JPH0532321B2 - - Google Patents

Info

Publication number
JPH0532321B2
JPH0532321B2 JP60019714A JP1971485A JPH0532321B2 JP H0532321 B2 JPH0532321 B2 JP H0532321B2 JP 60019714 A JP60019714 A JP 60019714A JP 1971485 A JP1971485 A JP 1971485A JP H0532321 B2 JPH0532321 B2 JP H0532321B2
Authority
JP
Japan
Prior art keywords
ozone
titanium oxide
ultraviolet rays
hydroxide
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60019714A
Other languages
Japanese (ja)
Other versions
JPS61178402A (en
Inventor
Tsutomu Kagitani
Takashi Ogita
Hiroshi Ooba
Kyoji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60019714A priority Critical patent/JPS61178402A/en
Publication of JPS61178402A publication Critical patent/JPS61178402A/en
Publication of JPH0532321B2 publication Critical patent/JPH0532321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はオゾンの分解処理法に関する。さらに
詳しくは、酸化チタン、または銀、白金、パラジ
ウム、ロジウム、ルテニウムの単独もしくは混合
物を担持させた酸化チタン、水酸化チタンもしく
は水酸化亜鉛にオゾン含有気体を紫外線の照射下
に接触させることによつてオゾンを効果的に分解
処理する方法に関する。 [従来の技術] 近年、原子力発電所、放射性同位元素保管所、
加速電子線利用工場、真空紫外線利用工場あるい
は放電利用工場などにおいては、空気中の酸素が
活性化されて有害なオゾンや窒素酸化物を生ずる
ので、その処理が問題となつている。またオゾン
による水質保全や脱臭を行なうばあいにも、未反
応の有害なオゾンを処理しなければならない。 従来、このようにして発生したオゾンを除く方
法としては、活性炭あるいはアルカリ水溶液と反
応させる方法やオゾン含有気体を高温度に加熱す
る方法が提案されているが、いずれも処理費が高
価であり、とくに低濃度のオゾンを含有する気体
を処理する方法としては不経済であることが問題
となつている。 [発明が解決しようとする問題点] 本発明の目的は、前記従来技術の問題点を解決
し、特別に加熱することを必要とせず、オゾンを
含有する気体を簡単、効果的かつ経済的に処理す
る方法を提供することにある。 [問題点を解決するための手段] 本発明のオゾン処理法は、オゾンを含有する気
体を酸化チタン、または銀、白金、パラジウム、
ロジウム、ルテニウムの単独もしくは混合物を担
持させた酸化チタン、水酸化チタンもしくは水酸
化亜鉛からなる触媒に紫外線の照射下に接触させ
ることを特徴とするものである。 [作用および実施例] 本発明者らはかねてから紫外線を用いる励起化
学の研究を行なつており、そのひとつとしてオゾ
ンを含有する気体にアンモニアを添加し、室温に
おいて波長が200nm以下の真空紫外線を照射する
と両者が反応して窒素、酸素および水に分解無害
化できることを見出した(日本化学会誌、1976年
No.12、1940〜1943頁)。 本発明者らは、これらの基礎研究の発展とし
て、オゾンを含有する気体を前記特定の触媒と接
触させることによつてオゾンの分解反応が効率よ
く起こることを見出し、本発明を完成するに至つ
た。 本発明の方法によれば、前記特定の触媒にオゾ
ン含有気体を接触させるだけでオゾンが分解無害
化される。また、これらの系において紫外線を照
射することによつてさらに効率的にオゾンが分解
する。このばあい、真空紫外線はもとより波長が
200nm以上の近紫外線をも使用することができ、
高圧水銀灯や殺菌灯として用いられている安価な
低圧水銀灯がオゾン分解処理法に使用できる。ま
た、空気中で波長200nm以下の真空紫外線を照射
するばあいに発生する有害なオゾンが、本発明の
方法によつて完全に分解処理できることになり、
画期的なオゾン無害化処理法である。 本発明は濃度が0.1〜10000ppmの範囲のオゾン
を含有する気体の処理に好適であるが、本質的に
濃度の制限はない。 本発明に用いる触媒は前記のとおり、酸化チタ
ン単独、あるいは銀、白金、パラジウム、ロジウ
ム、ルテニウムの単独または混合物を酸化チタ
ン、水酸化チタンまたは水酸化亜鉛に担持させた
ものである。酸化チタンを単独で用いるばあい
は、アナターゼ型がとくに高い活性を示す。また
活性白土や活性炭などの吸着剤と混合あるいは併
用してもよい。 本発明において、これらの特定の触媒とオゾン
を含有する気体との接触方法としては、オゾンを
含有する気体中にこれらの触媒を粉体のまま飛散
させる方法、気体の流路中に粉体を静置させる方
法、あるいはしつくい状に練り固めて反応装置の
内壁に塗りつける方法など、これらの触媒がオゾ
ンを含む気体と直接接触できること、および紫外
線を照射するばあいには効率よく触媒に直接吸収
される方法であればいかなる方法であつてもよ
い。また、塗料や顔料中にこれらの触媒を分散さ
せて反応装置の内壁を塗装する方法も採用するこ
とができる。 本発明に用いられうる紫外線としては波長が
400nm以下の近紫外線および遠紫外線があげられ
る。オゾン含有気体中に酸素も含まれているばあ
いに該近紫外線のほかに波長が200nm以下の真空
紫外線が含まれているとさらにオゾンが発生する
が、本発明の方法によるときは、このオゾンも効
果的に分解しうる。 これらの紫外線は超高圧水銀灯、高圧水銀灯、
キセノン灯、低圧水銀灯を単独あるいは併用して
発生させうるが、放電管内に水銀と第3成分を共
存させて目的に合致した波長分布特性をもつよう
に改良した光源を使用することもできる。また太
陽光線中の紫外線を利用することもできる。 本発明における触媒の作用原理については詳細
に研究中である。酸化チタン表面に吸着されたオ
ゾンが還元分解し、酸化チタン、水酸化チタンま
たは水酸化亜鉛の水酸基が酸化されて生じたOH
ラジカルもオゾンを分解しているとみられる。ま
た銀、白金、パラジウム、ロジウム、ルテニウム
などの貴金属はオゾンの還元分解を促進している
ものと推察される。また紫外線照射下において
は、酸化チタン、水酸化チタンまたは水酸化亜鉛
が紫外線を吸収し、n型半導体の価電帯に存在す
る電子が導電帯に励起され、価電帯中に生じた正
孔は酸化チタン、水酸化チタンまたは水酸化亜鉛
の表面上に存在する水酸基を一電子酸化してOH
ラジカルを生ぜしめ、このOHラジカルが直接あ
るいは間接的にオゾンを分解しているものと考え
られる。他方、導電帯に励起された電子は酸化チ
タン、水酸化チタンまたは水酸化亜鉛に吸着した
オゾンを還元的に分解しているものと考えられ
る。 これらの反応は炭化水素や硫化水素などの被酸
化性有機化合物あるいは無機化合物が共存しても
起こる。また一酸化窒素や二酸化窒素が共存する
ばあいには、オゾンが還元分解して酸素に変化
し、酸化窒素は五酸化二窒素に酸化され、水が共
存すると硝酸を生ずる。このばあいも過剰のオゾ
ンは本発明の反応によつて分解される。本発明の
[Industrial Application Field] The present invention relates to an ozone decomposition treatment method. More specifically, by bringing an ozone-containing gas into contact with titanium oxide, titanium hydroxide, or zinc hydroxide supported with silver, platinum, palladium, rhodium, or ruthenium alone or in a mixture, under ultraviolet irradiation. The present invention relates to a method for effectively decomposing ozone. [Conventional technology] In recent years, nuclear power plants, radioisotope storage facilities,
In factories that use accelerated electron beams, vacuum ultraviolet rays, or electric discharges, oxygen in the air is activated and produces harmful ozone and nitrogen oxides, so the treatment of these substances has become a problem. Furthermore, when using ozone to preserve water quality or deodorize water, unreacted harmful ozone must be disposed of. Conventionally, methods for removing ozone generated in this way have been proposed, such as a method of reacting with activated carbon or aqueous alkaline solution, and a method of heating ozone-containing gas to a high temperature, but both methods are expensive. In particular, the problem is that this method is uneconomical for treating gases containing low concentrations of ozone. [Problems to be Solved by the Invention] An object of the present invention is to solve the problems of the prior art described above, and to easily, effectively and economically produce ozone-containing gas without the need for special heating. The purpose is to provide a method for processing. [Means for Solving the Problems] The ozone treatment method of the present invention is characterized in that the ozone-containing gas is treated with titanium oxide, silver, platinum, palladium,
It is characterized by contacting a catalyst made of titanium oxide, titanium hydroxide, or zinc hydroxide on which rhodium or ruthenium, singly or in combination, is supported while being irradiated with ultraviolet light. [Operations and Examples] The present inventors have been conducting research on excitation chemistry using ultraviolet rays for some time, and as one of the studies, they added ammonia to a gas containing ozone and irradiated it with vacuum ultraviolet rays with a wavelength of 200 nm or less at room temperature. They discovered that the two reacted and decomposed into nitrogen, oxygen, and water, rendering them harmless (Journal of the Chemical Society of Japan, 1976)
No. 12, pp. 1940-1943). As a development of these basic studies, the present inventors discovered that an ozone decomposition reaction occurs efficiently by bringing an ozone-containing gas into contact with the above-mentioned specific catalyst, which led to the completion of the present invention. Ivy. According to the method of the present invention, ozone is decomposed and rendered harmless simply by bringing an ozone-containing gas into contact with the specific catalyst. In addition, ozone is decomposed more efficiently by irradiating these systems with ultraviolet rays. In this case, not only the vacuum ultraviolet rays but also the wavelength
Near ultraviolet light of 200nm or more can also be used.
Inexpensive low-pressure mercury lamps used as high-pressure mercury lamps and germicidal lamps can be used in the ozone decomposition treatment method. In addition, the method of the present invention can completely decompose harmful ozone that is generated when vacuum ultraviolet rays with a wavelength of 200 nm or less are irradiated in the air.
This is an innovative ozone detoxification treatment method. Although the present invention is suitable for treating gases containing ozone in concentrations ranging from 0.1 to 10,000 ppm, there is essentially no concentration limit. As described above, the catalyst used in the present invention is one in which titanium oxide alone or silver, platinum, palladium, rhodium, or ruthenium is supported alone or in a mixture on titanium oxide, titanium hydroxide, or zinc hydroxide. When titanium oxide is used alone, the anatase type exhibits particularly high activity. It may also be mixed or used in combination with an adsorbent such as activated clay or activated carbon. In the present invention, methods for bringing these specific catalysts into contact with ozone-containing gas include scattering these catalysts in powder form in ozone-containing gas, and placing powder in the gas flow path. These catalysts can be left in direct contact with ozone-containing gas, such as by leaving them still, or by kneading them into a sticky shape and applying them to the inner wall of the reactor. Any method may be used as long as it is absorbed. It is also possible to adopt a method of dispersing these catalysts in paint or pigment and painting the inner walls of the reaction device. The wavelength of the ultraviolet rays that can be used in the present invention is
Examples include near ultraviolet rays and far ultraviolet rays of 400 nm or less. If the ozone-containing gas also contains oxygen, ozone is further generated if vacuum ultraviolet rays with a wavelength of 200 nm or less are included in addition to the near ultraviolet rays. can also be effectively decomposed. These ultraviolet rays are produced by ultra-high pressure mercury lamps, high pressure mercury lamps,
A xenon lamp or a low-pressure mercury lamp can be used alone or in combination to generate the light, but it is also possible to use a light source that has been improved so that mercury and a third component coexist in the discharge tube to have wavelength distribution characteristics that meet the purpose. It is also possible to utilize ultraviolet rays in sunlight. The principle of operation of the catalyst in the present invention is currently being studied in detail. Ozone adsorbed on the surface of titanium oxide undergoes reductive decomposition, and OH is generated when the hydroxyl groups of titanium oxide, titanium hydroxide, or zinc hydroxide are oxidized.
Radicals also appear to decompose ozone. It is also assumed that noble metals such as silver, platinum, palladium, rhodium, and ruthenium promote the reductive decomposition of ozone. Furthermore, under ultraviolet irradiation, titanium oxide, titanium hydroxide, or zinc hydroxide absorbs ultraviolet rays, and electrons existing in the valence band of the n-type semiconductor are excited to the conductive band, and holes are generated in the valence band. is a one-electron oxidation of the hydroxyl group present on the surface of titanium oxide, titanium hydroxide, or zinc hydroxide to form OH
It is thought that radicals are generated, and these OH radicals decompose ozone directly or indirectly. On the other hand, the electrons excited in the conductive band are thought to reductively decompose ozone adsorbed on titanium oxide, titanium hydroxide, or zinc hydroxide. These reactions occur even in the presence of oxidizable organic or inorganic compounds such as hydrocarbons and hydrogen sulfide. When nitrogen monoxide and nitrogen dioxide coexist, ozone undergoes reductive decomposition and changes to oxygen, nitrogen oxide is oxidized to dinitrogen pentoxide, and when water coexists, nitric acid is produced. In this case too, excess ozone is decomposed by the reaction of the invention. of the present invention

【表】 比較参考例1に示したように、無触媒のばあい
にはオゾンの分解は認められないが、参考例1、
2に示したように、酸化チタンが存在するとオゾ
ンの分解が進行する。参考例3、4に示したよう
に、酸化チタンに2%白金黒を担持した酸化チタ
ンを触媒として用いると、酸化チタン単独のばあ
いに比べてオゾンの分解率が大きい。また、水酸
化チタンや水酸化亜鉛単独ではオゾンの分解は進
行しない(比較参考例2、3)が、白金黒を担持
するオゾンの分解が進行する(参考例5、6)。
また、比較参考例3、4に示したように白金黒を
単独で用いたばあいや酸化亜鉛に担持したばあい
にはオゾンはほとんど分解しない。 参考例7〜10および比較参考例6〜8 パラジウム、ロジウム、酸化ルテニウムおよび
銀ならびに比較のため金、銅およびニツケルをア
ナターゼ型酸化チタンに担持させたものを触媒と
したほかは、参考例1と同様にしてオゾンの分解
率を調べた。結果を第2表に示す。
[Table] As shown in Comparative Reference Example 1, ozone decomposition is not observed in the case of no catalyst, but in Reference Example 1,
As shown in 2, the presence of titanium oxide progresses the decomposition of ozone. As shown in Reference Examples 3 and 4, when titanium oxide in which 2% platinum black is supported on titanium oxide is used as a catalyst, the ozone decomposition rate is higher than when titanium oxide is used alone. Moreover, decomposition of ozone does not proceed with titanium hydroxide or zinc hydroxide alone (Comparative Reference Examples 2 and 3), but decomposition of ozone carrying platinum black progresses (Reference Examples 5 and 6).
Furthermore, as shown in Comparative Reference Examples 3 and 4, ozone is hardly decomposed when platinum black is used alone or when it is supported on zinc oxide. Reference Examples 7 to 10 and Comparative Reference Examples 6 to 8 The same as Reference Example 1 except that palladium, rhodium, ruthenium oxide and silver, and for comparison, gold, copper and nickel supported on anatase titanium oxide were used as catalysts. The ozone decomposition rate was examined in the same manner. The results are shown in Table 2.

【表】 参考例7〜10に示したように、パラジウム、ロ
ジウム、ルテニウムおよび銀を担持したアナター
ゼ型酸化チタンの触媒活性は、参考例1に示した
アナターゼ型酸化チタンに比べて大きい。一方、
比較参考例6〜8に示すように、金、銅およびニ
ツケルを担持した比較用のアナターゼ型酸化チタ
ンの触媒活性は無担持のアナターゼ型酸化チタン
比べても著しく小さい。 実施例1〜9および比較例1〜7 第3表に示す触媒を塗布した反応器中に8ワツ
ト殺菌灯を入れ紫外線を照射したほかは、参考例
1と同様にしてオゾンの分解率を調べた。結果を
第3表に示す。
[Table] As shown in Reference Examples 7 to 10, the catalytic activity of the anatase-type titanium oxide supporting palladium, rhodium, ruthenium, and silver is greater than that of the anatase-type titanium oxide shown in Reference Example 1. on the other hand,
As shown in Comparative Reference Examples 6 to 8, the catalytic activity of comparative anatase-type titanium oxide supported with gold, copper, and nickel is significantly lower than that of unsupported anatase-type titanium oxide. Examples 1 to 9 and Comparative Examples 1 to 7 The ozone decomposition rate was examined in the same manner as in Reference Example 1, except that an 8 Watt germicidal lamp was placed in the reactor coated with the catalyst shown in Table 3 and irradiated with ultraviolet rays. Ta. The results are shown in Table 3.

【表】 比較例1に示すように無触媒のばあいには殺菌
灯の紫外線を照射してもオゾンはほとんど分解し
ない。一方、実施例1〜9に示した本発明特定の
触媒を用いたばあいには参考例1、3、4、5、
6、7、8、9および10記載の紫外線を照射しな
いばあいに比べてオゾン分解率がさらに増大す
る。また、比較例2〜6に示した比較用の触媒の
ばあいにも比較参考例2〜7記載の紫外線を照射
しないばあいに比べてオゾン分解率は増大しては
いるが、その触媒活性は小さい。 実施例 10 100ワツトの高圧水銀灯を内蔵した内容積770ml
の反応容器に1%の銀を担持したアナターゼ型酸
化チタン20gを塗布した金網を装着し、参考例1
において調製したオゾン50ppm含有空気を1.75
/minの流速で流通せしめ、出口のオゾン濃度
を測定したところ、2ppmであつた。なお、光反
応器の高圧水銀灯を点灯しないばあいの出口オゾ
ン濃度は8ppmであつた。 実施例 11 主波長が254nmで、波長185nmの真空紫外線を
含む混合紫外線を発生する10ワツトの低圧水銀灯
を内蔵した内容積2200mlの反応器内壁全面にアナ
ターゼ型酸化チタンを塗布して点灯し、毎分1
の空気を流通せしめたところ、オゾンの濃度は
1ppm以下となつた。比較のために酸化チタンを
完全に除いて点灯し、同一流速で空気を導入した
ばあいのオゾン濃度は65ppmであつた。
[Table] As shown in Comparative Example 1, in the case of no catalyst, ozone is hardly decomposed even when irradiated with ultraviolet rays from a germicidal lamp. On the other hand, when using the specific catalyst of the present invention shown in Examples 1 to 9, Reference Examples 1, 3, 4, 5,
The ozone decomposition rate is further increased compared to the case where ultraviolet rays described in Nos. 6, 7, 8, 9 and 10 are not irradiated. In addition, in the case of the comparative catalysts shown in Comparative Examples 2 to 6, the ozone decomposition rate increased compared to the cases in which ultraviolet rays were not irradiated as described in Comparative Reference Examples 2 to 7, but the catalytic activity is small. Example 10 Internal volume 770ml with built-in 100 watt high pressure mercury lamp
A wire mesh coated with 20 g of anatase-type titanium oxide carrying 1% silver was attached to the reaction vessel, and Reference Example 1 was prepared.
Air containing 50 ppm ozone prepared at 1.75
The ozone concentration at the outlet was measured and found to be 2 ppm. Note that the ozone concentration at the outlet was 8 ppm when the high-pressure mercury lamp in the photoreactor was not turned on. Example 11 Anatase-type titanium oxide was applied to the entire inner wall of a reactor with a built-in 10 watt low-pressure mercury lamp that generates mixed ultraviolet rays with a dominant wavelength of 254 nm and vacuum ultraviolet rays with a wavelength of 185 nm, and the internal volume was 2200 ml. minute 1
When air is circulated, the ozone concentration is
It was below 1ppm. For comparison, when the lamp was lit without titanium oxide and air was introduced at the same flow rate, the ozone concentration was 65 ppm.

Claims (1)

【特許請求の範囲】[Claims] 1 オゾンを含有する気体を酸化チタン、または
銀、白金、パラジウム、ロジウム、ルテニウムの
単独もしくは混合物を担持させた酸化チタン、水
酸化チタンもしくは水酸化亜鉛に紫外線の照射下
で接触させることを特徴とするオゾンの分解処理
法。
1. A method characterized by bringing a gas containing ozone into contact with titanium oxide, or titanium oxide, titanium hydroxide, or zinc hydroxide carrying silver, platinum, palladium, rhodium, or ruthenium alone or in combination, under irradiation with ultraviolet light. Ozone decomposition treatment method.
JP60019714A 1985-02-04 1985-02-04 Method of decomposition treatment of ozone Granted JPS61178402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019714A JPS61178402A (en) 1985-02-04 1985-02-04 Method of decomposition treatment of ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019714A JPS61178402A (en) 1985-02-04 1985-02-04 Method of decomposition treatment of ozone

Publications (2)

Publication Number Publication Date
JPS61178402A JPS61178402A (en) 1986-08-11
JPH0532321B2 true JPH0532321B2 (en) 1993-05-14

Family

ID=12006958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019714A Granted JPS61178402A (en) 1985-02-04 1985-02-04 Method of decomposition treatment of ozone

Country Status (1)

Country Link
JP (1) JPS61178402A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171663A (en) * 1987-12-25 1989-07-06 Tokai Kogyo Kk Dust-collecting and deodorizing device
US5946917A (en) * 1995-06-12 1999-09-07 Siemens Aktiengesellschaft Catalytic combustion chamber operating on preformed fuel, preferably for a gas turbine
DE19521356C2 (en) * 1995-06-12 1999-04-01 Siemens Ag Gas turbine comprising a compressor part, a burner part and a turbine part
AU5326099A (en) * 1998-09-08 2000-03-27 Engelhard Corporation Catalyst composition for the decomposition of ozone
JP2005288429A (en) * 2004-03-11 2005-10-20 Japan Vilene Co Ltd Ozone decomposing material, method for manufacturing the same, ozone decomposing method and method for regenerating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314688A (en) * 1976-07-28 1978-02-09 Toshiba Corp Production of ozone decomposition catalyst
JPS5670823A (en) * 1979-08-08 1981-06-13 Johnson Matthey Co Ltd Method of removing ozone from gas mixture containing ozone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314688A (en) * 1976-07-28 1978-02-09 Toshiba Corp Production of ozone decomposition catalyst
JPS5670823A (en) * 1979-08-08 1981-06-13 Johnson Matthey Co Ltd Method of removing ozone from gas mixture containing ozone

Also Published As

Publication number Publication date
JPS61178402A (en) 1986-08-11

Similar Documents

Publication Publication Date Title
JPH09262482A (en) Photocatalyst, its production and photocatalytic reaction method
JPS60187322A (en) Purifying method of waste
EP0997439B1 (en) Method for decomposing bromic acid by photocatalyst
CN108479796B (en) Photocatalyst and volatile organic compound purifying equipment and purifying method thereof
Zeltner et al. Shedding light on photocatalysis
JPH0512967B2 (en)
Jin et al. Single atom catalysts for degradation of antibiotics from aqueous environments by advanced oxidation processes: A review
JPH0532321B2 (en)
JPH0229365B2 (en)
JPH0130532B2 (en)
JP3612552B2 (en) Photoreaction catalyst
JPH0824629A (en) Photo-catalytic reaction tank
JP2001259436A (en) Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR
JPS63305922A (en) Method for treating waste ozone
JPS61133125A (en) Denitration process using ultraviolet ray
JP3440295B2 (en) Novel semiconductor photocatalyst and photocatalytic reaction method using the same
JPH01288322A (en) Deodorization by photocatalyst
JPH0478326B2 (en)
JP3645061B2 (en) Apparatus for decomposing organic components in aqueous solution and method for decomposing the same
Batakliev et al. Ozone decomposition
JP2006272062A (en) Harmful substance-decomposition material for medical use
JP2002035594A (en) Method for manufacturing photocatalyst for water treatment and water treating method using the catalyst
JPH0290924A (en) Deodorizing with photocatalyst
Asgari et al. Dexamethasone degradation in aqueous solution via photocatalytic UV/H2O2/MgO process: kinetic studies
JP4288094B2 (en) Photochemical reaction method, liquid processing method and liquid processing apparatus