JP2985519B2 - Particle-dispersed ZrO2-based ceramic material and method for producing the same - Google Patents

Particle-dispersed ZrO2-based ceramic material and method for producing the same

Info

Publication number
JP2985519B2
JP2985519B2 JP4188072A JP18807292A JP2985519B2 JP 2985519 B2 JP2985519 B2 JP 2985519B2 JP 4188072 A JP4188072 A JP 4188072A JP 18807292 A JP18807292 A JP 18807292A JP 2985519 B2 JP2985519 B2 JP 2985519B2
Authority
JP
Japan
Prior art keywords
zro
dispersed
nanoparticles
ceramic material
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4188072A
Other languages
Japanese (ja)
Other versions
JPH0632653A (en
Inventor
竜一 松木
武義 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16217218&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2985519(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4188072A priority Critical patent/JP2985519B2/en
Priority to DE19934319911 priority patent/DE4319911A1/en
Publication of JPH0632653A publication Critical patent/JPH0632653A/en
Application granted granted Critical
Publication of JP2985519B2 publication Critical patent/JP2985519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特殊構造のセラミック
ス材料及びその製法に関する。詳しくは、耐熱衝撃性、
高温特性に優れた高靭性、高強度ZrO2 系セラミック
ス材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic material having a special structure and a method for producing the same. Specifically, thermal shock resistance,
The present invention relates to a high-toughness, high-strength ZrO 2 -based ceramic material having excellent high-temperature characteristics and a method for producing the same.

【0002】[0002]

【従来の技術】Y23 (酸化イットリウム)等に代表
される希土類酸化物等を、結晶格子内に固溶させて部分
安定化したZrO2 (酸化ジルコニウム)は、高靭性で
高強度な材料であるために、工業用材料として広く利用
されている。
2. Description of the Related Art ZrO 2 (zirconium oxide) in which rare earth oxides represented by Y 2 O 3 (yttrium oxide) or the like are partially dissolved in a crystal lattice to form a solid solution has high toughness and high strength. Because it is a material, it is widely used as an industrial material.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の技術で
得られる部分安定化ZrO2 は、優れた破壊強度、破壊
靭性を示すものの、Y23 、CaO(酸化カルシウ
ム)、MgO(酸化マグネシウム)等の安定化剤をZr
2 結晶格子内に固溶させることにより、準安定相の正
方晶を維持していることから、変態温度以上の高温で機
械的、熱的特性が著しく低下する。また、焼結時或いは
使用時の高温雰囲気において、安定化剤の遊離(脱安定
化)が起こる。このため、繰り返し使用すると、初期の
優れた低温側の耐熱衝撃性、機械的特性も次第に失われ
ることから、使用雰囲気温度は比較的低温付近に著しく
制限される。
However, the partially stabilized ZrO 2 obtained by the conventional technique exhibits excellent fracture strength and fracture toughness, but it does not contain Y 2 O 3 , CaO (calcium oxide) and MgO (magnesium oxide). )) And Zr
By forming a solid solution in the O 2 crystal lattice, since the metastable phase of the tetragon is maintained, the mechanical and thermal properties are remarkably deteriorated at a high temperature higher than the transformation temperature. In addition, in a high temperature atmosphere during sintering or use, release (destabilization) of the stabilizer occurs. For this reason, when used repeatedly, the excellent initial thermal shock resistance and mechanical properties on the low temperature side are gradually lost, so that the ambient temperature for use is significantly limited to a relatively low temperature.

【0004】従って、ZrO2 セラミックス系材料を多
くの工業分野で実用化するためには、これらの欠点を同
時に改善する必要がある。
Therefore, in order to put the ZrO 2 ceramic material into practical use in many industrial fields, it is necessary to improve these disadvantages at the same time.

【0005】本発明は、ZrO2 の有する特性を損なう
ことなく、耐熱衝撃性に優れ、また高温特性に優れた高
靭性、高強度粒子分散型ZrO2 系セラミックス材料及
びその製造方法を提供することにある。
An object of the present invention is to provide a high-toughness, high-strength particle-dispersed ZrO 2 -based ceramic material having excellent thermal shock resistance and excellent high-temperature characteristics without impairing the properties of ZrO 2 , and a method for producing the same. It is in.

【0006】[0006]

【課題を解決するための手段】請求項1の粒子分散型Z
rO2 系セラミックス材料は、ZrO2 結晶粒内に、ナ
ノメーター寸法のナノ粒子を分散させてなる粒子分散型
ZrO2 系セラミックス材料であって、該ナノ粒子が非
酸化物ナノ粒子及び酸化物ナノ粒子よりなる群から選ば
れる2種以上のナノ粒子で構成され、各ナノ粒子の含有
割合が0.1〜30体積%で、全ナノ粒子の合計の含有
割合が0.2〜50体積%であることを特徴とする。
A particle-dispersed Z according to claim 1
The rO 2 -based ceramic material is a particle-dispersed ZrO 2 -based ceramic material obtained by dispersing nanometer-sized nanoparticles in ZrO 2 crystal grains, wherein the nanoparticles are non-oxide nanoparticles and oxide nano-particles. It is composed of two or more kinds of nanoparticles selected from the group consisting of particles, the content of each nanoparticle is 0.1 to 30% by volume, and the total content of all nanoparticles is 0.2 to 50% by volume. There is a feature.

【0007】請求項2の粒子分散型ZrO2 系セラミッ
クス材料は、請求項1に記載の粒子分散型ZrO2 系セ
ラミックス材料において、ナノ粒子の平均粒子径が40
0nm以下であることを特徴とする。
[0007] Claim 2 of the particle-dispersed ZrO 2 based ceramic material is in particle-dispersed ZrO 2 based ceramic material of claim 1, the average particle size of the nanoparticles 40
0 nm or less.

【0008】請求項3の粒子分散型ZrO2 系セラミッ
クス材料の製造方法は、ZrO2 粉末に、平均粒子径4
00nm以下の、非酸化物粉末及び酸化物粉末よりなる
群から選ばれる2種以上の粉末を混合し、得られた混合
物を成形した後、該成形体を1200℃以上の焼結温度
で焼結することにより、請求項1又は2に記載の粒子分
散型ZrO2 系セラミックス材料を製造することを特徴
とする。
[0008] Production method of particle-dispersed ZrO 2 based ceramic material of claim 3, the ZrO 2 powder, an average particle diameter of 4
After mixing two or more kinds of powders of not more than 00 nm and selected from the group consisting of non-oxide powders and oxide powders, and molding the resulting mixture, the compact is sintered at a sintering temperature of 1200 ° C. or more. Thus, the particle-dispersed ZrO 2 ceramic material according to claim 1 or 2 is manufactured.

【0009】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0010】本発明の粒子分散型ZrO2 系セラミック
ス材料は、マトリックスとしてZrO2 を、分散粒子と
して非酸化物ナノ粒子及び酸化物ナノ粒子よりなる群か
ら選ばれる2種以上のナノ粒子を併用することが特徴で
ある。ナノ粒子の平均粒子径は、好ましくは400nm
以下で、ZrO2 マトリックス中に均一に分散させた構
造のものである。
The particle-dispersed ZrO 2 ceramic material of the present invention uses ZrO 2 as a matrix and two or more nanoparticles selected from the group consisting of non-oxide nanoparticles and oxide nanoparticles as dispersed particles. It is characteristic. The average particle size of the nanoparticles is preferably 400 nm
In the following, it is of a structure uniformly dispersed in a ZrO 2 matrix.

【0011】本発明の方法において、粉末原料として平
均粒子径400nm以下の粒子を用いる理由は、ZrO
2 結晶粒内に取り込まれ易いこと、そして、材料欠陥と
なるほどのマイクロクラックが発生しない範囲であるこ
と等による。特に、粉末原料の平均粒子径は50〜30
0nmとするのが好ましい。
In the method of the present invention, the reason why particles having an average particle diameter of 400 nm or less are used as a powder raw material is that ZrO
(2) It is easy to be taken into crystal grains, and it is in a range where microcracks are not generated enough to cause material defects. In particular, the average particle diameter of the powder raw material is 50-30.
It is preferably set to 0 nm.

【0012】また、分散粒子であるナノ粒子の添加量を
合計で0.2〜50体積%、各々0.1〜30体積%と
する理由は、焼結体中のZrO2 が正方晶を保持でき、
破断時にZrO2 の応力誘起変態が十分に発現でき、従
来のZrO2 では機械的特性が大幅に低下する変態温度
以上でも高い破壊強度・破壊靭性を維持できる組成範囲
であることによる。
The reason that the total amount of the nanoparticles, which are dispersed particles, is 0.2 to 50% by volume and 0.1 to 30% by volume, respectively, is that ZrO 2 in the sintered body has a tetragonal structure. Can,
Stress-induced transformation of ZrO 2 can be sufficiently expressed at break, due to the mechanical properties in the conventional ZrO 2 is a composition range capable of maintaining a significantly higher even than lowered to the transformation temperature fracture strength and fracture toughness.

【0013】なお、本発明において、非酸化物系のナノ
粒子としては、SiC(炭化珪素)、TiC(炭化チタ
ン)、WC(炭化タングステン)等の炭化物、Si3
4 (窒化珪素)、TiN(窒化チタン)等の窒化物、T
iB2 等のホウ化物などが好適である。酸化物系のナノ
粒子としてはAl23 (酸化アルミニウム)等が挙げ
られる。
In the present invention, the non-oxide nanoparticles include carbides such as SiC (silicon carbide), TiC (titanium carbide), WC (tungsten carbide), and Si 3 N.
4 Nitride such as (silicon nitride), TiN (titanium nitride), T
Borides such as iB 2 are suitable. Examples of the oxide-based nanoparticles include Al 2 O 3 (aluminum oxide).

【0014】本発明の方法においては、ZrO2 粉末
に、平均粒子径400nm以下の、酸化物粉末及び非酸
化物粉末よりなる群から選ばれる2種以上の粉末を所定
割合で混合し、得られた混合物を成形、焼結する。ここ
で焼結方法としては、ホットプレス焼結、常圧焼結或い
は常圧焼結・HIP(熱間等方圧プレス)等を採用でき
る。特に、常圧焼結・HIPは、複雑な形状品を多量に
製造できるので好ましい。HIPを用いる場合のガス圧
は、広範囲に選定できるが、特に500〜2000kg
/cm2 が好ましい。なお、焼結温度は1200℃以
上、好ましくは1300〜1500℃とする。
In the method of the present invention, two or more powders selected from the group consisting of oxide powders and non-oxide powders having an average particle diameter of 400 nm or less are mixed with ZrO 2 powder at a predetermined ratio. The resulting mixture is molded and sintered. Here, as a sintering method, hot press sintering, normal pressure sintering, or normal pressure sintering / HIP (hot isostatic pressing) can be employed. In particular, normal pressure sintering / HIP is preferable because a complicated shaped product can be mass-produced. The gas pressure when HIP is used can be selected in a wide range, but particularly 500 to 2000 kg.
/ Cm 2 is preferred. The sintering temperature is 1200 ° C. or higher, preferably 1300 to 1500 ° C.

【0015】本発明の粒子分散型ZrO2 系セラミック
ス材料は耐熱材料として、切削工具、建設工具材料、耐
摩耗部材、摺動部材、耐熱衝撃性を要求される構造材料
として、特に好適である。
The particle-dispersed ZrO 2 -based ceramic material of the present invention is particularly suitable as a heat-resistant material, such as a cutting tool, a construction tool material, a wear-resistant member, a sliding member, and a structural material requiring thermal shock resistance.

【0016】[0016]

【作用】本発明者等は、ZrO2 系セラミックスのZr
2 結晶粒内に分散した酸化物ナノ粒子及び非酸化物ナ
ノ粒子に、大別して以下のような2種類の役割を与える
ことにより、従来のZrO2 系セラミックスの問題点を
克服した。
The present inventors have found that ZrO 2 ceramics
The problems of the conventional ZrO 2 -based ceramics have been overcome by giving the oxide nanoparticles and the non-oxide nanoparticles dispersed in the O 2 crystal grains roughly the following two roles.

【0017】即ち、本発明の粒子分散型ZrO2 系セラ
ミックス材料において、ZrO2 の結晶粒内に分散した
ナノ粒子の第一の役割は、分散粒子の内部或いは周囲の
極局所(ナノ粒子の直径の約2倍以内)に、ZrO2
分散相間の主として熱膨張率の差により製造温度からの
冷却中に生じる熱残留応力を利用して、この熱残留応力
でZrO2 の正方晶から斜方晶への変態を制御すること
である。分散させるナノ粒子の熱膨張率の大小により、
例えばZrO2 より著しく熱膨張率の小さいSiCナノ
粒子は正方晶の安定化への寄与が大きく、またZrO2
より僅かに熱膨張率が小さいAl23 の場合は、正方
晶の安定化への寄与は小さい。それ故、分散させるナノ
粒子の種類と分散量を制御することにより、ZrO2
変態を容易に制御でき、この変態を利用した強靭化をよ
り効率的に発揮させることができる。なお、従来のZr
2 系セラミックスは前述したように、本発明とは完全
に異なる方法、即ちCaO、Y23 、MgO等を結晶
格子内に固溶させることにより結晶変態が制御されてき
た。
That is, in the particle-dispersed ZrO 2 -based ceramic material of the present invention, the first role of the nanoparticles dispersed in the ZrO 2 crystal grains is as follows. approximately twice within) of, by using the thermal residual stresses generated during cooling from the production temperature mainly by the difference in thermal expansion coefficients between ZrO 2 and a dispersed phase, oblique from tetragonal ZrO 2 in the thermal residual stresses It is to control the transformation into crystals. Due to the magnitude of the coefficient of thermal expansion of the nanoparticles to be dispersed,
For example, SiC nanoparticles having a significantly lower coefficient of thermal expansion than ZrO 2 greatly contribute to the stabilization of tetragonal crystals, and ZrO 2
In the case of Al 2 O 3 having a slightly smaller coefficient of thermal expansion, the contribution to the stabilization of the tetragonal crystal is small. Therefore, by controlling the type and amount of nanoparticles to be dispersed, the transformation of ZrO 2 can be easily controlled, and the toughness utilizing this transformation can be more efficiently exhibited. The conventional Zr
As described above, the crystal transformation of O 2 -based ceramics has been controlled by a method completely different from that of the present invention, that is, by dissolving CaO, Y 2 O 3 , MgO, etc. in a crystal lattice.

【0018】本発明の粒子分散型ZrO2 系セラミック
ス材料において、ZrO2 の結晶粒内に分散したナノ粒
子の第二の役割は、従来のZrO2 系セラミックスが変
態温度以上で著しく破壊靭性・破壊強度が低下すること
を防止すると共に、変態温度以下でもこのナノ粒子によ
り破壊を制御し、変態による強靭化以上に破壊強度・破
壊靭性を向上させることであり、この役割は以下のよう
に分類することができる。
In the particle-dispersed ZrO 2 ceramic material of the present invention, the second role of the nanoparticles dispersed in the ZrO 2 crystal grains is that the conventional ZrO 2 ceramic has a remarkably high fracture toughness and fracture at a transformation temperature or higher. It is to prevent the strength from decreasing and control the fracture by these nanoparticles even below the transformation temperature, to improve the fracture strength and fracture toughness more than the toughness due to transformation, and this role is classified as follows be able to.

【0019】 材料組織の微細化、異常粒成長の抑制
及び結晶粒形の制御による破壊強度の改善。 結晶粒内に分散した微粒子によるクラックの偏向、
結晶粒内でのマイクロクラックの生成による破壊靭性の
改善。 結晶粒内に発生した圧縮応力による破壊源発生の抑
制、及び、破壊強度の改善。 結晶粒内に分散した粒子の周りに生じる引っ張り応
力によって結晶粒内破壊を誘導することによる、高温で
の破壊の抑制、即ち高温強度の改善。 結晶粒内に分散した硬い粒子の高温での転位の移動
のピニングによる、高温硬度、高温強度、クリープ抵
抗、脆性/延性転位温度(耐熱温度)の改善。 本発明では、このように、ZrO2 結晶粒内に特定の割
合で分散させたナノ粒子に、以上述べた二つの異なる役
割を同時に与えることにより、従来のZrO2系セラミ
ックス材料の欠点を全て同時に克服することが可能とな
り、高温領域まで高強度、高靭性を維持し、耐熱性に優
れ、また熱衝撃特性に優れたZrO2 系セラミックス材
料の実現を可能とした。
Improvement of fracture strength by refinement of material structure, suppression of abnormal grain growth, and control of crystal grain shape. Crack deflection by fine particles dispersed in crystal grains,
Improvement of fracture toughness by generation of microcracks in crystal grains. Suppression of fracture source generation due to compressive stress generated in crystal grains and improvement of fracture strength. Suppression of fracture at high temperature, that is, improvement of high-temperature strength by inducing intragranular fracture by tensile stress generated around particles dispersed in the crystal grain. Improvement of high-temperature hardness, high-temperature strength, creep resistance, and brittle / ductile dislocation temperature (heat-resistant temperature) by pinning the movement of dislocation at high temperature of hard particles dispersed in crystal grains. In the present invention, by simultaneously giving the two different roles described above to the nanoparticles dispersed at a specific ratio in the ZrO 2 crystal grains, the disadvantages of the conventional ZrO 2 -based ceramic material can be all simultaneously achieved. Thus, it has become possible to realize a ZrO 2 -based ceramic material that maintains high strength and high toughness up to a high temperature range, has excellent heat resistance, and has excellent thermal shock characteristics.

【0020】本発明の粒子分散型ZrO2 系セラミック
ス材料は、ZrO2 結晶粒内に分散させたナノ粒子とZ
rO2 の熱膨張率の差により、焼結温度からの冷却中に
生じる熱残留応力を利用して、この熱残留応力でZrO
2 の正方晶から単斜晶への相変態を制御するものであ
り、ZrO2 の結晶粒内にナノ粒子が分散したナノ複合
化組織を有している。本発明によるZrO2 系セラミッ
クス材料では、ZrO2の結晶粒内にナノ粒子を分散し
たこのナノ複合化組織により、出発原料の未安定ZrO
2 は、焼結体中では準安定相(正方晶)を保持してい
る。
The particle-dispersed ZrO 2 ceramic material of the present invention comprises nanoparticles dispersed in ZrO 2 crystal grains and ZrO 2
By utilizing the thermal residual stress generated during cooling from the sintering temperature due to the difference in the coefficient of thermal expansion of rO 2 , ZrO 2
It controls the phase transformation from tetragonal to monoclinic in No. 2 and has a nanocomposite structure in which nanoparticles are dispersed in ZrO 2 crystal grains. In the ZrO 2 -based ceramic material according to the present invention, the nano-composite structure in which the nanoparticles are dispersed in the crystal grains of ZrO 2 makes the starting raw material unstable ZrO 2.
No. 2 retains a metastable phase (tetragonal) in the sintered body.

【0021】特に、本発明においては、ナノ粒子として
2種以上の粒子を併用することによる著しく優れた相乗
効果で、より一層高強度、高靭性の粒子分散型ZrO2
系セラミックス材料が提供される。
In particular, in the present invention, a particle-dispersed ZrO 2 having even higher strength and higher toughness is obtained due to a remarkably excellent synergistic effect obtained by using two or more kinds of particles in combination.
A ceramic material is provided.

【0022】また、本発明の製造方法では、未安定Zr
2 と平均粒子径400nm以下の非酸化物粉末及び酸
化物粉末よりなる群から選ばれる2種以上の粉末を所定
の割合で混合し、成形した後、焼結することにより、緻
密な上記組織構造のものを得、上記特性を有したナノ粒
子分散型ZrO2 系セラミックス材料を製造する。即
ち、本発明の粒子分散型ZrO2 系セラミックス材料の
製造方法によれば、マトリックスであるZrO2 は焼結
過程で緻密に焼結され、この粒子内に分散相である非酸
化物ナノ粒子及び酸化物ナノ粒子よりなる群から選ばれ
る2種以上のナノ粒子が均一に取り込まれたナノ複合化
組織ができる。
Further, according to the production method of the present invention, the unstable Zr
O 2 and an average particle diameter 400nm or less of the non-oxide powder and the two or more powders selected from the group consisting of oxide powders were mixed at a predetermined ratio, after molding, by sintering, dense the tissue A structure is obtained, and a nanoparticle-dispersed ZrO 2 -based ceramic material having the above characteristics is manufactured. That is, according to the manufacturing method of the particle-dispersed ZrO 2 based ceramic material of the present invention, ZrO 2 is a matrix is densely sintered in the sintering process, a non-oxide nanoparticles and a dispersed phase within the grain A nanocomposite structure in which two or more types of nanoparticles selected from the group consisting of oxide nanoparticles are uniformly incorporated is obtained.

【0023】[0023]

【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。なお、以下においては、非酸化物ナノ粒子と
してSiC、TiC、TiN、TiB2 を、酸化物ナノ
粒子としてAl23 を用い、これらのうちの2種類を
併用した実施例を挙げるが、本発明はその要旨を超えな
い限り、以下の実施例に限定されるものではなく、ナノ
粒子の種類や組み合せ等において他の構成を採用し得
る。
The present invention will be described more specifically with reference to the following examples. In the following, an example in which SiC, TiC, TiN, and TiB 2 are used as non-oxide nanoparticles and Al 2 O 3 is used as oxide nanoparticles, and two of these are used in combination, will be described. The present invention is not limited to the following examples unless departing from the gist of the invention, and other configurations can be adopted for the types and combinations of nanoparticles.

【0024】実施例1〜14,比較例1〜4 ZrO2 粉末として、平均粒径0.3μmの未安定化Z
rO2 を用い、このZrO2 粉末に、表1に示す第2相
成分の原料粉末を表1に示す所定割合で混合し、この混
合粉末をエタノールを分散媒として、加圧撹拌ミルで2
時間混合を行なった。これを十分に乾燥した後、乾式ボ
ールミルで解砕混合を12時間行なって原料粉末とし
た。
Examples 1 to 14 and Comparative Examples 1 to 4 Unstabilized Zr having an average particle size of 0.3 μm was used as ZrO 2 powder.
used and rO 2, in the ZrO 2 powder, 2 raw material powder of the second phase components shown in Table 1 were mixed at a predetermined ratio shown in Table 1, the mixed powder with ethanol as a dispersion medium, a pressurized stirring mill
Time mixing was performed. After this was sufficiently dried, the mixture was crushed and mixed by a dry ball mill for 12 hours to obtain a raw material powder.

【0025】この原料粉末約50gを黒鉛ダイスに充填
し、ホットプレス装置(富士電波工業社製)で焼結し
た。ホットプレス条件は、表1に示す所定の焼結温度ま
で昇温させた後、1時間保持、プレス圧30MPaで行
なった。
About 50 g of the raw material powder was filled in a graphite die, and sintered by a hot press (manufactured by Fuji Denki Kogyo KK). The hot pressing conditions were as follows: after raising the temperature to a predetermined sintering temperature shown in Table 1, holding for 1 hour and pressing pressure of 30 MPa.

【0026】得られた各種の焼結体は研削加工して、J
IS R1601に準じた3×4×40mmの3点曲げ
試験片の大きさとし、3点曲げ試験法により、荷重速度
0.5mm/min、スパン長さ30mmで、室温及び
高温にて曲げ強度を測定した。また、荷重5kg重、保
持時間10秒でIF法により、破壊靭性を測定した。
The various sintered bodies thus obtained are ground and subjected to J
The size of a 3-point bending test specimen of 3 × 4 × 40 mm in accordance with IS R1601 is measured, and the bending strength is measured at room temperature and high temperature by a 3-point bending test method at a load speed of 0.5 mm / min and a span length of 30 mm. did. The fracture toughness was measured by an IF method under a load of 5 kg and a holding time of 10 seconds.

【0027】表1に曲げ強度、破壊靭性を示す。なお、
比較例1は、ナノ粒子を用いず、未安定ZrO2 の代り
にY23 安定化ZrO2 を用い、ZrO2 (3mol
%Y23 )単相としたものである。また、第2相成分
の原料粉末としては下記のものを用いた。
Table 1 shows bending strength and fracture toughness. In addition,
In Comparative Example 1, ZrO 2 (3 mol) was used without using nanoparticles, using Y 2 O 3 stabilized ZrO 2 instead of unstable ZrO 2.
% Y 2 O 3 ) single phase. The following were used as the raw material powder of the second phase component.

【0028】 TiC粉末:平均粒径0.2μmのTiC SiC粉末:平均粒径0.2μmのβランダムSiC TiN粉末:平均粒径0.2μmのTiN TiB2 粉末:平均粒径0.4μmのTiB2 Al23 粉末:平均粒径0.1μmのα−Al2 TiC powder: TiC SiC powder having an average particle diameter of 0.2 μm: β-random SiC TiN powder having an average particle diameter of 0.2 μm: TiN TiB 2 powder having an average particle diameter of 0.2 μm: TiB having an average particle diameter of 0.4 μm 2 Al 2 O 3 powder: α-Al 2 O 3 having an average particle size of 0.1 μm

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかなように、本発明の粒子分
散型ZrO 系セラミックス材料は、2種併用のナノ
粒子により破壊が制御され、曲げ強度、破壊靭性が大幅
に改善されていることがわかる。
As is clear from Table 1, the particle-dispersed ZrO 2 -based ceramic material of the present invention has its fracture controlled by two kinds of nanoparticles in combination, and its bending strength and fracture toughness are greatly improved. Recognize.

【0031】なお、X線回折より、実施例1〜14で得
られた複合焼結体の研磨面のZrO 2 は殆ど正方晶で存
在し、破断時の正方晶から単斜相への応力誘起変態の割
合が高いことが確認された。
The results obtained in Examples 1 to 14 were obtained by X-ray diffraction.
ZrO on the polished surface of the composite sintered body Two Is almost tetragonal
Of the stress-induced transformation from tetragonal to monoclinic at fracture
Was high.

【0032】また、実施例4で得られたZrO2 /30
体積%TiC/5体積%SiCセラミックス複合材料と
比較例1で得られたZrO2 (3mol%Y23 )単
相について、高温における曲げ強度を上記と同様にして
測定し、高温強度の変化を表2に示した。表2より、Z
rO2 単相では、高温になると著しい強度低下を生じる
が、TiC及びSiCナノ粒子を分散させた本発明のセ
ラミックス複合材料では、変態温度以上でも破壊強度の
低下が抑制され、高温でも高強度が維持されることが明
らかである。
Further, ZrO 2/30 obtained in Example 4
For the volume% TiC / 5 volume% SiC ceramic composite material and the ZrO 2 (3 mol% Y 2 O 3 ) single phase obtained in Comparative Example 1, the bending strength at high temperature was measured in the same manner as above, and the change in high temperature strength was measured. Are shown in Table 2. From Table 2, Z
In the rO 2 single phase, a significant decrease in strength occurs at high temperatures. However, in the ceramic composite material of the present invention in which TiC and SiC nanoparticles are dispersed, a decrease in fracture strength is suppressed even at a transformation temperature or higher, and high strength is maintained even at high temperatures. It is clear that it will be maintained.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】以上説明したように、本発明の粒子分散
型ZrO2 系セラミックス材料によれば、ZrO2 結晶
粒内に非酸化物ナノ粒子及び酸化物ナノ粒子よりなる群
から選ばれる2種以上のナノ粒子を分散させることによ
り、ZrO2 の変態を容易に制御して高靭化を達成でき
る。
As described above, according to the particle-dispersed ZrO 2 -based ceramic material of the present invention, two kinds selected from the group consisting of non-oxide nanoparticles and oxide nanoparticles in ZrO 2 crystal grains By dispersing the above-mentioned nanoparticles, the transformation of ZrO 2 can be easily controlled to achieve high toughness.

【0035】また、従来のZrO2 系セラミックス材料
における変態温度以上での著しい破壊靭性・破壊強度の
低下を防止すると共に、変態温度以下でもこのナノ粒子
で破壊を制御し、変態による強靭化以上に破壊靭性・破
壊強度を向上させることが可能となる。
In addition, it is possible to prevent a remarkable decrease in fracture toughness and fracture strength above the transformation temperature of the conventional ZrO 2 -based ceramic material, and to control the fracture by using the nanoparticles even below the transformation temperature, thereby toughening by transformation. It is possible to improve fracture toughness and fracture strength.

【0036】従って、本発明の粒子分散型ZrO2 系セ
ラミックス材料によれば、耐熱衝撃性、高温特性に優れ
た、高靭性、高強度ZrO2 系セラミックス材料が提供
される。
Therefore, according to the particle-dispersed ZrO 2 ceramic material of the present invention, a high toughness and high strength ZrO 2 ceramic material having excellent thermal shock resistance and high temperature characteristics is provided.

【0037】また、本発明の製造方法によれば、2種以
上のナノ粒子の分散によりZrO2の相変態を制御する
ことにより、耐熱衝撃性、室温及び高温での曲げ強度、
破壊靭性の機械的特性が大幅に改善され、構造用材料に
も応用可能な粒子分散型ZrO2 系セラミックス材料が
容易かつ効率的に製造される。
Further, according to the production method of the present invention, by controlling the phase transformation of ZrO 2 by dispersion of two or more kinds of nanoparticles, thermal shock resistance, bending strength at room temperature and high temperature,
The mechanical properties of fracture toughness are significantly improved, and a particle-dispersed ZrO 2 -based ceramic material applicable to structural materials can be easily and efficiently produced.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−246760(JP,A) 特開 平2−255570(JP,A) 特開 平4−12058(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/48 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-246760 (JP, A) JP-A-2-255570 (JP, A) JP-A-4-12058 (JP, A) (58) Field (Int.Cl. 6 , DB name) C04B 35/48

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ZrO2 結晶粒内に、ナノメーター寸法
のナノ粒子を分散させてなる粒子分散型ZrO2 系セラ
ミックス材料であって、該ナノ粒子が非酸化物ナノ粒子
及び酸化物ナノ粒子よりなる群から選ばれる2種以上の
ナノ粒子で構成され、各ナノ粒子の含有割合が0.1〜
30体積%で、全ナノ粒子の合計の含有割合が0.2〜
50体積%であることを特徴とする粒子分散型ZrO2
系セラミックス材料。
1. A particle-dispersed ZrO 2 -based ceramic material in which nanometer-sized nanoparticles are dispersed in ZrO 2 crystal grains, wherein the nanoparticles are composed of non-oxide nanoparticles and oxide nanoparticles. Composed of two or more types of nanoparticles selected from the group consisting of:
At 30% by volume, the total content of all nanoparticles is 0.2 to 0.2%.
50% by volume, particle-dispersed ZrO 2
Series ceramic materials.
【請求項2】 ナノ粒子の平均粒子径が400nm以下
であることを特徴とする請求項1に記載の粒子分散型Z
rO2 系セラミックス材料。
2. The particle-dispersed Z according to claim 1, wherein the average particle size of the nanoparticles is 400 nm or less.
rO 2 ceramic material.
【請求項3】 ZrO2 粉末に、平均粒子径400nm
以下の、非酸化物粉末及び酸化物粉末よりなる群から選
ばれる2種以上の粉末を混合し、得られた混合物を成形
した後、該成形体を1200℃以上の焼結温度で焼結す
ることにより、請求項1又は2に記載の粒子分散型Zr
2 系セラミックス材料を製造する方法。
3. The ZrO 2 powder has an average particle diameter of 400 nm.
After mixing two or more kinds of powders selected from the group consisting of the following non-oxide powders and oxide powders and molding the resulting mixture, the compact is sintered at a sintering temperature of 1200 ° C. or more. Thereby, the particle-dispersed Zr according to claim 1 or 2
A method for producing an O 2 -based ceramic material.
JP4188072A 1992-06-16 1992-07-15 Particle-dispersed ZrO2-based ceramic material and method for producing the same Expired - Lifetime JP2985519B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4188072A JP2985519B2 (en) 1992-07-15 1992-07-15 Particle-dispersed ZrO2-based ceramic material and method for producing the same
DE19934319911 DE4319911A1 (en) 1992-06-16 1993-06-16 Ceramic zirconium oxide with finely dispersed oxide and/or non-oxide particles - improve thermal shock strength and high temp. properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4188072A JP2985519B2 (en) 1992-07-15 1992-07-15 Particle-dispersed ZrO2-based ceramic material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0632653A JPH0632653A (en) 1994-02-08
JP2985519B2 true JP2985519B2 (en) 1999-12-06

Family

ID=16217218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4188072A Expired - Lifetime JP2985519B2 (en) 1992-06-16 1992-07-15 Particle-dispersed ZrO2-based ceramic material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2985519B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050206A (en) * 2006-08-24 2008-03-06 Seiko Epson Corp Piezoelectric material and method of manufacturing the same and piezoelectric element
JP6045117B2 (en) * 2014-03-31 2016-12-14 香川県 Tough, electrostatic discharge-preventing black ceramics and method for producing the same

Also Published As

Publication number Publication date
JPH0632653A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
Khodaei et al. Effects of different sintering methods on the properties of SiC-TiC, SiC-TiB2 composites
Vasylkiv et al. Low‐temperature processing and mechanical properties of zirconia and zirconia–alumina nanoceramics
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
JPH08268755A (en) Zirconia-based composite ceramic sintered compact and its production
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
JP2659082B2 (en) Manufacturing method of zirconia-based composite ceramic sintered body
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
Zhang et al. Reactive hot pressing of alumina‐silicon carbide nanocomposites
JPH07109175A (en) Composite ceramic material used in industrial application under high temperature and severe thermal shock condition and production thereof
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JPH06219840A (en) Silicon nitride sintered compact and its production
JP2004059346A (en) Silicon nitride-based ceramic sintered compact, and its production process
JP2985512B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JP3076682B2 (en) Alumina-based sintered body and method for producing the same
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP3045367B2 (en) High-strength and high-toughness ceramic composite material, ceramic composite powder, and method for producing them
JPH06102574B2 (en) High toughness ceramic sintered body excellent in heat resistance stability and method for producing the same
JPH0380153A (en) Manufacture of ziroconia-based ceramic
JP2979703B2 (en) Composite ceramic material and method for producing the same
JPH05319910A (en) Ceramic composite material and its production
JPH0813702B2 (en) Composite ceramics
JPH089743B2 (en) Composite ceramic sintered body and manufacturing method thereof
JPH04104944A (en) Al2o3-sic-zro2 composite sinter
JPH0393668A (en) Zirconia-based cutting tool and production thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831