JPH05320832A - Alloy cast ingot for rare earth metal-iron permanent magnet and its production and permanent magnet - Google Patents

Alloy cast ingot for rare earth metal-iron permanent magnet and its production and permanent magnet

Info

Publication number
JPH05320832A
JPH05320832A JP4128936A JP12893692A JPH05320832A JP H05320832 A JPH05320832 A JP H05320832A JP 4128936 A JP4128936 A JP 4128936A JP 12893692 A JP12893692 A JP 12893692A JP H05320832 A JPH05320832 A JP H05320832A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
earth metal
iron
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4128936A
Other languages
Japanese (ja)
Other versions
JP3455552B2 (en
Inventor
Kazuhiko Yamamoto
山本  和彦
Yuichi Miyake
裕一 三宅
Tsutomu Okada
力 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP12893692A priority Critical patent/JP3455552B2/en
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to DE69318998T priority patent/DE69318998T2/en
Priority to US08/017,043 priority patent/US5383978A/en
Priority to AT93102276T priority patent/ATE167239T1/en
Priority to EP93102276A priority patent/EP0556751B1/en
Priority to KR1019930002058A priority patent/KR0131333B1/en
Publication of JPH05320832A publication Critical patent/JPH05320832A/en
Priority to US08/626,157 priority patent/US5630885A/en
Priority to US08/636,905 priority patent/US5656100A/en
Priority to US08/636,772 priority patent/US5674327A/en
Application granted granted Critical
Publication of JP3455552B2 publication Critical patent/JP3455552B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce the alloy cast ingot for a rare earth metal-iron permanent magnet having excellent magnetic characteristics by rapidly cooling a rare earth metal-iron alloy melt to uniformly solidify under specific cooling conditions, thereby forming a specific crystal structure. CONSTITUTION:The alloy cast ingot for the rare earth metal-iron permanent magnet is formed of the crystal structure which contains >=90vol.% crystal having 0.1 to 100mum crystal grain sizes in a minor axis direction and 0.1 to 100mum in a major axis direction and exerts the best influence on the magnetic characteristics. This crystal structure is formed by uniformly solidifying the melt under the cooling conditions of 10 to 1000 deg.C/sec cooling rate and 10 to 500 deg.C supercooling rate. This cooling is preferably executed by using a single roll, etc., and casting the melt to about 0.05 to 20mm. The alpha-Fe and/or gamma-Fe of<20mum grain size which is peritectic nucleus is finely dispersed into the main phase crystal grains of the resulted alloy cast ingot. C, O and N are incorporated into the alloy cast ingot and the cast ingot is subjected to a magnetization treatment, by which the permanent magnet having the excellent characteristics is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気特性に優れた結晶
組織を有する、希土類金属−鉄系永久磁石用合金鋳塊及
びその製造法ならびに該合金鋳塊を用いた永久磁石に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy ingot for a rare earth metal-iron-based permanent magnet having a crystal structure excellent in magnetic properties, a method for producing the same, and a permanent magnet using the alloy ingot.

【0002】[0002]

【従来の技術】従来、永久磁石用合金鋳塊は、溶融した
合金を金型に鋳造する金型鋳造法により製造されている
のが一般的である。しかし該金型鋳造法により合金溶融
物を凝固させる場合、合金溶融物の抜熱過程において、
抜熱初期では鋳型伝熱律速であるが、凝固が進行する
と、鋳型−凝固相間及び凝固相における伝熱が抜熱律速
となり、金型冷却能を向上させても鋳塊内部と鋳型近傍
の鋳塊では、冷却条件が異なり、特に鋳塊厚が厚いほど
このような現象が生じる。そのため鋳塊の内部と表面付
近での冷却条件の相違が大きい場合には、特に磁石組成
における高残留磁束密度側の鋳造組織に、粒径10〜1
00μmのα−Fe相が残存し、同時に主相を取り巻く
希土類金属に富んだ相の大きさも大きくなる。該α−F
e相及び希土類金属に富んだ大きい相では、通常900
〜1200℃で数〜数十時間熱処理することにより行う
均質化が困難なため、磁石製造工程における均質化過程
が長期化し、結晶粒は更に粗大化する。更にその後の窒
素化過程が長期化するため、各粒子における窒素含有量
が不均一となる。その結果、その後の粉末配向性及び磁
気特性に悪影響を及ぼす等の欠点がある。
2. Description of the Related Art Conventionally, alloy ingots for permanent magnets are generally produced by a die casting method in which a molten alloy is cast in a die. However, when solidifying the alloy melt by the die casting method, in the heat removal process of the alloy melt,
In the initial stage of heat removal, the heat transfer is controlled by the mold, but when solidification proceeds, heat transfer between the mold and the solidification phase and in the solidification phase becomes heat removal control, and even if the mold cooling capacity is improved, the casting inside the ingot and near the mold In the ingot, the cooling conditions are different, and such a phenomenon occurs especially when the ingot thickness is thick. Therefore, when there is a large difference in cooling conditions between the inside of the ingot and the vicinity of the surface, the grain size of 10 to 1 is especially found in the cast structure on the high residual magnetic flux density side of the magnet composition.
The 00 μm α-Fe phase remains, and at the same time, the size of the rare earth metal-rich phase surrounding the main phase also increases. The α-F
900 in the e phase and large phase rich in rare earth metals
Since it is difficult to perform homogenization by performing heat treatment at ˜1200 ° C. for several to tens of hours, the homogenization process in the magnet manufacturing process is prolonged and the crystal grains are further coarsened. Furthermore, since the subsequent nitriding process is prolonged, the nitrogen content in each particle becomes non-uniform. As a result, there are drawbacks such as adversely affecting the powder orientation and magnetic properties thereafter.

【0003】また前記金型鋳造法により得られる鋳塊組
織中に、短軸方向0.1〜100μm、長軸方向0.1
〜100μmの結晶粒径を有する結晶が存在することが
知られているが、該結晶の含有率は、僅かであって、磁
気特性に良好な影響を及ぼすには至っていない。
In the ingot structure obtained by the die casting method, 0.1-100 μm in the short axis direction and 0.1 in the long axis direction.
It is known that there is a crystal having a crystal grain size of ˜100 μm, but the content ratio of the crystal is small, and it has not reached a good influence on the magnetic characteristics.

【0004】更にまた、希土類金属元素、コバルト及び
必要に応じて、鉄、銅、ジルコニウムを添加し、るつぼ
中で溶解させた後、双ロール、単ロール、双ベルト等を
組み合わせたストリップキャスティング法等で0.01
〜5mmの厚さとなるように凝固させる希土類金属磁石
用合金の製造法が提案されている。
Further, a rare earth metal element, cobalt and, if necessary, iron, copper and zirconium are added and dissolved in a crucible, and then a strip casting method in which twin rolls, single rolls, twin belts, etc. are combined. 0.01
A method for producing an alloy for a rare earth metal magnet, which is solidified to have a thickness of ~ 5 mm, has been proposed.

【0005】該方法では、金型鋳造法に比して組成の均
一な鋳塊が得られるが、原料成分が、希土類金属元素、
コバルト及び必要に応じて、鉄、銅、ジルコニウムを組
み合わせた成分であるために、前記ストリップキャステ
ィング法による磁石性能の向上が充分に得られない等の
問題がある。
According to this method, an ingot having a uniform composition can be obtained as compared with the die casting method, but the raw material component is a rare earth metal element,
Since cobalt and, if necessary, a combination of iron, copper, and zirconium are components, there is a problem in that the magnet performance cannot be sufficiently improved by the strip casting method.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、希土
類金属−鉄系永久磁石合金の特性に最も良い影響を与え
る結晶組織を有する永久磁石用合金鋳塊及びその製造法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an alloy ingot for a permanent magnet having a crystal structure that most affects the properties of a rare earth metal-iron permanent magnet alloy, and a method for producing the same. is there.

【0007】本発明の別の目的は、優れた磁気特性を有
する希土類金属−鉄系永久磁石を提供することにある。
Another object of the present invention is to provide a rare earth metal-iron permanent magnet having excellent magnetic properties.

【0008】[0008]

【課題を解決するための手段】本発明によれば、短軸方
向0.1〜100μm、長軸方向0.1〜100μmの
結晶粒径を有する結晶を90容量%以上含有する希土類
金属−鉄系永久磁石用合金鋳塊又は該合金の主相結晶粒
内に、包晶核である粒径20μm未満のα−Fe及び/
又はγ−Feが微細分散されてなる永久磁石用合金鋳塊
が提供される。
According to the present invention, a rare earth metal-iron containing 90% by volume or more of crystals having a crystal grain size of 0.1 to 100 μm in the minor axis direction and 0.1 to 100 μm in the major axis direction. System alloy ingot for permanent magnets or main phase crystal grains of the alloy, and α-Fe having a grain size of less than 20 μm, which is a peritectic nucleus, and / or
Alternatively, an alloy ingot for permanent magnet in which γ-Fe is finely dispersed is provided.

【0009】また本発明によれば、希土類金属−鉄系合
金溶融物を凝固させて前記永久磁石用合金鋳塊を製造す
るにあたり、該合金溶融物を冷却速度10〜1000℃
/秒、過冷度10〜500℃の冷却条件下で均一に凝固
させることを特徴とする永久磁石用合金鋳塊の製造法が
提供される。
Further, according to the present invention, when the rare earth metal-iron alloy melt is solidified to produce the alloy ingot for permanent magnet, the alloy melt is cooled at a rate of 10 to 1000 ° C.
There is provided a method for producing an alloy ingot for a permanent magnet, characterized by uniformly solidifying under a cooling condition of 10/500 ° C./sec and a supercooling degree of 10 to 500 ° C.

【0010】更に本発明によれば、前記合金鋳塊を、磁
性化処理してなる永久磁石であって、該永久磁石が炭素
原子、酸素原子、窒素原子及びこれらの混合物を含有す
ることを特徴とする希土類金属−鉄系永久磁石が提供さ
れる。
Further, according to the present invention, a permanent magnet obtained by magnetizing the alloy ingot, wherein the permanent magnet contains carbon atoms, oxygen atoms, nitrogen atoms and a mixture thereof. A rare earth metal-iron based permanent magnet is provided.

【0011】以下本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0012】本発明の希土類金属−鉄系永久磁石用合金
鋳塊は、短軸方向0.1〜100μm、長軸方向0.1
〜100μmの結晶粒径を有する結晶を90容量%以
上、好ましくは95容量%以上含有する希土類金属−鉄
系の合金鋳塊であって、特に、主相結晶粒内に包晶核と
して通常含有されるα−Fe及び/又はγ−Feが全く
含有されていないのが好ましく、また該α−Fe及び/
又はγ−Feを含有する場合には、該α−Fe及び/又
はγ−Feの粒径が20μm未満であり、且つ微細分散
されているのが好ましい。この際前記特定の結晶粒径を
有する結晶の含有割合が、90容量%未満の場合には、
得られる合金鋳塊に優れた磁気特性を付与できない。ま
た短軸方向及び長軸方向の長さが前記範囲外である場
合、若しくは該α−Fe及び/又はγ−Feの粒径が2
0μm以上であり、且つ微細分散されていない場合に
は、永久磁石製造工程における均質化熱処理の際に、均
質化時間が長期化するので好ましくない。また永久磁石
用合金鋳塊の厚さは、0.05〜20mmの範囲である
のが好ましい。厚さが20mmを超える場合には、所望
の結晶組織とするための後述する製造法が困難となるの
で好ましくない。
The alloy ingot for rare earth metal-iron based permanent magnet of the present invention has a minor axis direction of 0.1 to 100 μm and a major axis direction of 0.1.
A rare earth metal-iron alloy ingot containing 90% by volume or more, preferably 95% by volume or more of crystals having a crystal grain size of 100 μm, and in particular, usually contains peritectic nuclei in the main phase grains. Preferably contains no α-Fe and / or γ-Fe, and the α-Fe and / or
Alternatively, in the case of containing γ-Fe, it is preferable that the particle size of the α-Fe and / or γ-Fe is less than 20 μm and the particles are finely dispersed. At this time, when the content ratio of the crystals having the specific crystal grain size is less than 90% by volume,
Excellent magnetic properties cannot be imparted to the obtained alloy ingot. Further, when the lengths in the minor axis direction and the major axis direction are out of the above range, or the particle size of the α-Fe and / or γ-Fe is 2
If it is 0 μm or more and is not finely dispersed, the homogenization time is prolonged during the homogenization heat treatment in the permanent magnet manufacturing process, which is not preferable. The thickness of the alloy ingot for permanent magnet is preferably in the range of 0.05 to 20 mm. When the thickness exceeds 20 mm, the manufacturing method described later for obtaining a desired crystal structure becomes difficult, which is not preferable.

【0013】本発明の希土類金属−鉄系永久磁石用合金
鋳塊を形成する原料成分は、希土類金属−鉄系であれば
特に限定されるものではないが、希土類金属としては特
にサマリウムを好ましく用いることができ、また通常製
造の際に不可避的に含まれる他の不純物成分を含んでい
ても良い。また希土類金属は、単体でも混合物であって
も良い。該希土類金属と、鉄との配合割合は、通常永久
磁石用合金鋳塊の配合割合と同様で良く、好ましくは重
量比で、23〜28:77〜72であるのが好ましい。
The raw material components for forming the alloy ingot for a rare earth metal-iron-based permanent magnet of the present invention are not particularly limited as long as they are a rare earth metal-iron system, but samarium is particularly preferably used as the rare earth metal. In addition, it may contain other impurity components that are inevitably contained during the normal production. The rare earth metal may be a single substance or a mixture. The compounding ratio of the rare earth metal and iron may be the same as the compounding ratio of the alloy ingot for permanent magnets, and is preferably 23 to 28:77 to 72 by weight.

【0014】本発明の製造方法では、前記永久磁石用合
金鋳塊を得るために、希土類金属−鉄系合金溶融物を、
冷却速度10〜1000℃/秒、好ましくは100〜1
000℃/秒、過冷度10〜500℃、好ましくは20
0〜500℃の冷却条件下で均一に凝固させることを特
徴とする。
In the production method of the present invention, in order to obtain the alloy ingot for a permanent magnet, a rare earth metal-iron alloy melt is added,
Cooling rate 10 to 1000 ° C./sec, preferably 100 to 1
000 ° C / sec, supercooling degree 10 to 500 ° C, preferably 20
It is characterized by being uniformly solidified under cooling conditions of 0 to 500 ° C.

【0015】この際過冷度とは、(合金の融点)−(合
金溶融物の実際の温度)の値であって、冷却速度と相関
関係を有する。冷却速度及び過冷度が前記必須範囲外の
場合には、所望の組織を有する合金鋳塊が得られない。
In this case, the degree of supercooling is a value of (melting point of alloy)-(actual temperature of alloy melt) and has a correlation with a cooling rate. If the cooling rate and the degree of supercooling are outside the above-mentioned essential ranges, an alloy ingot having a desired structure cannot be obtained.

【0016】本発明の製造方法を更に具体的に説明する
と、例えば真空溶融法、高周波溶融法等により、好まし
くはるつぼ等を用いて、不活性ガス雰囲気下、希土類金
属−鉄系合金を溶融物とした後、該溶融物を、例えば、
単ロール、双ロール又は円板上等において、前記条件
下、好ましくは連続的に凝固させる等のストリップキャ
スティング法を用いた方法等により、所望の結晶組織を
有する永久磁石用合金鋳塊を得ることができる。即ち、
ストリップキャスティング法等で凝固させる場合には、
合金鋳塊の厚さを、好ましくは0.05〜20mmの範
囲となるように、鋳造温度及び注湯速度等を適宜選択
し、前記条件下処理するのが最も容易な方法である。ま
た所望に応じて得られた合金鋳塊を、好ましくは900
〜1200℃において、5〜40時間、均質化処理する
こともできる。
More specifically, the production method of the present invention will be described. For example, by a vacuum melting method, a high-frequency melting method, etc., preferably using a crucible or the like, a rare earth metal-iron alloy is melted under an inert gas atmosphere. After that, the melt is, for example,
To obtain an alloy ingot for a permanent magnet having a desired crystal structure by a method using a strip casting method such as solidifying continuously under a single roll, twin rolls or on a disc under the above conditions. You can That is,
When solidifying by strip casting method etc.,
The easiest method is to appropriately select the casting temperature, the pouring speed, etc. so that the thickness of the alloy ingot is preferably in the range of 0.05 to 20 mm and to perform the treatment under the above conditions. If desired, the alloy ingot obtained is preferably 900
It is also possible to perform homogenization treatment at ˜1200 ° C. for 5 to 40 hours.

【0017】本発明の永久磁石は、前記希土類金属−鉄
系永久磁石用合金鋳塊を磁性化処理してなるものであっ
て、炭素原子、酸素原子、窒素原子又はこれらの混合物
を含有する。
The permanent magnet of the present invention is obtained by magnetizing the alloy ingot for a rare earth metal-iron permanent magnet, and contains carbon atoms, oxygen atoms, nitrogen atoms or a mixture thereof.

【0018】本発明の永久磁石に含有される前記炭素原
子、酸素原子、窒素原子又はこれらの混合物の含有割合
は、原料となる前記永久磁石用合金鋳塊100重量部に
対して、1〜5重量部、特に2〜4重量部の範囲である
のが好ましい。
The content ratio of the carbon atom, oxygen atom, nitrogen atom or a mixture thereof contained in the permanent magnet of the present invention is 1 to 5 with respect to 100 parts by weight of the alloy ingot for a permanent magnet as a raw material. It is preferably in the range of parts by weight, particularly 2 to 4 parts by weight.

【0019】本発明の永久磁石を調製する際の磁性化処
理は、例えば前記希土類金属−鉄系永久磁石用合金鋳塊
を、好ましくは粒径0.5〜50mmに粉砕した後、得
られた粉砕物に、前記炭素原子、酸素原子、窒素原子及
びこれらの混合物からなる群より選択される所望の原子
を含有させる。具体的には例えば、300〜600℃に
て前記所望の原子を含有するガス1気圧雰囲気で数時間
〜数十時間熱処理を行うことによって、所望の原子を含
有させることができる。次いで、所望の原子を含有させ
た粉砕物を、好ましくは0.5〜30μmに微粉砕し、
該微粉末を、例えば磁場プレス、射出成型等の公知の方
法により、成型することにより永久磁石とすることがで
きる。
The magnetizing treatment in the preparation of the permanent magnet of the present invention is obtained, for example, after crushing the rare earth metal-iron alloy cast alloy for permanent magnet into a particle size of preferably 0.5 to 50 mm. The pulverized material is made to contain a desired atom selected from the group consisting of the carbon atom, oxygen atom, nitrogen atom and a mixture thereof. Specifically, for example, a desired atom can be contained by performing heat treatment at 300 to 600 ° C. in a gas atmosphere containing the desired atom at 1 atm for several hours to several tens of hours. Then, the pulverized product containing the desired atom is pulverized to preferably 0.5 to 30 μm,
The fine powder can be molded into a permanent magnet by a known method such as magnetic field pressing or injection molding.

【0020】[0020]

【発明の効果】本発明の永久磁石用合金鋳塊は、短軸方
向0.1〜100μm、長軸方向0.1〜100μmの
結晶粒径を有する結晶を特定量含有し、また希土類金属
−鉄系組成であるので、粉砕性、焼結性等に優れてい
る。また、本発明の永久磁石は、前記永久磁石合金鋳塊
を原料として用い、更に炭素原子、酸素原子、窒素原子
又はこれらの混合物を含有するので、極めて優れた磁気
特性を示す。また本発明の製造方法では、特定の冷却速
度及び特定の過冷度にて、均一性に優れた組成及び組織
を有する永久磁石合金鋳塊を容易に得ることができる。
The alloy ingot for permanent magnet of the present invention contains a specific amount of crystals having a crystal grain size of 0.1 to 100 μm in the minor axis direction and 0.1 to 100 μm in the major axis direction, and a rare earth metal- Since it is an iron-based composition, it has excellent pulverizability and sinterability. In addition, the permanent magnet of the present invention uses the above-mentioned ingot of permanent magnet alloy as a raw material and further contains carbon atoms, oxygen atoms, nitrogen atoms or a mixture thereof, and therefore exhibits extremely excellent magnetic properties. Further, according to the manufacturing method of the present invention, a permanent magnet alloy ingot having a composition and a structure excellent in uniformity can be easily obtained at a specific cooling rate and a specific supercooling degree.

【0021】[0021]

【実施例】以下本発明を実施例及び比較例により更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0022】[0022]

【実施例1】サマリウム24.5wt%、鉄74.5w
t%からなる合金を、アルゴンガス雰囲気中で、アルミ
ナるつぼを使用して高周波溶融法により溶融物とした。
次いで、得られた溶融物を図1に示す装置を用いて以下
の方法に従って永久磁石用合金鋳塊を得た。
[Example 1] Samarium 24.5 wt%, iron 74.5 w
An alloy composed of t% was made into a melt by an induction melting method using an alumina crucible in an argon gas atmosphere.
Next, the obtained melt was used to obtain an alloy ingot for permanent magnet according to the following method using the apparatus shown in FIG.

【0023】図1は、単ロールを用いたストリップキャ
スト法により永久磁石用合金鋳塊を製造するための概略
図であって、1は前記高周波溶融法により溶融した溶融
物の入ったるつぼである。1500℃に保持された溶融
物2を、タンディッシュ3上に連続的に流し込み、次い
で約1m/秒で回転するロール4上において、冷却速度
1000℃/秒、過冷度200℃の冷却条件となるよう
に急冷凝固させ、ロール4の回転方向に連続的に溶融物
2を落下させて、厚さ0.5mmの合金鋳塊5を製造し
た。
FIG. 1 is a schematic diagram for producing an alloy ingot for a permanent magnet by a strip casting method using a single roll, and 1 is a crucible containing a melt melted by the high frequency melting method. .. The melt 2 held at 1500 ° C. was continuously poured onto the tundish 3 and then on a roll 4 rotating at about 1 m / sec, under cooling conditions of a cooling rate of 1000 ° C./sec and a supercooling degree of 200 ° C. Then, the melt 2 was continuously cooled in the rotating direction of the roll 4 to produce an alloy ingot 5 having a thickness of 0.5 mm.

【0024】次に得られた永久磁石用合金鋳塊に110
0℃にて、20時間の均質化処理を施し、均質化処理開
始後5時間、10時間、20時間、30時間及び40時
間での鋳塊に残留するα−Feの量を測定した。結果を
表1に示す。またα−Feが消失した時点での鋳塊の結
晶粒径を測定し、その結果を表2に示す。その後、前記
鋳塊を0.5〜5mmに粉砕し、得られた粉末を500
℃にて3時間、窒素ガス1気圧雰囲気中にて窒化処理を
施した。得られた窒化粉末を、アルコール中において、
遊星ボールミルを用いて更に平均粒径2μm程度まで微
粉砕した。次いで得られた微粉末を、150MPa、2
400KAm~1の条件下、磁場プレスし、圧粉体を得
た。得られた圧粉体の磁気特性を直流磁気測定装置によ
り測定した。結果を表3に示す。
Next, 110 was added to the obtained alloy ingot for permanent magnet.
The homogenization treatment was performed at 0 ° C. for 20 hours, and the amount of α-Fe remaining in the ingot was measured 5 hours, 10 hours, 20 hours, 30 hours, and 40 hours after the start of the homogenization treatment. The results are shown in Table 1. The crystal grain size of the ingot at the time when α-Fe disappeared was measured, and the results are shown in Table 2. Then, the ingot is pulverized to 0.5 to 5 mm, and the obtained powder is 500
Nitriding treatment was performed in a nitrogen gas atmosphere of 1 atm for 3 hours. The obtained nitriding powder in alcohol,
Using a planetary ball mill, it was further finely pulverized to an average particle size of about 2 μm. Then, the obtained fine powder was treated with 150 MPa, 2
A magnetic powder was pressed under a condition of 400 KAm- 1 to obtain a green compact. The magnetic properties of the obtained green compact were measured by a DC magnetometer. The results are shown in Table 3.

【0025】[0025]

【実施例2】サマリウム25.00wt%、鉄75wt
%からなる合金を用いた以外は、実施例1と同様に行
い、永久磁石用合金鋳塊を得、均質化処理を施した後、
α−Fe残留量を測定し、更に圧粉体を製造した。α−
Fe残留量を表1に、結晶粒径を表2に、磁気特性を表
3に示す。
[Example 2] Samarium 25.00 wt%, iron 75 wt
% In the same manner as in Example 1, except that an alloy ingot for permanent magnet was obtained, and after homogenization treatment,
The residual amount of α-Fe was measured to manufacture a green compact. α-
The residual Fe amount is shown in Table 1, the crystal grain size is shown in Table 2, and the magnetic properties are shown in Table 3.

【0026】[0026]

【比較例1〜2】実施例1及び2で製造した合金と同じ
組成を有する合金を、高周波溶融法により溶解し、金型
鋳造法により冷却速度10℃/秒、過冷度20℃の条件
下、厚さ30mmの永久磁石用合金鋳塊を得た。得られ
た合金鋳塊の均質化処理後のα−Fe残留量の測定を実
施例1と同様に行い、更に実施例1と同様な方法にて圧
粉体を製造した。α−Fe残留量を表1に、結晶粒径を
表2に、磁気特性を表3に示す。なお比較例1では、4
0時間の均質化処理でもα−Feが消失しなかったため
に、均質化処理開始後40時間での結晶粒径の値とし
た。
[Comparative Examples 1 and 2] Alloys having the same composition as the alloys produced in Examples 1 and 2 were melted by the high frequency melting method, and the cooling rate was 10 ° C / sec and the supercooling degree was 20 ° C by the die casting method. Below, an alloy ingot for a permanent magnet having a thickness of 30 mm was obtained. The residual amount of α-Fe after the homogenization treatment of the obtained alloy ingot was measured in the same manner as in Example 1, and the green compact was manufactured by the same method as in Example 1. Table 1 shows the residual amount of α-Fe, Table 2 shows the crystal grain size, and Table 3 shows the magnetic properties. In Comparative Example 1, 4
Since α-Fe did not disappear even after the homogenization treatment for 0 hours, the value of the crystal grain size 40 hours after the start of the homogenization treatment was used.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1で用いたストリップキャスト
法により永久磁石用合金鋳塊を製造する際の概略図であ
る。
FIG. 1 is a schematic view of manufacturing an alloy ingot for a permanent magnet by the strip casting method used in Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/053

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 希土類金属−鉄系永久磁石用合金鋳塊で
あって、短軸方向0.1〜100μm、長軸方向0.1
〜100μmの結晶粒径を有する結晶を90容量%以上
含有することを特徴とする希土類金属−鉄系永久磁石用
合金鋳塊。
1. A rare earth metal-iron based alloy ingot for permanent magnets, having a minor axis direction of 0.1 to 100 μm and a major axis direction of 0.1.
An alloy ingot for a rare earth metal-iron-based permanent magnet, which contains 90% by volume or more of crystals having a crystal grain size of 100 μm.
【請求項2】 前記合金鋳塊の主相結晶粒内に、包晶核
である粒径20μm未満のα−Fe及び/又はγ−Fe
が微細分散されていることを特徴とする請求項1記載の
希土類金属−鉄系永久磁石用合金鋳塊。
2. The main phase crystal grains of the alloy ingot are peritectic nuclei having a grain size of less than 20 μm, α-Fe and / or γ-Fe.
Is finely dispersed, The alloy ingot for rare earth metal-iron based permanent magnet according to claim 1.
【請求項3】 希土類金属−鉄系合金溶融物を凝固させ
て請求項1記載の永久磁石用合金鋳塊を製造するにあた
り、該合金溶融物を冷却速度10〜1000℃/秒、過
冷度10〜500℃の冷却条件下で均一に凝固させるこ
とを特徴とする、希土類金属−鉄系永久磁石用合金鋳塊
の製造法。
3. When the alloy ingot for a permanent magnet according to claim 1 is manufactured by solidifying a rare earth metal-iron alloy melt, the alloy melt is cooled at a rate of 10 to 1000 ° C./sec and a supercooling degree. A method for producing an alloy ingot for a rare earth metal-iron-based permanent magnet, which comprises uniformly solidifying under a cooling condition of 10 to 500 ° C.
【請求項4】 請求項1記載の合金鋳塊を、磁性化処理
してなる永久磁石であって、該永久磁石が炭素原子、酸
素原子、窒素原子及びこれらの混合物を含有することを
特徴とする希土類金属−鉄系永久磁石。
4. A permanent magnet obtained by magnetizing the alloy ingot according to claim 1, wherein the permanent magnet contains carbon atoms, oxygen atoms, nitrogen atoms and a mixture thereof. Rare earth metal-iron based permanent magnet.
JP12893692A 1992-02-15 1992-05-21 Method for producing rare earth metal-iron binary alloy ingot for permanent magnet Expired - Lifetime JP3455552B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP12893692A JP3455552B2 (en) 1992-05-21 1992-05-21 Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
US08/017,043 US5383978A (en) 1992-02-15 1993-02-12 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
AT93102276T ATE167239T1 (en) 1992-02-15 1993-02-12 ALLOY BLOCK FOR A PERMANENT MAGNET, ANISOTROPIC POWDER FOR A PERMANENT MAGNET, METHOD FOR PRODUCING THE SAME AND PERMANENT MAGNET
EP93102276A EP0556751B1 (en) 1992-02-15 1993-02-12 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
DE69318998T DE69318998T2 (en) 1992-02-15 1993-02-12 Alloy block for a permanent magnet, anisotropic powder for a permanent magnet, process for producing such a magnet and permanent magnet
KR1019930002058A KR0131333B1 (en) 1992-02-15 1993-02-15 Alloy ingot for permanent magnet, antisotropic powders for permanent magnet, method for producing same and permanent magnet
US08/626,157 US5630885A (en) 1992-02-15 1996-04-04 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US08/636,905 US5656100A (en) 1992-02-15 1996-04-18 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US08/636,772 US5674327A (en) 1992-02-15 1996-04-19 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12893692A JP3455552B2 (en) 1992-05-21 1992-05-21 Method for producing rare earth metal-iron binary alloy ingot for permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003045275A Division JP3548568B2 (en) 2003-02-24 2003-02-24 Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom

Publications (2)

Publication Number Publication Date
JPH05320832A true JPH05320832A (en) 1993-12-07
JP3455552B2 JP3455552B2 (en) 2003-10-14

Family

ID=14997070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12893692A Expired - Lifetime JP3455552B2 (en) 1992-02-15 1992-05-21 Method for producing rare earth metal-iron binary alloy ingot for permanent magnet

Country Status (1)

Country Link
JP (1) JP3455552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027964A1 (en) * 1996-02-02 1997-08-07 Santoku Metal Industry Co., Ltd. Apparatus and method for producing a thin solidified alloy
JP4936593B2 (en) * 1998-03-27 2012-05-23 株式会社東芝 Method for producing magnet powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027964A1 (en) * 1996-02-02 1997-08-07 Santoku Metal Industry Co., Ltd. Apparatus and method for producing a thin solidified alloy
US6026995A (en) * 1996-02-02 2000-02-22 Santoku Metal Industry Company, Ltd. Apparatus and method for producing a thin solidified alloy
JP4936593B2 (en) * 1998-03-27 2012-05-23 株式会社東芝 Method for producing magnet powder

Also Published As

Publication number Publication date
JP3455552B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
US7691323B2 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
US5656100A (en) Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
EP0632471B1 (en) Process of preparing a permanent magnet containing rare earth metal, boron and iron
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP3535253B2 (en) Method for producing cast slab for R-Fe-B permanent magnet
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JP3299630B2 (en) Manufacturing method of permanent magnet
JP3667783B2 (en) Method for producing raw powder for anisotropic bonded magnet
JP3548568B2 (en) Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP3726888B2 (en) Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet
JP3213638B2 (en) Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet
JPH0920954A (en) Slab for r-fe-b-c magnet alloy excellent in corrosion resistance and its production
JP2003077717A (en) Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet
JP2002083728A (en) Method of manufacturing rare earth permanent magnet
JPH0533076A (en) Rare earth permanent magnet alloy and its production
JPH01706A (en) Rare earth magnet manufacturing method
JPH08330117A (en) Cast piece for r-fe-b-c magnet alloy with excellent corrosion resistance and its manufacture
JP2004214390A (en) Method for manufacturing rare-earth magnet, and raw alloy and powder for rare-earth magnet
JPH0125209B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

EXPY Cancellation because of completion of term