬化性樹脂を含浸させた織物プリプレグをマンドレル表面の周方向に巻回積層し、これを内層(C)とする。
次に、内層部の上に、内層と同様に熱硬化性樹脂を含浸させた炭素繊維連続繊維シートと、内層と同一の炭素繊維短繊維紡績糸シートとを重ねあわせ複合し、これを巻回積層し複合層の中間層(B)とする。
最後にもう一度、内層と同一の炭素繊維短繊維紡績糸織物のみからなる層を中間層の上から1層以上、所定の厚さまで巻回積層して、外層(A)とする。
【0036】
また、後に続く熱処理時の変形を防止するために、最外周に炭素繊維連続繊維シートを巻回積層することも出来る。この場合、最終的に機械加工でその部分を必ず取り除かなければならない。これは、取り除かない場合、繊維のささくれ立ちが発生するため、本発明の目的を達せられないからである。
【0037】
炭素繊維強化樹脂の成形は、樹脂含浸したプリフォームを、必要に応じ溶媒除去を行なった後、加熱処理(硬化処理)を行ない、繊維強化樹脂(FRP)製円筒体を得る。この溶媒除去、並びに硬化処理の際に成形体を回転させることで、樹脂の軟化によるフロー、嵩密度の斑の発生による、層間剥離や変形等を防止することが可能である。
【0038】
プリフォームの繊維体積含有率(Vf)は25%以上が好ましい。
なぜならば、Vfが25%未満になると、耐圧性が減少し所望の強度が得られにくくなり、更に初期嵩密度が小さくなりすぎるため、緻密化工程を増加させなければならないばかりでなく、炭素化後の加工時に層間剥離が起きやすくなる。
【0039】
また、この時の嵩密度は0.5g/cm3以上にすることが望ましい。なぜならば、Vf=25%以上を保持させるためには、嵩密度を0.5g/cm3以上にしなければならないからである。
【0040】
なお、このFRP製円筒体の特性として、全層に亘って層間剥離の無いこと、円筒の軸方向および周方向に変形の無いこと、基本的に真円状中空円筒であることなどがあげられる。
【0041】
プリフォームのマトリックスの炭素化は、上述したFRP製円筒体を所定の高さにカットした後、またはそのままカットせずに、不活性雰囲気中で焼成(700〜1300℃)する事によって行う。
【0042】
緻密化処理は、通常のC/Cの緻密化処理に準じて行うことが出来る。
即ち、炭素化または、黒鉛化処理を行った円筒体にピッチ、フェノール樹脂、フラン樹脂等の含浸と焼成の繰り返し、もしくは化学気相含浸法(CVI)との組み合わせによってよって行われ、嵩密度を1.3g/cm3以上にまですることが望ましい。
この緻密化によって、高温加圧成型炉での使用に耐えうるだけの強度が得られる。なお、C/Cは一般的に、嵩密度を向上させることにより強度が増加することが知られている。
また、嵩密度が1.3g/cm3未満では、多孔質のため、使用中にセラミック粉末などが空隙に入り、部材の破損を生じることがある。
【0043】
更に、緻密化工程中及び或いは緻密化終了後に、高温の熱処理、即ち黒鉛化処理(1600〜3000℃)を行なう。この熱処理温度は、高温加圧成型炉部材として使用する際に、雰囲気の汚染或いは変形を防ぐ点から1600℃以上が好ましい。
【0044】
本発明に使用される織物、一方向配向シート等の構成要素である炭素繊維は、C/Cの製造に使用される前に、上記の熱処理温度以上の温度で既に熱処理されていることが望ましい。炭素繊維は高温に暴露されると、黒鉛構造の発展により伸長或いは変形する場合があり、円筒状に成形されている場合には、変形或いは層間剥離が生じる場合がある。
【0045】
以下、本発明の実施例および比較例を説明する。
【実施例】
ポリアクリロニトリル繊維を酸化処理して得た耐炎化繊維を短繊維に切断し、紡績および製織した耐炎繊維織物(東邦レーヨン(株)製 8枚朱子紡績糸織物商品名:パイロメックスクロス W0221)を不活性雰囲気中、2000℃にて焼成し、炭素繊維短繊維紡績糸織物とした。
この炭素繊維短繊維紡績糸織物をフェノール樹脂(住友デュレズ(株)製 商品名:スミライトPR−9480)のメタノール(関東化学(株)製)溶液(濃度60%)中に浸漬し、炭素繊維短繊維紡績糸織物プリプレグ(樹脂含浸量:33%、繊維目付:300g/m2、厚さ:0.8mm)とした。
【0046】
次に、炭素繊維(東邦レーヨン(株)製炭素繊維 商品名:ベスファイトUM40−6K)にフェノール樹脂(住友デュレズ(株)製 商品名:スミライトPR−9480)のメタノール(関東化学(株)製)溶液を含浸し一方向配向炭素繊維シートプリプレグ(樹脂含有量:33%、繊維目付 250g/m2、厚さ 0.2mm)とした。
【0047】
外径280mm、長さ400mmのマンドレルに炭素繊維短繊維紡績糸織物プリプレグを、マンドレルの周方向と経糸方向とが一致するように11層巻回積層した。
【0048】
続いて炭素繊維短繊維紡績糸織物プリプレグと一方向配向炭素繊維シートプリプレグとを、紡績糸織物の経糸の方向と連続繊維の配向方向とが一致するように重ね、連続して巻回し、一方向配向炭素繊維シート層が19層となるように巻回積層した複合強化層とした。
更に、炭素繊維短繊維紡績糸織物プリプレグを連続して11層巻回積層した。
【0049】
その結果、マンドレル面から外層まで炭素繊維短繊維紡績糸織物プリプレグが連続しており、中間に一方向配向炭素繊維シート層が19層巻き込まれた構成の円筒状プリフォームを得た。後に行われる熱処理時における変形、層間剥離を予防するため、このプリフォームの外側に一方向配向炭素繊維シートプリプレグを2層巻回積層した。
【0050】
その後、このプリフォームを30℃〜95℃の間で30分間昇温し、95℃×10時間はプリフォームを回転させながら保持し、メタノールを除去した。
次いで、95℃〜100℃までを15分間かけて昇温し、その温度を30分間保持する。更に、3時間で140℃まで昇温させ、その温度を5時間維持した。この段階でマンドレルを除去し円筒体とした。
更に、10時間で室温から250℃まで昇温させ、その温度を5時間維持して円筒状成形物を得た。
この成形物の嵩密度は0.7g/cm3を有した。
【0051】
そして、1000℃による炭素化をおこなった後、コールタールピッチ含浸・焼成を4回繰り返した。
このコールタールピッチ含浸・焼成によって、嵩密度は1.5g/cm3を有した。
その後、2000℃による黒鉛化処理を行ない、外周の一方向炭素繊維シートを切削除去することで、円筒状のC/Cを得た。
【0052】
外周に巻回積層した一方向炭素繊維シートにより、熱処理時の変形、層間剥離が防止され、更に炭素化、黒鉛化時の昇温速度を大きく取ることが出来たため、製造時間を大幅に短縮することが出来た。
得られたC/Cの嵩密度は1.45g/cm3、Vf=32%であった。
得られた円筒状C/Cは、処理温度1800℃、最大内圧10MPa、処理時間1時間のセラミックの焼結に50回使用したが、炭素繊維ストランドのささくれ、層間の剥離、等の変形は認められなかった。
【0053】
<比較例1>
プリフォームを炭素繊維短繊維紡績糸織物プリプレグだけを巻回積層して得た以外は、実施例と同じ条件で円筒状C/Cを得た。
得られた円筒型C/Cは、嵩密度1.2g/cm3、Vf=26% であったこの円筒型C/Cを、1800℃、10MPaの圧力下で、繰り返し使用したところ、2回目で円筒状C/Cは強度不足による変形を生じ、寸法が著しく変化したためこれ以上の使用ができなかった。
【0054】
<比較例2>
プリフォームを、実施例の外層部をなくした2層(炭素繊維短繊維紡績糸織物プリプレグの内層と、その上に炭素繊維短繊維紡績糸織物プリプレグと一方向配向炭素繊維シートの複合層を巻回積層し、表面に一方向配向炭素繊維部が出るように配置された層)、とした以外は、実施例と同じ条件で円筒状C/Cを得た。
【0055】
得られた円筒状C/Cは、嵩密度1.4g/cm3、Vf=35%であった。この円筒状C/Cを、1800℃、10MPaの圧力下で、繰り返し使用したところ、寸法、重量等の変化は見られなかったが、時間経過と共に表面がささくれ立ち、ストランドの端末が作業者に刺さり、取り扱いの面で使用に耐えられなかった。
【0056】
【発明の効果】
高温加圧下で、本発明品である高温加圧成型炉部材を長時間繰り返し使用した場合においても、寸法、重量等は、一方向配向炭素繊維を積層して得られた円筒状炭素繊維強化炭素複合材料とほぼ同じ程度であり、且つ、繰り返し使用によるものと思われる熱変形は起生しないことが確認された。
また、繊維表面のささくれ立ち、繊維の長さ方向への亀裂の発生はまったく確認されず、作業性が損なわれることも、強度低下の問題もまったく生じなかった。
また、A層部の表面に炭素繊維短繊維紡績糸シートを配置することにより、炭素繊維のささくれ立ちを抑制し、作業性を改善できた。
また、周方向に一方向配向炭素繊維シートが配置されているため、高内圧負荷時にも周方向への膨張・変形もなく、セラミックス等の高温加圧成形用の型枠として有効である。
また、一方向配向炭素繊維シートが配置された層は、短繊維紡績糸シートを重ねて巻回した複合層(交互積層)であるため、層間剥離の発生も見られなかった。
生産性においても、従来のFW法に対し、シート状物をマンドレルに巻回する、即ちシート・ワインド成形するために、非常に生産性が高いものとなった。
【図面の簡単な説明】
【図1】本発明のC/Cからなる高温加圧成型炉部材の断面概念図を示したものである。
【符号の説明】
A:外層
B:中間層
C:内層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-temperature pressure molding furnace member made of a carbon fiber reinforced carbon composite material. More specifically, the present invention relates to a cylindrical high-temperature press-molding furnace member excellent in handleability and durability that is suitably used for sintering ceramics.
[0002]
[Prior art]
Conventionally, as a heat-resistant member used at a high temperature (1000 to 3000 ° C.), a heat-resistant metal or a graphite material has been used, but the strength of the heat-resistant metal is lowered at a high temperature of 1600 ° C. or higher, and the graphite material is tensile. Due to the low strength, the volume is large and the weight is excessive.
[0003]
Therefore, in recent years, carbon materials reinforced with carbon fibers, that is, carbon fiber reinforced carbon composite materials (hereinafter abbreviated as “C / C”) have been put to practical use in various fields as high-strength heat-resistant members.
In addition, by using C / C as the furnace material, the volume can be reduced compared to conventional materials, so that a larger molded product can be obtained with a conventional size device, and the same size molding can be achieved. In the case of a product, there is an advantage that it can be obtained with a smaller device, and the furnace material itself can be reduced in weight.
[0004]
As a heat-resistant container made of C / C, JP-A-9-30869 discloses a method for producing a cylindrical heat-resistant container by a filament wiping method (hereinafter abbreviated as “FW method”). Although the production of C / C by the FW method can obtain a product with very high strength by using continuous fibers, it is a precursor of C / C (intermediate form) in order to manufacture by winding a carbon fiber bundle around a mandrel. The production of a certain preform often takes a long time, and there is a problem that the cost is increased.
[0005]
Also, in the molding and curing of preforms made by laminating sheets using continuous fibers or woven fabrics using continuous fiber bundles by the sheet wind method, the difference between the stretch and shrinkage ratios of the fibers and matrix resin causes the sheet or fabric to be laminated. There was a problem that peeling of the film was likely to occur.
[0006]
In the C / C manufactured using the FW method and the woven fabric using the continuous fiber sheet or the continuous fiber bundle, the end of the continuous fiber fluttered during repeated use, causing a problem in handling.
[0007]
Further, as a material with little fiber peeling or detachment, a short fiber spun yarn fabric has been conventionally used as a friction material such as an aircraft brake material.
This short fiber spun yarn fabric can be used to prevent the strands from fluttering, but the tensile strength is low, and when used in a high-temperature pressure molding furnace member, deformation, breakage, etc. occur during use. There is a point.
[0008]
OBJECT OF THE INVENTION
In order to overcome these problems, the present invention prevents delamination between layers during manufacture, which causes a decrease in strength, has a strength that can withstand repeated use over a long period of time, An object of the present invention is to provide a member for a high-temperature pressure molding furnace made of C / C having no problem and to provide a manufacturing method thereof.
[0009]
[Means for Solving the Problems]
The high-temperature pressure molding furnace member made of C / C according to the present invention has the following configuration.
[0010]
(Claim 1)
A cylindrical high-temperature pressure molding furnace member made of a carbon fiber reinforced carbon composite material having a carbon fiber sheet reinforcing layer wound in a circumferential direction, and the reinforcing layer is composed of at least three layers, The inner layer and the outer layer are reinforced layers obtained by winding and laminating the following a, and the intermediate layer is a composite reinforced layer obtained by alternately winding and laminating the following a and b. Pressure molding furnace member.
a: a carbon fiber sheet comprising short fiber spun yarns b: a carbon fiber sheet containing continuous fibers or continuous fiber bundles (Claim 2) The high temperature processing according to claim 1, wherein the carbon fiber sheet a is a short fiber spun yarn fabric Pressure forming furnace member.
(Claim 3) The high-temperature press-molding furnace member according to claim 1, wherein the short fiber spun yarn in the carbon fiber sheet a is a woven fabric exposed on the surface.
(Claim 4) The high-temperature press-molding furnace member according to claim 1, wherein warps or wefts of the short fiber spun yarn fabric in the carbon fiber sheet a are oriented in the circumferential direction.
(Claim 5) The high-temperature pressure molding furnace member according to claim 1, wherein the carbon fiber sheet b is a unidirectionally oriented sheet or a woven fabric composed of continuous fibers or continuous fiber bundles.
(Claim 6) The high-temperature press-molding furnace member according to claim 1, wherein continuous fibers or continuous fiber bundles constituting the carbon fiber sheet b are oriented in the circumferential direction.
(Claim 7) In a method for manufacturing a cylindrical high-temperature pressure molding furnace member made of a carbon fiber reinforced carbon composite material reinforced with a carbon fiber sheet wound in a circumferential direction, a is wound around a mandrel. After forming the inner layer, the sheet on which a and b are overlapped is wound to form an intermediate layer, and further, a is wound to form the outer layer, and then the carbon fiber sheet material is formed at any stage during the preparation of the preform. 7. The resin as the impregnated pyrolytic carbonaceous precursor is heat-cured to form a cylindrical product having at least a three-layer structure, and then heat-treated in an inert atmosphere. A method for producing a high-temperature pressure molding furnace member.
a: Carbon fiber sheet composed of short fiber spun yarn b: Carbon fiber sheet containing continuous fibers or continuous fiber bundles
The cylindrical high-temperature press-molding furnace member made of C / C according to the present invention has sheets made of short fiber spun yarns arranged on the outer layer and inner layer of the reinforcing layer of the sheet-like carbon fiber material wound and laminated in the circumferential direction. Therefore, there is no fluttering of the strand end, and since the sheet layer using continuous fibers is arranged inside, it has an effect of high pressure resistance when used as a high-temperature pressure molding furnace member ing.
[0012]
Furthermore, since the intermediate layer has a structure in which continuous fiber sheets and short fiber spun yarn sheets are alternately laminated, each layer constituting the intermediate layer can be thinned, and the short fiber spun yarn absorbs expansion and contraction due to heat. Therefore, there is an effect that peeling between the layers is less likely to occur.
In the structure of the present invention, the above layer structure may be repeated as one unit.
[0013]
Summary of the Invention
Hereinafter, the present invention will be described based on the configuration.
The carbon fiber used in the present invention is a fiber obtained from an isotropic pitch selected from the group consisting of petroleum pitch, coal pitch, lignin pitch and aromatic synthetic pitch, polyacrylonitrile fiber, rayon fiber, It is derived from phenol resin fibers according to a conventional method.
[0014]
The carbon fiber short fiber spun yarn sheet in the present invention may be in any form such as a carbon fiber short fiber spun yarn nonwoven fabric, woven fabric, knitted fabric, unidirectionally oriented sheet and the like.
A woven fabric is particularly preferable in terms of bulkiness and warp and weft restraining to prevent the fibers from coming apart. Since it is a short fiber spun yarn, it is separated in units of sheets or yarns when it is unwound, so there is less irritation to the skin. This has the effect of absorbing stress concentration and preventing deformation during use and manufacturing.
In addition, since it is a woven fabric, the mutual restraint of the yarn is strong, and therefore, there is an effect of preventing the fiber from breaking.
[0015]
The structure of the carbon fiber short fiber spun yarn fabric may be any of plain weave, twill weave, and satin weave. Usually, both woven warp and weft are made of carbon fiber spun yarn.
The orientation of the carbon fiber short fiber spun yarn fabric is preferably arranged so that the circumferential direction of the high-temperature press-molding furnace member coincides with the warp or weft.
As the carbon fiber short fiber spun yarn fabric, a fabric composed of both spun yarn and continuous fiber bundle can be used. In this case, it is a woven fabric using continuous fiber bundles as warp yarns and spun yarns as weft yarns, and the warp yarns composed of continuous fiber bundles are preferably arranged so as to be oriented in the circumferential direction of the cylinder.
Moreover, when comprised with the woven fabric which consists of a continuous fiber bundle and a short fiber spun yarn, it is preferable that it is the woven fabric which the short fiber spun yarn in the carbon fiber sheet has exposed on the surface.
[0016]
The basis weight of the carbon fiber short fiber spun yarn sheet is preferably 100 to 500 g / m 2 .
The reason is that if it is less than 100 g / m 2 , the sheet becomes thin, it takes time for winding and lamination, and delamination tends to occur, which is not suitable for mass production.
On the other hand, if it exceeds 500 g / m 2 , the thickness of each layer increases, and delamination is likely to occur at the time of winding and lamination, and it becomes difficult to remove the solvent at the time of manufacturing the prepreg, and causes delamination at the time of curing or carbonization. Because it becomes.
[0017]
The carbon fiber spun yarn used for the carbon fiber short fiber spun yarn sheet is formed into a short fiber at any stage from the raw material organic fiber to the carbon fiber, and the spun yarn is spun to be woven and carbonized. Can be obtained.
[0018]
For example, in the case of acrylic carbon fiber spun yarn, which is a representative carbon fiber, acrylonitrile fiber, which is a raw material organic fiber, is made into a spun yarn of flame resistant fiber after being subjected to a flameproofing treatment in an oxidizing atmosphere and then cut, and then inert. It is obtained by carbonizing in the atmosphere. b
[0019]
In particular, a carbon fiber short fiber spun yarn fabric is obtained by first cutting a flame-resistant yarn before carbonization into short fibers to form a spun yarn, and then firing the fabric in an inert atmosphere at 1000 ° C. or higher. When carbonized, a woven fabric which is rich in stretchability and has flexibility and high drapeability can be obtained.
[0020]
The continuous fiber sheet in the present invention is a unidirectionally oriented sheet, a woven fabric or the like.
The unidirectionally oriented continuous fiber sheet is a so-called UD sheet in which continuous fibers of carbon fibers are oriented in one direction.
The woven fabric is a carbon fiber woven fabric sheet in which continuous fiber bundles of carbon fibers are made into plain weave, twill weave, and satin weave. The carbon fiber used preferably has a tensile strength of 3 GPa and an elastic modulus of 200 GPa or more.
This is because the tensile strength of a pressure vessel, for example, a ceramic sintering vessel, is about 1000 to 2000 ° C. and a pressure of 10 to 30 MPa is applied to the inside of the cylinder.
[0021]
The fiber basis weight of the unidirectional carbon fiber sheet is preferably 100 to 500 g / m 2 .
The reason for this is that when the basis weight is less than 100 g / m 2 , openings are likely to occur during prepreg production, and delamination or the like occurs during C / C production or use, which causes a problem in strength. On the other hand, if it exceeds 500 g / m 2 , the thickness will increase, making it difficult to remove the solvent during the production of the prepreg, and causing delamination during curing or carbonization.
[0022]
The prepreg in the present invention is made uniform by previously passing a resin such as a thermosetting resin that induces a pyrolytic carbonaceous material constituting a C / C matrix in a subsequent heat treatment, for example, by passing it through an apparatus called an impregnation bath. It is attached to the fiber sheet. There are various methods for uniformly attaching the resin, and the method is not limited.
The prepreg manufacturing method is a method of processing a carbon fiber having a resin adhered uniformly before the carbon fiber forms a sheet. There is a method of uniformly attaching a resin after processing the carbon fiber into a sheet.
[0023]
Hereinafter, carbon fiber sheets such as carbon fiber short fiber spun yarn sheets or continuous fiber sheets used in the present invention include both a sheet composed of carbon fibers and a prepreg composed of carbon fibers and a resin, etc. It shall represent either one.
[0024]
In the present invention, the pyrolytic carbonaceous material is a thermosetting resin such as phenol resin, epoxy resin, polyimide resin, polyamide resin, polyether resin, bismaleimide resin, triazine resin, isotropic pitch, anisotropic pitch, etc. Amorphous carbon mainly composed of carbon and graphite produced by heat treatment of an organic compound in an inert atmosphere.
[0025]
The above resin or organic compound preferably has a high carbon yield upon thermal decomposition, and more preferably 50% or more. Further, when a material of 30% or less is used, deformation is likely to occur with a rapid decrease in volume during pyrolysis and a decrease in the effect of maintaining the shape of the matrix.
The matrix made of pyrolytic carbon may be amorphous or graphite, but graphite is preferred because of its increased durability depending on the temperature and environment used.
[0026]
In the production of C / C, a carbon fiber sheet and a preform made of the thermosetting resin such as a phenol resin are thermally cured and carbonized or graphitized in an inert atmosphere to further increase the density. During the formation, the voids generated by the thermal decomposition of the thermosetting resin are again impregnated with resin or pitch and / or carbonized and graphitized by CVI, and the densification treatment is repeated a plurality of times.
[0027]
In order to prevent delamination during the above heat treatment, it is preferable to laminate the unidirectional carbon fiber sheet and the carbon fiber short fiber spun yarn sheet with a low basis weight in a multi-layered manner. Further, the ratio of the basis weight of the unidirectional carbon fiber sheet / carbon fiber short fiber spun yarn sheet is not particularly problematic, but “1 / (1 to 5)” from the viewpoint of the maximum ratio and the minimum ratio obtained with the basis weight. Is desirable.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
The laminated structure of the high-temperature pressure molding furnace member made of C / C according to the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual cross-sectional view of a high-temperature pressure molding furnace member made of C / C according to the present invention. In FIG. 1, each part is as follows.
When carbon fiber short fiber spun yarn fabric is used for A: outer layer, B: intermediate layer, C: inner layers A and C, the warp or weft direction of the fabric is 0 degree (axial) with respect to the axial direction of the cylindrical member. Direction) or 90 ° direction.
[0029]
When the number of knitted fabrics is different between warp and weft, it is preferable to arrange the woven fabric so that the larger number of knitted yarns matches the circumferential direction of the cylinder. This is because a force is applied in the circumferential direction of the cylinder at the time of use, and it is because it is more effective to make the fiber array in the circumferential direction of the cylinder more dense to absorb this force efficiently.
From the viewpoint of production efficiency during winding, it is preferable to use a woven fabric having a higher weaving density of warp than weft.
[0030]
B is a composite reinforcing layer in which carbon fiber short fiber spun yarn sheets and continuous fiber sheets are laminated alternately for each layer, and each layer must be continuously wound at least once or more. It is. The reason is that unless it is wound more than once, it cannot withstand expansion when a high internal pressure is applied, and does not play a role as a pressure-resistant furnace member. A bulky nonwoven fabric or the like can be further added as a third component to the intermediate layer.
[0031]
All of A, B and C are filled with a carbonaceous matrix between the fibers. The so-called C / C using carbon fiber as a reinforcing fiber and carbon as a matrix has a low bulk density (ratio of weight to apparent volume) by only one carbonization. In order to increase this bulk density, resin impregnation and firing A step of repeating carbonization, that is, a densification step is performed.
[0032]
Since this densification step requires manufacturing time and cost, it is important to increase the initial bulk density (bulk density at the time of the first calcination carbonization). The higher the initial bulk density, the smaller the number of densifications required to achieve the target bulk density, saving time and money.
[0033]
A method for producing a cylindrical high-temperature pressure molding furnace member made of C / C according to the present invention will be described.
In the impregnation of the reinforcing material of the present invention, the reinforcing fiber may be disposed in a predetermined configuration, and then the resin may be infiltrated by pressure impregnation. However, the nonwoven fabric impregnated with the matrix resin, woven fabric, knitted fabric, unidirectional It is preferable to use a so-called prepreg composed of an oriented sheet and wind and laminate it into a desired laminated structure.
[0034]
The prepreg can be produced by a generally used solvent method or hot melt method depending on the characteristics of the matrix resin.
As the matrix resin, thermosetting resins such as phenol resin, furan resin, bismaleimide resin, and thermoplastic resins such as polyether ether ketone, petroleum-based or coal-based pitch can be used. From the viewpoint of manufacturing, it is preferable to use a thermosetting resin at the time of the first molding. As the impregnating resin at the time of densification, a thermoplastic resin can also be used.
[0035]
For example, the preform can be formed by the following method.
First, a fabric prepreg obtained by impregnating a carbon fiber short fiber spun yarn sheet with a thermosetting resin is wound and laminated in the circumferential direction of the mandrel surface, and this is used as an inner layer (C).
Next, a carbon fiber continuous fiber sheet impregnated with a thermosetting resin in the same manner as the inner layer and a carbon fiber short fiber spun yarn sheet that is the same as the inner layer are laminated and combined on the inner layer portion, and this is wound. The intermediate layer (B) of the composite layer is laminated.
Finally, once more, a layer made of only the carbon fiber short fiber spun yarn fabric same as the inner layer is wound and laminated to a predetermined thickness from the top of the intermediate layer to obtain an outer layer (A).
[0036]
Moreover, in order to prevent the deformation | transformation at the time of the subsequent heat processing, a carbon fiber continuous fiber sheet can also be wound and laminated | stacked on the outermost periphery. In this case, the part must be finally removed by machining. This is because if the fiber is not removed, the fiber will flutter, and the object of the present invention cannot be achieved.
[0037]
In the molding of the carbon fiber reinforced resin, the preform impregnated with the resin is subjected to solvent removal as necessary, and then subjected to heat treatment (curing treatment) to obtain a fiber reinforced resin (FRP) cylinder. By rotating the molded body during the solvent removal and the curing treatment, it is possible to prevent delamination or deformation due to flow caused by softening of the resin or occurrence of bulk density spots.
[0038]
The fiber volume content (Vf) of the preform is preferably 25% or more.
This is because if Vf is less than 25%, the pressure resistance is reduced and it becomes difficult to obtain a desired strength, and the initial bulk density becomes too small. Delamination tends to occur during subsequent processing.
[0039]
In addition, the bulk density at this time is preferably 0.5 g / cm 3 or more. This is because the bulk density must be 0.5 g / cm 3 or more in order to keep Vf = 25% or more.
[0040]
The characteristics of this FRP cylindrical body include no delamination over all layers, no deformation in the axial and circumferential directions of the cylinder, and basically a perfect circular hollow cylinder. .
[0041]
Carbonization of the preform matrix is performed by firing (700 to 1300 ° C.) in an inert atmosphere after the above-described FRP cylindrical body is cut to a predetermined height or without being cut as it is.
[0042]
The densification treatment can be performed according to a normal C / C densification treatment.
That is, the carbonized or graphitized cylinder is subjected to repeated impregnation with pitch, phenol resin, furan resin, etc. and firing, or a combination of chemical vapor impregnation (CVI), and the bulk density is reduced. It is desirable to set it to 1.3 g / cm 3 or more.
By this densification, strength sufficient to withstand use in a high-temperature pressure molding furnace can be obtained. It is known that C / C generally increases in strength by improving the bulk density.
In addition, when the bulk density is less than 1.3 g / cm 3 , since the material is porous, ceramic powder or the like may enter voids during use and damage the member.
[0043]
Further, high-temperature heat treatment, that is, graphitization (1600 to 3000 ° C.) is performed during the densification step and / or after the densification is completed. This heat treatment temperature is preferably 1600 ° C. or higher from the viewpoint of preventing atmospheric contamination or deformation when used as a high-temperature pressure molding furnace member.
[0044]
It is desirable that the carbon fiber, which is a constituent element of the woven fabric, unidirectionally oriented sheet, etc. used in the present invention, has already been heat-treated at a temperature equal to or higher than the above heat treatment temperature before being used for the production of C / C. . When the carbon fiber is exposed to a high temperature, it may be elongated or deformed due to the development of the graphite structure, and when it is formed into a cylindrical shape, deformation or delamination may occur.
[0045]
Examples of the present invention and comparative examples will be described below.
【Example】
Flame resistant fiber woven fabric obtained by oxidizing polyacrylonitrile fiber into short fibers, spun and woven (8 pieces satin spun yarn fabric manufactured by Toho Rayon Co., Ltd., trade name: Pyromex Cloth W0221) is not used. The carbon fiber short fiber spun yarn fabric was fired at 2000 ° C. in an active atmosphere.
This carbon fiber short fiber spun yarn fabric is immersed in a methanol resin (manufactured by Kanto Chemical Co., Inc.) solution (concentration 60%) of a phenol resin (manufactured by Sumitomo Durez Co., Ltd., trade name: Sumilite PR-9480). A fiber-spun yarn prepreg (resin impregnation amount: 33%, fiber basis weight: 300 g / m 2 , thickness: 0.8 mm) was used.
[0046]
Next, methanol (manufactured by Kanto Chemical Co., Ltd.) of carbon fiber (carbon fiber manufactured by Toho Rayon Co., Ltd., trade name: Beth Fight UM40-6K) and phenol resin (trade name: Sumitrite PR-9480, manufactured by Sumitomo Durez Co., Ltd.) ) A unidirectionally oriented carbon fiber sheet prepreg (resin content: 33%, fiber basis weight 250 g / m 2 , thickness 0.2 mm) was impregnated with the solution.
[0047]
11 layers of a carbon fiber short fiber spun yarn prepreg was wound and laminated on a mandrel having an outer diameter of 280 mm and a length of 400 mm so that the circumferential direction of the mandrel coincided with the warp direction.
[0048]
Subsequently, the carbon fiber short fiber spun yarn prepreg and the unidirectionally oriented carbon fiber sheet prepreg are stacked so that the warp direction of the spun yarn fabric and the orientation direction of the continuous fibers coincide with each other, wound continuously, and unidirectional It was set as the composite reinforcement layer wound and laminated | stacked so that the orientation carbon fiber sheet layer might be 19 layers.
Furthermore, 11 layers of carbon fiber short fiber spun yarn woven prepregs were continuously laminated.
[0049]
As a result, a carbon fiber short fiber spun woven fabric prepreg was continuous from the mandrel surface to the outer layer, and a cylindrical preform having a structure in which 19 layers of unidirectionally oriented carbon fiber sheet layers were wound in the middle was obtained. In order to prevent deformation and delamination during the subsequent heat treatment, two layers of unidirectionally oriented carbon fiber sheet prepregs were wound and laminated on the outside of the preform.
[0050]
Then, this preform was heated between 30 ° C. and 95 ° C. for 30 minutes, and held at 95 ° C. for 10 hours while rotating the preform to remove methanol.
Next, the temperature is raised from 95 ° C. to 100 ° C. over 15 minutes, and the temperature is maintained for 30 minutes. Further, the temperature was raised to 140 ° C. in 3 hours, and the temperature was maintained for 5 hours. At this stage, the mandrel was removed to obtain a cylindrical body.
Further, the temperature was raised from room temperature to 250 ° C. in 10 hours, and the temperature was maintained for 5 hours to obtain a cylindrical molded product.
The molded article had a bulk density of 0.7 g / cm 3 .
[0051]
And after carbonizing by 1000 degreeC, coal tar pitch impregnation and baking were repeated 4 times.
By this coal tar pitch impregnation and baking, the bulk density was 1.5 g / cm 3 .
Then, the graphitization process by 2000 degreeC was performed, and cylindrical C / C was obtained by cutting and removing the unidirectional carbon fiber sheet of an outer periphery.
[0052]
Unidirectional carbon fiber sheet wound around the outer periphery prevents deformation and delamination during heat treatment, and further increases the heating rate during carbonization and graphitization, greatly reducing manufacturing time. I was able to.
The bulk density of the obtained C / C was 1.45 g / cm 3 and Vf = 32%.
The obtained cylindrical C / C was used 50 times for sintering ceramics with a processing temperature of 1800 ° C., a maximum internal pressure of 10 MPa, and a processing time of 1 hour, but deformations such as flaking of carbon fiber strands and delamination between layers were recognized. I couldn't.
[0053]
<Comparative Example 1>
Cylindrical C / C was obtained under the same conditions as in the examples except that the preform was obtained by winding and laminating only a carbon fiber short fiber spun yarn prepreg.
The obtained cylindrical C / C had a bulk density of 1.2 g / cm 3 and Vf = 26%. When this cylindrical C / C was repeatedly used at 1800 ° C. under a pressure of 10 MPa, the second time On the other hand, the cylindrical C / C was deformed due to insufficient strength, and the size was remarkably changed, so that it could not be used any more.
[0054]
<Comparative example 2>
Two preforms (the inner layer of the carbon fiber short fiber spun yarn prepreg and the composite layer of the carbon fiber short fiber spun fabric prepreg and the unidirectionally oriented carbon fiber sheet) are wound on the preform. Cylindrical C / C was obtained under the same conditions as in the examples except that the layers were laminated and arranged such that the unidirectionally oriented carbon fiber part appeared on the surface.
[0055]
The obtained cylindrical C / C had a bulk density of 1.4 g / cm 3 and Vf = 35%. When this cylindrical C / C was repeatedly used at 1800 ° C. and a pressure of 10 MPa, no change in dimensions, weight, etc. was seen, but the surface was raised over time, and the end of the strand became an operator. I couldn't endure use in terms of sticking and handling.
[0056]
【The invention's effect】
Cylindrical carbon fiber reinforced carbon obtained by laminating unidirectionally oriented carbon fibers in dimensions, weight, etc. even when the high temperature pressure molding furnace member of the present invention is repeatedly used for a long time under high temperature pressure It was confirmed that the thermal deformation was almost the same as that of the composite material and was not caused by repeated use.
Further, the fiber surface fluttered and no cracks were observed in the length direction of the fiber, and the workability was not impaired and the problem of strength reduction was not caused at all.
In addition, by arranging the carbon fiber short fiber spun yarn sheet on the surface of the A layer part, it was possible to suppress the fluttering of the carbon fiber and to improve the workability.
Further, since the unidirectionally oriented carbon fiber sheet is disposed in the circumferential direction, there is no expansion / deformation in the circumferential direction even when a high internal pressure is applied, and it is effective as a mold for high-temperature pressure molding of ceramics or the like.
Moreover, since the layer in which the unidirectionally oriented carbon fiber sheet is disposed is a composite layer (alternate lamination) in which short fiber spun yarn sheets are stacked and wound, generation of delamination was not observed.
In terms of productivity as well, the sheet-like product is wound around a mandrel, that is, sheet-wind molding, as compared with the conventional FW method, so that the productivity is very high.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view of a high-temperature pressure molding furnace member made of C / C according to the present invention.
[Explanation of symbols]
A: Outer layer B: Intermediate layer C: Inner layer

Claims (7)

周方向に巻回積層された炭素繊維シートの強化層を有する炭素繊維強化炭素複合材料からなる円筒状の高温加圧成型炉部材であり、且つ前記の強化層が少なくとも3層にて構成され、内層と外層とが下記aを巻回積層した強化層で、中間層が下記aとbとを交互に巻回積層した複合強化層であることを特徴とし、熱分解炭素質をマトリックスとする高温加圧成型炉部材。
a:短繊維紡績糸から構成される炭素繊維シート
b:連続繊維又は連続繊維束を含む炭素繊維シート
A cylindrical high-temperature pressure molding furnace member made of a carbon fiber reinforced carbon composite material having a carbon fiber sheet reinforcing layer wound in a circumferential direction, and the reinforcing layer is composed of at least three layers, The inner layer and the outer layer are reinforced layers obtained by winding and laminating the following a, and the intermediate layer is a composite reinforced layer obtained by alternately winding and laminating the following a and b. Pressure molding furnace member.
a: Carbon fiber sheet composed of short fiber spun yarn b: Carbon fiber sheet containing continuous fibers or continuous fiber bundles
炭素繊維シートaが短繊維紡績糸織物である請求項1記載の高温加圧成型炉部材。The high-temperature pressure molding furnace member according to claim 1, wherein the carbon fiber sheet a is a short fiber spun yarn fabric. 炭素繊維シートaにおける短繊維紡績糸が表面に露出している織物であることを特徴とする請求項1記載の高温加圧成型炉部材。2. The high-temperature pressure molding furnace member according to claim 1, wherein the short fiber spun yarn in the carbon fiber sheet a is a woven fabric exposed on the surface. 炭素繊維シートaにおける短繊維紡績糸織物の経糸又は緯糸が周方向に配向していることを特徴とする請求項1記載の高温加圧成型炉部材。The high-temperature press-molding furnace member according to claim 1, wherein warps or wefts of short fiber spun yarn fabric in the carbon fiber sheet a are oriented in the circumferential direction. 炭素繊維シートbが連続繊維又は連続繊維束から構成される一方向配向シートもしくは織物である請求項1記載の高温加圧成型炉部材。The high-temperature pressure molding furnace member according to claim 1, wherein the carbon fiber sheet b is a unidirectionally oriented sheet or woven fabric composed of continuous fibers or continuous fiber bundles. 炭素繊維シートbを構成する連続繊維又は連続繊維束が周方向に配向していることを特徴とする請求項1記載の高温加圧成型炉部材。The high-temperature pressure molding furnace member according to claim 1, wherein continuous fibers or continuous fiber bundles constituting the carbon fiber sheet b are oriented in the circumferential direction. 周方向に巻回積層された炭素繊維シートで強化されている炭素繊維強化炭素複合材料からなる円筒状の高温加圧成型炉部材の製造方法において、aをマンドレルに巻回して内層を形成した後、aとbを重ねたシートを巻回して中間層を形成し、更にaを巻回して外層を形成した後、プリフォーム作製時のいずれかの段階で炭素繊維シート材に含浸した熱分解炭素質の前駆体となる樹脂を加熱硬化して少なくとも3層構造の円筒状物を形成後、不活性雰囲気中で熱処理することを特徴とする請求項1乃至請求項6記載の高温加圧成型炉部材の製造方法。
a:短繊維紡績糸から構成される炭素繊維シート
b:連続繊維又は連続繊維束を含む炭素繊維シート
In a manufacturing method of a cylindrical high-temperature pressure molding furnace member made of a carbon fiber reinforced carbon composite material reinforced with a carbon fiber sheet wound in a circumferential direction, after a is wound around a mandrel to form an inner layer , The intermediate layer is formed by winding a sheet on which a and b are stacked, and further, the outer layer is formed by winding a, and then the pyrolytic carbon impregnated in the carbon fiber sheet material at any stage during the preparation of the preform 7. A high-temperature press-molding furnace according to claim 1, wherein a resin as a quality precursor is heat-cured to form a cylindrical product having at least a three-layer structure, and then heat-treated in an inert atmosphere. Manufacturing method of member.
a: Carbon fiber sheet composed of short fiber spun yarn b: Carbon fiber sheet containing continuous fibers or continuous fiber bundles
JP08851899A 1998-03-31 1999-03-30 High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same Expired - Fee Related JP4245725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08851899A JP4245725B2 (en) 1998-03-31 1999-03-30 High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-104162 1998-03-31
JP10416298 1998-03-31
JP08851899A JP4245725B2 (en) 1998-03-31 1999-03-30 High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11343177A JPH11343177A (en) 1999-12-14
JP4245725B2 true JP4245725B2 (en) 2009-04-02

Family

ID=26429882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08851899A Expired - Fee Related JP4245725B2 (en) 1998-03-31 1999-03-30 High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4245725B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045442A (en) * 2004-08-09 2006-02-16 Toho Tenax Co Ltd Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material
US20110123735A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in thermoset matrices
WO2011146151A2 (en) 2010-02-02 2011-11-24 Applied Nanostructured Solutions, Llc Fiber containing parallel-aligned carbon nanotubes
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
CN103879064B (en) * 2012-12-24 2015-12-23 明安国际企业股份有限公司 The composite fiber outer shell that signal can be avoided to intercept and manufacture method thereof
JP2018111640A (en) * 2017-01-13 2018-07-19 第一高周波工業株式会社 Bonding method of carbonaceous material
CN106917137A (en) * 2017-03-28 2017-07-04 保定顺天新材料股份有限公司 Carbon carbon thin wall cylinder and its manufacture craft

Also Published As

Publication number Publication date
JPH11343177A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
US4741873A (en) Method for forming rigid composite preforms
JP4808862B2 (en) Deployable structural parts and manufacturing method thereof
GB2127771A (en) Fiber composite
JPS631265B2 (en)
JP4245725B2 (en) High temperature pressure molding furnace member made of carbon fiber reinforced carbon composite material and method for producing the same
CN113149684A (en) Carbon-carbon or carbon-ceramic composite material winding preform, product and preparation method thereof
WO2015178453A1 (en) Cylindrical heat insulation material and method for producing same
JP6623011B2 (en) Carbon fiber reinforced carbon composite and method for producing carbon fiber reinforced carbon composite
JPH0255393B2 (en)
JPH09290474A (en) Preparation of carbonaceous molded article
JP2008044201A (en) Carbon fiber sheet and its manufacturing method
JPH07186117A (en) Production of carbon/carbon composite material
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP3890384B2 (en) C / C high-speed rotating body and manufacturing method thereof
JPH0648830A (en) Precursor for carbon fiber-reinforced carbon composite material
EP0806285B1 (en) Fiber structure for fiber reinforced composite material and method of making fiber reinforced composite material
JPH0143621B2 (en)
JP3232498B2 (en) Carbon fiber reinforced carbon material with high thermal conductivity in one direction
JP3249141B2 (en) Tubular composite structure
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
JPH0648829A (en) Precursor for carbon fiber-reinforced carbon composite material
CN117511122A (en) Continuous fiber core-spun fabric reinforced ceramifiable phenolic resin matrix composite material and preparation method thereof
JP2000272975A (en) Production of carbon-fiber reinforced carbon composite material
JPH0343227B2 (en)
KR20220080425A (en) Fabrication Method of Carbon/Carbon Composite using Carbon Fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees