JP2001259436A - Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR - Google Patents

Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR

Info

Publication number
JP2001259436A
JP2001259436A JP2000075552A JP2000075552A JP2001259436A JP 2001259436 A JP2001259436 A JP 2001259436A JP 2000075552 A JP2000075552 A JP 2000075552A JP 2000075552 A JP2000075552 A JP 2000075552A JP 2001259436 A JP2001259436 A JP 2001259436A
Authority
JP
Japan
Prior art keywords
photocatalyst
air
component
nitrogen oxides
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000075552A
Other languages
Japanese (ja)
Inventor
Hiroki Nakamaru
裕樹 中丸
Takahiro Kikuchi
孝宏 菊地
Tomoyuki Tawara
知之 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000075552A priority Critical patent/JP2001259436A/en
Publication of JP2001259436A publication Critical patent/JP2001259436A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst component for denitration useful to nitrify and to remove NOx in air by irradiation of visible rays at normal temperature, and to provide a photocatalyst for denitration and a method of removing nitrogen oxides in air. SOLUTION: The photocatalyst component for denitration substantially consists of α-crystal Fe2O3 having >=20 m2/g specific surface area measured by the BET method. The photocatalyst for denitration contains the aforementioned photocatalyst component to nitrify gaseous nitrogen oxides in air. In the method of removing nitride oxides in air, the gaseous nitrogen oxides is nitrified by bringing air containing gaseous nitrogen oxides into contact with the photocatalyst component while irradiating with light containing the component of light at <=539 nm wavelength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気中NOx の硝
酸化除去に有用な脱硝用光触媒成分、これを含む脱硝用
光触媒、および該光触媒を用いた可視光照射、常温下で
の空気中窒素酸化物の除去方法に関する。
The present invention relates to the useful denitration photocatalytic component nitrating removal in air NO x, visible light irradiation, in air at room temperature using a denitration photocatalytic, and the photocatalyst containing this The present invention relates to a method for removing nitrogen oxides.

【0002】[0002]

【従来の技術】一酸化窒素NO、二酸化窒素NO2 など
のガス状窒素酸化物(NOx )は大気中に放出される
と、人体に呼吸器疾患を誘因したり、光化学スモッグ、
酸性雨などの原因となる。そのため自動車、発電所など
の発生源から大気中に放出される窒素酸化物量は規制さ
れ、二酸化窒素については環境基準が定められてはいる
が、その目標は必ずしも達成されているとはいえない。
とくに自動車道路沿道などでは依然として基準濃度を越
える窒素酸化物が観測されており、その早急な解決が切
望されている。
2. Description of the Related Art Gaseous nitrogen oxides (NO x ) such as nitric oxide NO and nitrogen dioxide NO 2 , when released into the atmosphere, can cause respiratory diseases in the human body, cause photochemical smog,
May cause acid rain. Therefore, the amount of nitrogen oxides emitted into the atmosphere from sources such as automobiles and power plants is regulated, and environmental standards for nitrogen dioxide have been set, but the target has not always been achieved.
In particular, nitrogen oxides exceeding the standard concentration are still observed on roadsides and the like, and an urgent solution is urgently needed.

【0003】大気中の窒素酸化物はNOを主成分として
おり、大気中の酸素により酸化され硝酸として大気中か
ら自然除去されるが、大気中窒素酸化物NOx 濃度がp
pmオーダーになるとその除去には数日間も要する。こ
のため大気中からNOx を早急に除去するために触媒の
利用が盛んに検討されている。
[0003] nitrogen oxides in the atmosphere is mainly composed of NO, but is naturally removed from the atmosphere as nitric acid is oxidized by oxygen in atmosphere, the nitrogen oxides concentration of NO x in the atmosphere p
Removal in the pm order takes several days. Use of the catalyst has been extensively studied in order to quickly remove the NO x from the order in the air.

【0004】従来、自動車、発電所などの特定燃焼発生
源からの排出ガスについては、NH 3 による無触媒還元
法、HC,C,COなどの還元物質を利用する炉内脱硝
法などの脱硝法により高濃度の窒素酸化物量を低減する
方法が知られている。このような燃焼源に用いるための
PdやPtなどの酸化あるいは還元触媒も提案されてい
る。しかしながらこれらの脱硝法は、還元物質を共存さ
せる必要があるなどの使用上の制約もあり、また脱硝触
媒は比較的高温で性能を発揮するように開発されてお
り、大気中に設置して使用するにはエネルギーコストな
どがかかるなどして現実的に困難である。
Conventionally, generation of specific combustion in automobiles, power plants, etc.
For emissions from sources, NH ThreeWithout catalyst
Denitration in furnaces using reducing substances such as HC, C, and CO
Reduction of high concentration of nitrogen oxides by denitrification method
Methods are known. For use in such combustion sources
Oxidation or reduction catalysts such as Pd and Pt have also been proposed.
You. However, these denitration methods do not coexist with reducing substances.
There are also restrictions on use such as the need to remove
The medium has been developed to perform at relatively high temperatures.
Energy cost to install and use in the atmosphere.
It is practically difficult because of the throat.

【0005】ところで近年、光照射により半導体特性を
示し、窒素酸化物を酸化のための脱硝触媒となりうる光
触媒が着目され、実用化に向けた研究が盛んに検討され
ている。すなわち図1に示すように、半導体のバンドギ
ャップに相当するエネルギーの光が照射されると、荷電
子帯上端の電子が伝導帯下端のエネルギー準位に励起さ
れ、荷電子帯には正孔が生成する。この時、荷電子帯の
正孔は外部から電子を受容して酸化反応を、伝導帯に励
起された電子は外部に移行して還元反応を起こし得る。
In recent years, attention has been paid to photocatalysts which exhibit semiconductor characteristics by light irradiation and can be used as denitration catalysts for oxidizing nitrogen oxides, and studies for practical use are being actively studied. That is, as shown in FIG. 1, when light having energy corresponding to the band gap of a semiconductor is irradiated, electrons at the upper end of the valence band are excited to the energy level at the lower end of the conduction band, and holes are formed in the valence band. Generate. At this time, holes in the valence band may receive an electron from the outside to cause an oxidation reaction, and electrons excited in the conduction band may transfer to the outside to cause a reduction reaction.

【0006】とくにアナタースTiO2 は、光照射によ
り励起された時の伝導帯下端のエネルギー準位(電位)
は−0.2V(vsNHE)付近である。この励起された
TiO2 表面では、空気中の酸素ガス分子の還元反応が
生起し、水酸基ラジカルあるいはスーパーオキサイドイ
オンなどの活性酸素種が生成される。 e cb - + O2 + H+ →HO2 ・…(1) (標準酸化還元電位E0 =−0.15V(vsNHE))
In particular, anatase TiO 2 is an energy level (potential) at the bottom of the conduction band when excited by light irradiation.
Is around -0.2 V (vs NHE). On the excited TiO 2 surface, a reduction reaction of oxygen gas molecules in the air occurs, and active oxygen species such as hydroxyl radicals or superoxide ions are generated. e cb- + O 2 + H + → HO 2 ··· (1) (standard oxidation-reduction potential E 0 = −0.15 V (vs NHE))

【0007】この活性酸素種は強力な酸化作用を有する
ため、これを利用すれば大気中のNOx を短時間で硝酸
まで酸化し、除去することが可能である。またTiO2
は、荷電子帯に生成する正孔電位が約+3.0V(vsN
HE)であり、下記式(2)で示されるNOガスの硝酸
イオン化反応も進行する。 NO3 - +4H+ +3e- =NO(g)+2H2 O …(2) (標準酸化還元電位E0 =+0.96V(vsNHE))
[0007] Therefore reactive oxygen species having a strong oxidizing action, which oxidizes to nitrate the NO x in the atmosphere in a short time by utilizing, can be removed. TiO 2
Indicates that the hole potential generated in the valence band is about +3.0 V (vsN
HE), and the nitric acid ionization reaction of the NO gas represented by the following formula (2) also proceeds. NO 3 + 4H + + 3e = NO (g) + 2H 2 O (2) (standard redox potential E 0 = + 0.96 V (vs NHE))

【0008】TiO2 光触媒は、紫外光照射下、常温で
触媒効果を発現でき、かつ複雑な装置を必要としないな
ど経済的にも画期的であり、自動車道路沿道、トンネル
あるいは室内などの窒素酸化物汚染が問題となる空間に
設置するものとして有用であると考えられる。したがっ
てこの実用化方法が多く提案され、たとえば、TiO2
と活性炭との混合物を300nm以上の入工光あるいは
太腸光を照射して光触媒作用させ、空気中の窒素酸化物
を酸化し、硝酸として固定化する方法(特公平2−62
297号)などが提案されている。
[0008] The TiO 2 photocatalyst can exhibit a catalytic effect at room temperature under ultraviolet light irradiation, and is economically revolutionary because it does not require a complicated device. It is considered to be useful as an installation in a space where oxide contamination is a problem. Therefore, many practical methods have been proposed, for example, TiO 2
A method of irradiating a mixture of activated carbon with activated light or a large intestine light of 300 nm or more to cause photocatalysis to oxidize nitrogen oxides in the air and to fix them as nitric acid (Japanese Patent Publication No. 2-62).
297) has been proposed.

【0009】しかしながらTiO2 のバンドギャップが
5.127×10-19 J(3.2eV)であり(図1参
照)、反応に利用できる光はこのバンドギャップに相当
する波長の光すなわち387nm以下の高エネルギー紫
外光に限られる。このため可視光領域の光を吸収するこ
とはできず、太陽光のうち利用できる波長領域はごくわ
ずかであり、特に日照量の少ない場所では充分に触媒効
果が発現できないという問題点がある。また上記TiO
2 表面に生成する活性酸素種の酸化作用は強力であり、
窒素酸化物の酸化だけでなくほとんどすべての有機物質
を分解する能力を有する。このため共存樹脂を分解する
という問題があり、たとえば塗料形態で使用した場合に
はTiO2 塗料の塗膜で起きるチョーキング現象のよう
に樹脂皮膜の表面を劣化させるなど、フッ素樹脂などの
ごく一部を除き使用することができず、TiO2光触媒
実用化への障害の一つになっている。
However, the band gap of TiO 2 is 5.127 × 10 −19 J (3.2 eV) (see FIG. 1), and the light available for the reaction is light of a wavelength corresponding to this band gap, that is, light of 387 nm or less. Limited to high energy UV light. For this reason, light in the visible light region cannot be absorbed, and the available wavelength region of sunlight is very small. In particular, there is a problem that a catalytic effect cannot be sufficiently exhibited in a place with a small amount of sunlight. The above TiO
2 The oxidizing effect of reactive oxygen species generated on the surface is strong,
It has the ability to decompose almost all organic substances as well as oxidize nitrogen oxides. For this reason, there is a problem that the coexisting resin is decomposed. For example, when used in the form of a paint, the surface of the resin film is deteriorated like a choking phenomenon that occurs in the coating film of the TiO 2 paint. TiO 2 photocatalyst is one of the obstacles to practical use.

【0010】[0010]

【発明が解決しようとする課題】上記TiO2 以外に、
理論上光触媒となりうるものとしてFe2 3 も知られ
ている。Fe2 3 の荷電子帯に生成する正孔の電位は
約2.6V(vsNHE)であり、上記式(2)で示され
るNOガスの硝酸イオン化反応(E0 =+0.96V
(vsNHE))は充分に進行する。
In addition to the above TiO 2 ,
Fe 2 O 3 is also known as a photocatalyst in theory. The potential of holes generated in the valence band of Fe 2 O 3 is about 2.6 V (vs NHE), and the nitric acid ionization reaction of NO gas (E 0 = + 0.96 V) represented by the above formula (2)
(VsNHE)) proceeds sufficiently.

【0011】このFe2 3 のバンドギャップは3.6
85×10-19 J(2.3eV)であり、波長539n
m以下の光で伝導帯に励起される、すなわち可視光吸収
が可能である。またFe2 3 の伝導帯下端のエネルギ
ー準位は、+0.3V(vsNHE)付近であり、TiO
2 (−0.2V)に比べて還元力が弱く、上記式 (1)
で示されるような活性酸素種を生成する還元反応は起き
ない。したがってFe2 3 は、常温での可視光照射に
よりガス状窒素酸化物を酸化(硝酸化)することが可能
であり、しかも共存する有機物の分解は起きないので、
樹脂などをバインダーとして塗料形態で使用することも
可能である。
The band gap of this Fe 2 O 3 is 3.6.
85 × 10 −19 J (2.3 eV), wavelength 539 n
It is excited in the conduction band by light of m or less, that is, visible light absorption is possible. The energy level at the lower end of the conduction band of Fe 2 O 3 is around +0.3 V (vs NHE),
2 The reducing power is weaker than that of (-0.2V).
Does not occur. Therefore, Fe 2 O 3 can oxidize (nitrate) gaseous nitrogen oxides by irradiation with visible light at normal temperature, and furthermore, the coexisting organic matter does not decompose.
It is also possible to use a resin or the like as a binder in the form of a paint.

【0012】上記のようにFe2 3 は、理論的には窒
素酸化物の酸化のための光触媒となりうることは可能で
あるが、実際にFe2 3 表面でNOガスが硝酸イオン
にまで酸化される反応が起こるかどうかは他の要因にも
左右される。中でも、一旦吸収光のエネルギーにより励
起した電子と正孔とが、再結合ではなく外部の物質と何
らかの反応を起こす確率(量子収率)がどの程度起きる
かという点が極めて重要であるが、一般に光触媒の表面
に励起された電子や正孔が再結合する前に反応を起こす
確率は低い。とくにFe2 3 の量子収率はきわめて低
く、理論上その電位から起こり得ると期待される反応が
現実には起こらないケースが多い。空気中の窒素酸化物
の酸化にFe2 3 が適用された報告例は少なく、これ
までのところ、実用上十分な反応速度でFe2 3 表面
での光触媒反応によって空気中の窒素酸化物を酸化除去
できた例は無かった。
As described above, it is theoretically possible that Fe 2 O 3 can serve as a photocatalyst for the oxidation of nitrogen oxides, but in fact NO gas is converted to nitrate ions on the surface of Fe 2 O 3. Whether or not the oxidizing reaction takes place depends on other factors. Among them, it is extremely important to determine the probability (quantum yield) that electrons and holes, once excited by the energy of absorbed light, cause some reaction with an external substance instead of recombination. The probability that electrons or holes excited on the surface of the photocatalyst will react before recombination is low. In particular, the quantum yield of Fe 2 O 3 is extremely low, and in many cases, a reaction that is theoretically expected to occur from that potential does not actually occur. There have been few reports of the application of Fe 2 O 3 to the oxidation of nitrogen oxides in air. So far, nitrogen oxides in air have been photocatalyzed on the surface of Fe 2 O 3 at a reaction rate sufficient for practical use. There was no example that could be removed by oxidation.

【0013】[0013]

【課題を解決するための手段】本発明者は、上記のよう
に理論的には窒素酸化物の酸化触媒となりうるが、実用
化はされてなかった光触媒成分Fe2 3 に着目し、こ
れを光触媒として実用化すべく検討したところ、Fe2
3 をアモルファス化することなくα結晶性を保持し、
かつ該結晶粒を微細化することにより、再結合の場とな
る欠陥を極力低減することができ、量子効率を向上させ
ることができることを見出した。そしてこのα結晶粒の
微細化としてFe2 3 の比表面積を目安とすることが
でき、図2に示すようにFe2 3 の比表面積が20m
2 /gという特定値以上になると光触媒活性が飛躍的に
向上し、光触媒として有用な効果が得られることを見出
して本発明を完成した。
The present inventor has focused on the photocatalyst component Fe 2 O 3 which could theoretically be used as a catalyst for oxidizing nitrogen oxides as described above, but has not been put to practical use. It was studies to practical use as a photocatalyst, Fe 2
Retains α crystallinity without amorphizing O 3 ,
In addition, it has been found that by making the crystal grains fine, defects serving as a recombination field can be reduced as much as possible, and quantum efficiency can be improved. And only an estimate of the specific surface area of Fe 2 O 3 as a refining of the α crystal grains, the specific surface area of the Fe 2 O 3 as shown in FIG. 2 20 m
When the specific value of 2 / g or more was reached, the photocatalytic activity was dramatically improved, and it was found that a useful effect as a photocatalyst could be obtained, thereby completing the present invention.

【0014】すなわち本発明では、BET法で測定され
る比表面積が20m2 /g以上で、実質的にα結晶Fe
2 3 からなる脱硝用光触媒成分が提供される。またこ
の光触媒成分を含む、空気中からガス状窒素酸化物を硝
酸化するための脱硝用光触媒が提供される。
That is, in the present invention, when the specific surface area measured by the BET method is 20 m 2 / g or more, the α-crystal Fe
A denitration photocatalytic component comprising 2 O 3 is provided. Also provided is a denitration photocatalyst for nitrating gaseous nitrogen oxides from air, which contains the photocatalyst component.

【0015】また本発明に係る空気中窒素酸化物の除去
方法は、539nm以下の波長の光成分を含む光の下
で、上記光触媒成分とガス状窒素酸化物を含む空気とを
接触させ、ガス状窒素酸化物を硝酸化することを特徴と
している。上記接触は、常温下で行うことができる。
Further, the method for removing nitrogen oxides in air according to the present invention comprises contacting the photocatalyst component with air containing gaseous nitrogen oxide under light containing a light component having a wavelength of 539 nm or less. It is characterized by nitrating nitric oxide. The contact can be performed at normal temperature.

【0016】[0016]

【発明の実施の形態】本発明の光触媒成分は、BET法
で測定される比表面積(以下、BET比表面積とも称
す)が20m2 /g以上、好ましくは50m2 /g以
上、より好ましくは50〜200m2 /gのFe2 3
粉末からなる。なお、BET法では液体窒素を用いて測
定した。上記比表面積を持つFe2 3 は、実質的にα
結晶の微細粒子である。またアモルファス態は実質的に
含まない。
BEST MODE FOR CARRYING OUT THE INVENTION The photocatalytic component of the present invention has a specific surface area (hereinafter, also referred to as a BET specific surface area) measured by the BET method of at least 20 m 2 / g, preferably at least 50 m 2 / g, more preferably at least 50 m 2 / g. 200 m 2 / g of Fe 2 O 3
Consists of powder. In the BET method, measurement was performed using liquid nitrogen. Fe 2 O 3 having the above specific surface area is substantially α
It is a fine crystal particle. The amorphous state is not substantially contained.

【0017】このようなFe2 3 は、波長539nm
以下の光照射により荷電子帯に正孔を生成することがで
きる。その正孔電位は約2.6V(vsNHE)であり、
たとえば式(2)で示される反応を左辺側に進行させ、
空気中のガス状窒素酸化物を酸化(硝酸化)し、脱硝効
果を発揮することができる。 NO3 - +4H+ +3e- =NO(g)+2H2 O …(2)
Such Fe 2 O 3 has a wavelength of 539 nm.
Holes can be generated in the valence band by the following light irradiation. Its hole potential is about 2.6 V (vs NHE),
For example, the reaction represented by the formula (2) proceeds to the left side,
It oxidizes (nitrates) gaseous nitrogen oxides in the air and can exert a denitration effect. NO 3 + 4H + + 3e = NO (g) + 2H 2 O (2)

【0018】Fe2 3 に触媒作用させる光源は、53
9nmまでの波長成分を含む光であればよく、太陽光で
もよく、人工の可視光および/または紫外光、いずれで
あってもよい。またFe2 3 は、常温で光触媒効果を
発揮することができる。
The light source for catalyzing Fe 2 O 3 is 53
Any light containing a wavelength component of up to 9 nm may be used, and sunlight may be used, and any of artificial visible light and / or ultraviolet light may be used. Further, Fe 2 O 3 can exert a photocatalytic effect at normal temperature.

【0019】上記のようなFe2 3 は、たとえば2価
鉄イオンを含む溶液にアルカリを加えゲーサイトの沈殿
を生成し、その後、加熱脱水することによりヘマタイト
とする方法などで製造することができる。
The above-mentioned Fe 2 O 3 can be produced, for example, by a method of adding an alkali to a solution containing ferrous iron ions to form a precipitate of goethite, followed by heating and dehydration to obtain hematite. it can.

【0020】また上記反応(2)により酸化された空気
中のガス状窒素酸化物は、硝酸イオンとしてFe2 3
表面に固定化される。上記のようなFe2 3 は、通常
粉末状であり脱硝用触媒成分としてそのままで使用する
ことも可能であるが、他の触媒助剤とともに光触媒を形
成することもできる。
The gaseous nitrogen oxide in the air oxidized by the above reaction (2) is converted into nitrate ions by Fe 2 O 3
Immobilized on the surface. The above-mentioned Fe 2 O 3 is usually in the form of powder and can be used as it is as a denitration catalyst component, but it can also form a photocatalyst together with other catalyst auxiliaries.

【0021】またたとえば樹脂バインダーなどとともに
塗料形態で使用すると実用上有用である。この際、光照
射により励起されたFe2 3 の伝導帯下端のケミカル
ポテンシャルでは炭化水素化合物を分解しないため、T
iO2 光触媒の場合に対して有機樹脂バインダーが制限
されないという利点がある。
It is practically useful to use it in the form of a paint together with, for example, a resin binder. At this time, the hydrocarbon compound is not decomposed at the chemical potential at the lower end of the conduction band of Fe 2 O 3 excited by light irradiation.
There is an advantage that the organic resin binder is not limited as compared with the case of the iO 2 photocatalyst.

【0022】Fe2 3 光触媒成分を用いて、空気中の
ガス状窒素酸化物を硝酸化し除去するには、539nm
以下の波長の光成分を含む光の下で、光触媒成分とガス
状窒素酸化物(NOX )を含む空気とを接触させればよ
く、その方法は特に限定されない。
In order to nitrify and remove gaseous nitrogen oxides in the air using the Fe 2 O 3 photocatalyst component, 539 nm
Under light including a light component of a wavelength, may be contacted with the air containing photocatalyst component gaseous nitrogen oxide (NO X), the method is not particularly limited.

【0023】[0023]

【実施例】次に本発明を実施例により具体的に説明する
が、本発明はこれら実施例に限定されるものではない。 (実施例1) <光触媒の調製>容積15リットルの反応容器中に、8
NのNaOH溶液2リットルおよび硫酸第1鉄0.5m
olを含む鉄塩溶液8リットルを加えて混合し、40℃
で空気を2リットル/minの速度で通気してα−Fe
OOH粒子を生成した。生成した粒子は、水洗・ろ過・
解砕した後、さらに空気中で300℃×1分間加熱し、
Fe2 3 粉末を得た。NaOHとFeCl3 の混合比
PHなどを変えることで比表面積を変化させ、BET比
表面積20、30、50、65m2 /gのFe2 3
末を得た。これらのサンプルをX線回折で調べた結果、
いずれもα結晶であった。
EXAMPLES Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. (Example 1) <Preparation of photocatalyst> In a 15-liter reaction vessel, 8
2 L of NaOH solution of N and 0.5 m of ferrous sulfate
8 liters of an iron salt solution containing
And aeration of air at a rate of 2 liters / min.
OOH particles were produced. The generated particles are washed, filtered,
After crushing, further heat in air at 300 ° C for 1 minute,
An Fe 2 O 3 powder was obtained. The specific surface area was changed by changing the mixing ratio PH of NaOH and FeCl 3 to obtain Fe 2 O 3 powders having BET specific surface areas of 20, 30, 50, and 65 m 2 / g. As a result of examining these samples by X-ray diffraction,
All were α crystals.

【0024】<試験装置>図3に、窒素酸化物(以後N
Ox)除去試験に用いた装置を模式的に示す。市販のス
テンレス製グローブボックスの外部に、光源となる蛍光
管を固定し、グローブボックスのガラス窓を通して内部
の試料台に固定した試験片に光を照射した。グローブボ
ックス内は5ppm−NO雰囲気とし、外部に設置した
ポンプを通じて循環させた。図3の装置を暗所に設置し
て、光源以外の外部からの光は試料に届かないように制
御した。
<Testing Apparatus> FIG. 3 shows a nitrogen oxide (hereinafter referred to as N).
Ox) The apparatus used for the removal test is schematically shown. A fluorescent tube serving as a light source was fixed to the outside of a commercially available stainless steel glove box, and light was applied to a test piece fixed to an internal sample table through a glass window of the glove box. The glove box was set to a 5 ppm-NO atmosphere and circulated through a pump installed outside. The apparatus shown in FIG. 3 was installed in a dark place, and was controlled so that external light other than the light source did not reach the sample.

【0025】<光 源>試験に用いた2光源の分光特性
を図4に示す。 可視光光源として、波長540nm付近にピークを
もつ蛍光灯(ナショナル製FL10G)を用いた。 紫外光光源として、波長350nm付近にピークを
持つ蛍光灯(ナショナル製FL10BL−B)を用い
た。
<Light Source> FIG. 4 shows the spectral characteristics of the two light sources used in the test. As a visible light source, a fluorescent lamp (FL10G manufactured by National) having a peak near a wavelength of 540 nm was used. A fluorescent lamp (FL10BL-B manufactured by National) having a peak near a wavelength of 350 nm was used as an ultraviolet light source.

【0026】<試 験> (1)試験片の作成 実施例、比較例で得られたFe2 3 粉末を、SUS4
30板の100mm×50mm×0.5mm切出片の片
面上に、5g/m2 の担持量で貼付けた両面テープ上に
まぶして固定し、試験片を作成した。
<Tests> (1) Preparation of Test Specimens Fe 2 O 3 powders obtained in Examples and Comparative Examples were
A test piece was prepared by covering 30 pieces of 100 mm × 50 mm × 0.5 mm cut pieces on one side with a double-sided tape adhered at a carrying amount of 5 g / m 2 on one side.

【0027】(2)上記で得られた試験片を、図3に示
す試験装置内に固定し、5ppmのNOガスを循環させ
ながら、室温で12時間光照射した。 (3)次に装置から取出した上記試験片を、20mLの
脱イオン水中に浸漬し、3時間静置した後、試験片の表
面に固定化された硝酸イオンを脱イオン水中に抽出し
た。 (4)硝酸イオン選択性電極(ORION社製970
7)を用いて抽出液中の硝酸イオン(NO3 - )濃度を
分析した。 上記手順により、同一塗布量のときの単位面積あたりに
固定化された硝酸イオン濃度(NO3 - 固定化量)を測
定し、各比表面積の光触媒成分に対する窒素酸化物の酸
化能力(脱硝能力)を調べた。
(2) The test piece obtained above was fixed in the test apparatus shown in FIG. 3 and irradiated with light at room temperature for 12 hours while circulating 5 ppm of NO gas. (3) Next, the test piece taken out of the apparatus was immersed in 20 mL of deionized water, allowed to stand for 3 hours, and then nitrate ions immobilized on the surface of the test piece were extracted into the deionized water. (4) Nitrate ion selective electrode (970 manufactured by ORION)
Using 7), the concentration of nitrate ion (NO 3 ) in the extract was analyzed. By the above procedure, the immobilized nitrate ion concentration per unit area when the same coating amount - measured (NO 3 immobilization amount), oxidative capacity of nitrogen oxide to the photocatalyst component of the specific surface area (denitrification capability) Was examined.

【0028】<試験結果>図2に、Fe2 3 の比表面
積(横軸)と、硝酸イオン固定化濃度(縦軸)との関係
を示す。
<Test Results> FIG. 2 shows the relationship between the specific surface area of Fe 2 O 3 (horizontal axis) and the concentration of fixed nitrate ions (vertical axis).

【0029】(比較例1)NaOHとFeCl3 の混合
比を変えた以外は、実施例1と同様の湿式調製法により
得られたBET比表面積5、10、15m2 /gのFe
2 3 粉末を試験に供した。X線回折の結果、いずれも
α結晶であった。実施例1と同様の試験を行い、結果を
図2に示す。
(Comparative Example 1) BET specific surface areas of 5, 10, and 15 m 2 / g were obtained by the same wet preparation method as in Example 1 except that the mixing ratio of NaOH and FeCl 3 was changed.
2 O 3 powder was subjected to the test. As a result of X-ray diffraction, all were α crystals. The same test as in Example 1 was performed, and the results are shown in FIG.

【0030】(比較例2)塩化第1鉄水溶液を650℃
で噴霧焙焼して得られたBET比表面積5m2 /gのF
2 3 粉末(市販品;川崎製鉄製フェライト用原料)
を用いた。X線回折の結果、α結晶であった。実施例1
と同様の試験を行い、結果を図2に示す。図2の硝酸イ
オン固定化濃度から明らかなように、比表面積20m2
/g未満のFe2 3 では明確な触媒効果が得られない
のに対し、触媒効果は比表面積20m2 /gで不連続的
に変化し、20m2 /gを境に飛躍的に向上している。
本発明の20m2 /g以上の比表面積を有する実施例F
2 3 光触媒成分は、空気中のNOxを酸化して硝酸
イオンとして表面に保持するような光触媒効果(脱硝触
媒)を十分に示すことが分かる。
Comparative Example 2 An aqueous solution of ferrous chloride was heated at 650 ° C.
With a BET specific surface area of 5 m 2 / g obtained by spray roasting
e 2 O 3 powder (commercially available; raw material for ferrite made by Kawasaki Steel)
Was used. As a result of X-ray diffraction, it was an α crystal. Example 1
A test similar to the above was performed, and the results are shown in FIG. As is apparent from the nitrate ion-immobilized concentration in FIG. 2, the specific surface area was 20 m 2.
/ In Fe 2 O 3 of less than g contrast is not obtained clear catalytic effect, catalytic effect is discontinuously varied specific surface area 20 m 2 / g, and dramatically improved in the boundary of 20 m 2 / g ing.
Example F of the present invention having a specific surface area of 20 m 2 / g or more
It can be seen that the e 2 O 3 photocatalyst component sufficiently exhibits a photocatalytic effect (deNOx catalyst) such that NOx in the air is oxidized and held on the surface as nitrate ions.

【0031】(実施例2)実施例1のBET比表面積5
0m2 /gのFe2 3 粉末について、単位面積あたり
の担持量を変化させた以外は、実施例1と同様にして光
触媒効果を調べた。試験結果を図5に示す。光照射無し
でも少量の硝酸イオンを検出することができたが、光照
射によって硝酸イオン固定化量が急激に増加し、この光
源は可視光であっても紫外光であってもほぼ同等であっ
た。
(Example 2) BET specific surface area 5 of Example 1
The photocatalytic effect was examined in the same manner as in Example 1 except that the amount of Fe 2 O 3 powder of 0 m 2 / g was changed per unit area. The test results are shown in FIG. Although a small amount of nitrate ions could be detected without light irradiation, the amount of immobilized nitrate ions rapidly increased by light irradiation, and this light source was almost the same regardless of whether it was visible light or ultraviolet light. Was.

【0032】[0032]

【発明の効果】上記のように本発明では、可視光照射
下、常温で光触媒効果のあるFe2 3を触媒成分とし
て実用上使用可能にすることができた。この触媒成分に
よれば、大気中の窒素酸化物を除去したい空間に置くだ
けで、空気中の窒素酸化物を硝酸化し、脱硝することが
できる。また該触媒成分は、共存する有機物は本質的に
分解しないので、樹脂バインダーなどを制限なく用いて
塗料形態とすることができ、その利用範囲も広い。
As described above, according to the present invention, Fe 2 O 3 having a photocatalytic effect at room temperature under irradiation with visible light can be practically used as a catalyst component. According to this catalyst component, nitrogen oxides in the air can be nitrated and denitrated simply by placing them in a space where nitrogen oxides in the air are to be removed. In addition, since the coexisting organic substance does not essentially decompose, the catalyst component can be formed into a coating form using a resin binder or the like without limitation, and its use range is wide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 半導体のエネルギー特性を説明する図であ
る。
FIG. 1 is a diagram illustrating energy characteristics of a semiconductor.

【図2】 Fe2 3 のBET比表面積に対する硝酸イ
オン固定化量を示す図である。
FIG. 2 is a diagram showing the amount of nitrate ions immobilized on the BET specific surface area of Fe 2 O 3 .

【図3】 空気中のNOx 除去試験に用いた装置を示す
図である。
3 is a diagram showing an apparatus used for NO x removal test in air.

【図4】 空気中のNOx 除去試験に用いた光源の分光
特性を示す図である。
4 is a diagram showing spectral characteristics of the light source used for the NO x removal test in air.

【図5】 本発明のFe2 3 光触媒成分の単位面積あ
たりの担持量に対する触媒効果を示す図である。
FIG. 5 is a graph showing the catalytic effect on the amount of Fe 2 O 3 photocatalyst component of the present invention carried per unit area.

フロントページの続き (72)発明者 田原 知之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4D048 AA06 BA36X BA36Y BA41X BA41Y BB17 EA01 4G002 AA03 AB02 AE05 4G069 AA02 AA12 AA15 BA48A BB04A BB04B BC66A BC66B CA13 EC01X EC01Y EC22X EC22Y Continuation of the front page (72) Inventor Tomoyuki Tahara 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term in the Technical Research Laboratory, Kawasaki Steel Co., Ltd. 4D048 AA06 BA36X BA36Y BA41X BA41Y BB17 EA01 4G002 AA03 AB02 AE05 4G069 AA02 AA12 AA15 BA48A BB04A BB04B BC66A BC66B CA13 EC01X EC01Y EC22X EC22Y

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】BET法で測定される比表面積が20m2
/g以上で、実質的にα結晶Fe23 からなる脱硝用
光触媒成分。
A specific surface area measured by a BET method is 20 m 2.
/ G or more, a photocatalytic component for denitration consisting essentially of α-crystal Fe 2 O 3 .
【請求項2】請求項1の光触媒成分を含む、空気中のガ
ス状窒素酸化物を硝酸化するための脱硝用光触媒。
2. A denitration photocatalyst containing the photocatalyst component according to claim 1 for nitrating gaseous nitrogen oxides in air.
【請求項3】539nm以下の波長の光成分を含む光の
下で、請求項1に記載の光触媒成分とガス状窒素酸化物
を含む空気とを接触させ、ガス状窒素酸化物を硝酸化す
る、空気中窒素酸化物の除去方法。
3. The photocatalyst component according to claim 1 is brought into contact with air containing gaseous nitrogen oxide under light containing a light component having a wavelength of 539 nm or less to nitrate the gaseous nitrogen oxide. , How to remove nitrogen oxides in the air.
【請求項4】前記接触を常温下で行う請求項3に記載の
空気中窒素酸化物の除去方法。
4. The method for removing nitrogen oxides in air according to claim 3, wherein the contacting is performed at normal temperature.
JP2000075552A 2000-03-17 2000-03-17 Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR Pending JP2001259436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075552A JP2001259436A (en) 2000-03-17 2000-03-17 Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075552A JP2001259436A (en) 2000-03-17 2000-03-17 Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR

Publications (1)

Publication Number Publication Date
JP2001259436A true JP2001259436A (en) 2001-09-25

Family

ID=18593429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075552A Pending JP2001259436A (en) 2000-03-17 2000-03-17 Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR

Country Status (1)

Country Link
JP (1) JP2001259436A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075678A (en) * 2005-09-12 2007-03-29 National Institute Of Advanced Industrial & Technology Zirconium oxide-based optically functional oxide
WO2007100039A1 (en) 2006-03-01 2007-09-07 Nissan Motor Co., Ltd. Photocatalyst activation system and method for activating photocatalyst
EP2020504A2 (en) 2007-08-02 2009-02-04 Nissan Motor Co., Ltd. Photocatalytic ignition system
JP2009233590A (en) * 2008-03-27 2009-10-15 National Institute Of Advanced Industrial & Technology Toxic substance treatment method and device for treatment
CN102091620A (en) * 2011-01-18 2011-06-15 上海交通大学 Method for preparing porous hierarchical structure semiconductor photocatalytic material
JP2014152062A (en) * 2013-02-07 2014-08-25 Tokyo Metropolitan Univ Photocatalytic glass
JP2015167871A (en) * 2014-03-04 2015-09-28 公立大学法人首都大学東京 Photocatalytic glass, and method of producing the same
JP2016209811A (en) * 2015-05-08 2016-12-15 国立研究開発法人物質・材料研究機構 Photocatalyst composite material and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075678A (en) * 2005-09-12 2007-03-29 National Institute Of Advanced Industrial & Technology Zirconium oxide-based optically functional oxide
JP4565239B2 (en) * 2005-09-12 2010-10-20 独立行政法人産業技術総合研究所 Zirconium oxide photofunctional oxide
WO2007100039A1 (en) 2006-03-01 2007-09-07 Nissan Motor Co., Ltd. Photocatalyst activation system and method for activating photocatalyst
EP2020504A2 (en) 2007-08-02 2009-02-04 Nissan Motor Co., Ltd. Photocatalytic ignition system
JP2009233590A (en) * 2008-03-27 2009-10-15 National Institute Of Advanced Industrial & Technology Toxic substance treatment method and device for treatment
CN102091620A (en) * 2011-01-18 2011-06-15 上海交通大学 Method for preparing porous hierarchical structure semiconductor photocatalytic material
JP2014152062A (en) * 2013-02-07 2014-08-25 Tokyo Metropolitan Univ Photocatalytic glass
JP2015167871A (en) * 2014-03-04 2015-09-28 公立大学法人首都大学東京 Photocatalytic glass, and method of producing the same
JP2016209811A (en) * 2015-05-08 2016-12-15 国立研究開発法人物質・材料研究機構 Photocatalyst composite material and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3790189B2 (en) Novel synthesis method of visible light responsive BiVO4 fine powder, photocatalyst comprising the BiVO4 fine powder, and purification method using the photocatalyst
EP0818239B1 (en) Photocatalyst, method of producing the photocatalyst, and photocatalytic reaction method
Shukla et al. Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution
Hashimoto et al. Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere
JP5582545B2 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
JP4018161B2 (en) Method for producing titanium oxide for photocatalyst and method for removing harmful substances using the same
EP1125636A1 (en) Visible radiation type photocatalyst and production method thereof
US20070193875A1 (en) Photocatalyst materials having semiconductor characteristics and methods for manufacturing and using the same
Chen et al. Insights into designing photocatalysts for gaseous ammonia oxidation under visible light
Li et al. Efficient photocatalytic degradation of acrylonitrile by Sulfur-Bismuth co-doped F-TiO2/SiO2 nanopowder
JP2001259436A (en) Fe2O3 PHOTOCATALYST COMPONENT, PHOTOCATALYST AND METHOD OF REMOVING NITROGEN OXIDE IN AIR
JP3742873B2 (en) Photocatalyst, method for producing hydrogen using the same, and method for decomposing toxic substances
JPH0262297B2 (en)
Santhosh et al. Application of non-hierarchical gadolinium ortho-ferrite nanostructure for LED-driven photocatalytic mineralization of doxycycline hydrochloride
JP4135907B2 (en) Visible light active photocatalyst particles
EP2617492A1 (en) Glass with photocatalytic function
JP3567004B2 (en) Photocatalyst and method for producing the same
JP2005254154A (en) Visible light-responsive complex oxide type photocatalyst and toxic compound decomposing and removing method using the same
EP0417538B1 (en) Catalyst for reducing nitrogen oxides in a flue gas and method for producing said catalyst
Zollo et al. CN co-doped titanium dioxide. Key aspects in the assessment of the air pollutants abatement capability
CN113797918B (en) Defect-containing sandwich type perovskite catalyst and preparation method and application thereof
JPH0532321B2 (en)
JPH04371228A (en) Gold catalyst for removal of malodorous substance
JP4147300B2 (en) Nitrogen-containing titanium oxide photocatalyst and method for purifying environmental pollutant gas using the same
JP3721430B2 (en) Underwater organochlorine purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317