JPH05298957A - Manufacture of vacuum interrupter electrode - Google Patents

Manufacture of vacuum interrupter electrode

Info

Publication number
JPH05298957A
JPH05298957A JP10433592A JP10433592A JPH05298957A JP H05298957 A JPH05298957 A JP H05298957A JP 10433592 A JP10433592 A JP 10433592A JP 10433592 A JP10433592 A JP 10433592A JP H05298957 A JPH05298957 A JP H05298957A
Authority
JP
Japan
Prior art keywords
electrode
compact
powder
density
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10433592A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Taiji Noda
泰司 野田
Nobuaki Tamaki
伸明 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP10433592A priority Critical patent/JPH05298957A/en
Publication of JPH05298957A publication Critical patent/JPH05298957A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Landscapes

  • Manufacture Of Switches (AREA)

Abstract

PURPOSE:To avoid influence given to a compact by evaporation gas and prevent the dispersion of copper component from the surface of an electrode by specifying starting material, density in molding and sintering temperature to perform sintering under an inactive atmosphere where a higher pressure than the vapor pressure of Cu is applied. CONSTITUTION:Material powder containing copper powder is heated and molded into a compact which has the density being 65% or more of the theoretical density, and the obtained compact is heated under an inactive atmosphere where a higher pressure than the vapor pressure of copper is applied and at a lower temperature than the melting point of copper to form a compact, or an electrode 1. For example, Cu powder is used as starting material, which is filled into a metallic mold, pressurized and molded into a compact which has the density being 80% of the theoretical density. Next, the obtained compact is given heat treatment for two hours at 1060 deg.C right under the melting point of Cu in a 5X10<-5>Torr vacuum in a vacuum furnace, while introducing argon as inactive gas therein under 0.2Torr partial pressure, to form a compact (electrode) 1. In this way, influence given by evaporation gas is avoided, the dispersion of copper component from the surface of the electrode is prevented and contact resistance is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空インタラプタ用電極
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a vacuum interrupter electrode.

【0002】[0002]

【従来の技術】一般に、真空インタラプタ用電極として
は、図3に示すように磁気駆動によりアークを拡散する
形状(以下、スパイラル形状と呼ぶ)が用いられてい
る。このような電極1は、おもに素材を機械加工(表面
加工スパイラル溝加工)することにより得られていた。
図中、2がスパイラル溝であり、3がペダルである。
2. Description of the Related Art Generally, as a vacuum interrupter electrode, a shape in which an arc is diffused by magnetic drive (hereinafter referred to as a spiral shape) is used as shown in FIG. Such an electrode 1 has been obtained mainly by machining a material (surface processing spiral groove processing).
In the figure, 2 is a spiral groove and 3 is a pedal.

【0003】しかし、機械加工を行うことは価格上昇に
なることから、粉末冶金法による無加工をめざし、価格
低下を図った電極材料の製造方法として、特開昭53−
149676号公報等に開示のものが提供されている。
この方法は、金属の粉末材料をスパイラル形電極形状に
加圧成形し、これを焼結するものである。
However, since machining causes an increase in price, as a method for producing an electrode material aiming at non-processing by powder metallurgy and reducing the price, Japanese Patent Laid-Open Publication No. 53-53 is available.
The one disclosed in Japanese Patent Publication No. 149676 is provided.
In this method, a metal powder material is pressure-molded into a spiral electrode shape, and this is sintered.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記粉末冶金
法により種々の粉末を混合して電極の製作を試みた結
果、電極が溝2を有していることから以下のような問題
点があることがわかった。
However, as a result of attempting to manufacture an electrode by mixing various powders by the above-mentioned powder metallurgy method, the electrode has the groove 2, so that the following problems occur. I understood it.

【0005】電極形状が図3に示したような異形のスパ
イラル形状であるため、粉体を圧縮成形する際、金型と
粉体あるいは成形体との接触面積が大きく摩擦が大きい
ことから、粉体等と金型のカジリが生じやすい。
Since the electrode has an irregular spiral shape as shown in FIG. 3, when the powder is compression-molded, the contact area between the die and the powder or the molded body is large and the friction is large. Scraping of the body and the mold is likely to occur.

【0006】上記カジリが発生すると、高価な金型の寿
命が短くなり、かえってコスト高となってしまう。特
に、図4に示すように成形体5を型4から抜き取る際、
金型4の溝形成部4aの付け根部4bに力が集中し、金
型4が破損するおそれがある。このため、電極の溝2を
深くすることはできない。
When the above-mentioned scoring occurs, the life of an expensive mold is shortened and the cost is rather increased. Especially when the molded body 5 is removed from the mold 4 as shown in FIG.
The force may be concentrated on the root portion 4b of the groove forming portion 4a of the mold 4, and the mold 4 may be damaged. Therefore, the groove 2 of the electrode cannot be deepened.

【0007】また、成形体5を金型4から取り出す際、
成形体のペダル先端部の強度より摩擦力が優ると、図5
に示すようにペダル先端部にカケ,ヒビ6が発生し、電
極として使用できなくなってしまう。
When the molded body 5 is taken out of the mold 4,
If the frictional force is greater than the strength of the pedal tip of the molded body,
As shown in FIG. 3, chipping or cracking 6 occurs at the tip of the pedal, making it unusable as an electrode.

【0008】上記のような欠点の生じない電極形状とし
て、例えば図6に示すようなペダル3の溝2が浅く、先
端のR部分7の曲率半径を大きくした形状が考えられる
が、これではペダル3が短くなってアークの駆動が不十
分となり、遮断性能が低下してしまうことになる。
As an electrode shape which does not cause the above-mentioned drawbacks, for example, as shown in FIG. 6, the groove 2 of the pedal 3 is shallow and the radius of curvature of the R portion 7 at the tip is large. 3 becomes short, the driving of the arc becomes insufficient, and the breaking performance is deteriorated.

【0009】この問題点を解決するため、加圧力を小さ
くして成形した結果、カケは防止できたが、成形体取り
出し後のハンドリングでペダルが折れやすいという別の
問題が生じた。つまり、図7に示すように、ハンドリン
グの際にはペダル3の付け根部分に力が加わるため、こ
の部分で破損するおそれが生じたのである。図中、8が
破損部である。
In order to solve this problem, as a result of molding with reduced pressure, chipping could be prevented, but another problem that the pedal was easily broken during handling after taking out the molded body occurred. That is, as shown in FIG. 7, since a force is applied to the base portion of the pedal 3 during handling, there is a risk of damage at this portion. In the figure, 8 is a damaged part.

【0010】また、成形圧力が小さいと、焼結後の収縮
が大きくなる。スパイラル形状は異形であるため、収縮
が成形時と相似形とはならず、このため焼結後電極形状
が所望の形状と異なったものとなってしまう。また、各
ペダルごとの変形が生じ、遮断時のアーク駆動が異な
り、遮断が不安定となる。
When the molding pressure is low, the shrinkage after sintering becomes large. Since the spiral shape is irregular, the shrinkage does not become similar to that at the time of molding, and therefore the electrode shape after sintering becomes different from the desired shape. Further, each pedal is deformed, the arc drive at the time of breaking is different, and breaking becomes unstable.

【0011】さらに、摩擦力を低減するため粉末冶金法
では、一般的にステアリン酸亜鉛等の潤滑剤を少量
(0.1重量%程度)混合しているが、焼結工程でこの
潤滑剤が除去できないと、遮断性能が著しく低下してし
まう。
Further, in order to reduce the frictional force, a small amount (about 0.1% by weight) of a lubricant such as zinc stearate is generally mixed in the powder metallurgy method. If it cannot be removed, the blocking performance will be significantly reduced.

【0012】また、上記問題点に加えて成形体を真空圧
下で焼結することから、以下のような問題も生じる。つ
まり、真空炉内におけるプレス焼結製法の焼結過程で、
粉体に吸着あるいは含有されていた水分、ガスが放出さ
れるため、炉内の真空度が低下し、炉内に設置できる電
極の数量が制限されてしまう。また、原料中の銅(C
u)は蒸気圧が高いため、加熱中にCuが飛散し、炉内
を汚損してしまう。さらにCu粉と耐火金属との混合粉
を用いた成形体やCu粉とアトマイズ粉との混合粉を用
いた成形体の場合、Cuが表面から選択的に蒸発し、電
極表面のCuの含有率を低下させ、低触抵抗が高くなっ
てしまうという問題も生じ得る。
In addition to the above-mentioned problems, since the compact is sintered under vacuum pressure, the following problems occur. In other words, in the sintering process of the press sintering method in the vacuum furnace,
Since moisture and gas adsorbed on or contained in the powder are released, the degree of vacuum in the furnace is lowered and the number of electrodes that can be installed in the furnace is limited. In addition, copper (C
Since u) has a high vapor pressure, Cu scatters during heating and the inside of the furnace is contaminated. Further, in the case of a molded body using a mixed powder of Cu powder and refractory metal or a molded body using a mixed powder of Cu powder and atomized powder, Cu is selectively evaporated from the surface, and the Cu content rate on the electrode surface And the low contact resistance increases.

【0013】[0013]

【課題を解決するための手段】上記課題に鑑み、電極の
出発原料の組成と成形密度に着目し、これらを変えて電
極材料を成形し、その成形後のハンドリングの際の破損
の有無、焼結後電極として使用した場合の導電率等を調
べた。その結果を表1,表2に示す。
In view of the above problems, attention is paid to the composition and molding density of the starting materials for electrodes, the electrode materials are molded by changing these, and the presence or absence of damage during handling after molding The conductivity and the like when used as an electrode after binding were examined. The results are shown in Tables 1 and 2.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】表1に示すものは、銅(以下、Cu)粉1
00%のものであり、理論密度に対する成形密度を65
%以上とすることで、ハンドリングに支障がなくなるこ
とが、また焼結後の導電率の面でも問題がないことがわ
かった。表2に示すものは、Cu粉とクロム(以下、C
r)粉との混合粉を用いたものであるが、やはり成形密
度を65%以上とすることにより、ハンドリングに際し
ての破損等の問題はなくなった。なお、Cuは50重量
%以下では、導電率,焼結後の密度が低くなって電極材
料として使用できなくなってしまう。
Table 1 shows copper (hereinafter, Cu) powder 1
100%, and the molding density to the theoretical density is 65
It has been found that when the content is at least%, there is no problem in handling, and there is no problem in terms of conductivity after sintering. Those shown in Table 2 are Cu powder and chromium (hereinafter, C
r) Although the mixed powder with the powder is used, by setting the molding density to 65% or more, problems such as breakage at the time of handling are eliminated. If Cu is 50% by weight or less, the conductivity and the density after sintering become low, and Cu cannot be used as an electrode material.

【0017】また、焼結時成形体中のCuが蒸発するの
を防止するためには、炉内の圧力を調整することが効果
的である。そのため、炉内に不活性ガスを導入して炉内
の圧力を調整した。つまり、Cuの蒸発を抑制するた
め、不活性ガスの分圧をCuの蒸気圧以上とするのであ
る。
Further, in order to prevent the Cu in the compact from evaporating during sintering, it is effective to adjust the pressure in the furnace. Therefore, the pressure in the furnace was adjusted by introducing an inert gas into the furnace. That is, in order to suppress the evaporation of Cu, the partial pressure of the inert gas is made equal to or higher than the vapor pressure of Cu.

【0018】即ち、本発明に係る真空インタラプタ用電
極の製造方法は、Cuを含有する原料粉体を、成形体密
度が理論密度の65%以上となるように加圧成形し、得
られた成形体を真空中かつCuの蒸気圧以上の不活性ガ
ス導入雰囲気下で加熱焼結するようにしたことを特徴と
する。
That is, in the method for manufacturing the electrode for a vacuum interrupter according to the present invention, the raw material powder containing Cu is pressure-molded so that the density of the compact is 65% or more of the theoretical density, and the obtained compact is obtained. It is characterized in that the body is heat-sintered in a vacuum and under an atmosphere of an inert gas having a vapor pressure of Cu or higher.

【0019】[0019]

【実施例】次に、本発明に係る真空インタラプタ用電極
の製造方法の一実施例について説明する。先ず、Cu粉
と耐火金属粉との混合粉により電極を得る例について説
明する。出発原料として、電解製法により得られ、ふる
い分けされた粒径が100μm以下のCu粉と、粒径が
150μm以下の耐火金属の一例としてのCu粉を用
い、Cu:Cr=8:2の重量比とし、V字形混合器で
1時間十分に混合した。なお、Cu粉は電解製法により
得られるものが、加圧成形時絡みやすくかつつぶれやす
いため好ましい。
EXAMPLE Next, an example of a method of manufacturing a vacuum interrupter electrode according to the present invention will be described. First, an example in which an electrode is obtained by a mixed powder of Cu powder and refractory metal powder will be described. As a starting material, Cu powder having a particle size of 100 μm or less obtained by an electrolytic process and sieved, and Cu powder as an example of a refractory metal having a particle size of 150 μm or less were used, and a weight ratio of Cu: Cr = 8: 2 was used. And mixed well in a V-shaped mixer for 1 hour. The Cu powder obtained by an electrolytic method is preferable because it is easily entangled and crushed during pressure molding.

【0020】得られた混合粉を図1に示すような形状を
成形し得る金型に充填し、理論密度に対する成形密度が
80%となるように加圧成形し、直径40mm,厚さ5mm
の成形体を得た。
The obtained mixed powder was filled in a mold capable of forming a shape as shown in FIG. 1 and pressure-molded so that the molding density was 80% of the theoretical density, and the diameter was 40 mm and the thickness was 5 mm.
A molded body of was obtained.

【0021】次に、得られた成形体を真空炉において、
5×10-5Torrの真空中で、かつ不活性ガスとしてアル
ゴン(Ar)を分圧0.2Torrで導入下、Cuの融点直
下の温度1060℃で2時間加熱処理を施し、図1に示
すような焼結体1を得た。Ar0.2Torr下で加熱する
ので、成形体中のCuの蒸発飛散は抑制される。Arガ
スの分圧はCuの蒸気圧以上であればよいが、0.05
から10Torrの範囲が好ましい。0.05Torr以下の場
合は、ガスの流れが炉内で均一になりにくい。10Torr
以上では、効果は同等である。したがって、ガスの消費
量を少なくするため10Torr程度とする。
Next, the obtained molded body is placed in a vacuum furnace,
In a vacuum of 5 × 10 −5 Torr and with argon (Ar) as an inert gas introduced at a partial pressure of 0.2 Torr, a heat treatment was performed at a temperature of 1060 ° C. just below the melting point of Cu for 2 hours, and the result is shown in FIG. Such a sintered body 1 was obtained. Since heating is performed under Ar 0.2 Torr, evaporation and scattering of Cu in the compact is suppressed. The partial pressure of Ar gas may be equal to or higher than the vapor pressure of Cu, but is 0.05
The range from 1 to 10 Torr is preferred. If it is less than 0.05 Torr, the gas flow is difficult to be uniform in the furnace. 10 Torr
Above, the effects are the same. Therefore, it is set to about 10 Torr in order to reduce the gas consumption.

【0022】得られた焼結体、即ち電極を用いて図2に
示すように真空インタラプタ25を作製した。21,2
2が焼結体をそのまま用いた電極23,24がリード棒
で、両者はろう付けされる。なお、図1において、2は
スパイラル溝,3はペダルである。
A vacuum interrupter 25 was produced as shown in FIG. 2 using the obtained sintered body, that is, the electrode. 21,2
Reference numeral 2 is a lead rod, and electrodes 23 and 24 using the sintered body as they are are brazed to each other. In FIG. 1, 2 is a spiral groove and 3 is a pedal.

【0023】上記真空インタラプタの接触抵抗を測定し
たところ、単に真空中で焼結したものに比べ約15%程
度低かった。また、遮断試験を行った結果、上記実施例
品と真空焼結品とに差はなかった。操作機構に取付け
て、開閉寿命試験を20000回実施したが、電極2
1,22に割れや欠け等の異常は生じなかった。
When the contact resistance of the above vacuum interrupter was measured, it was about 15% lower than that of the one simply sintered in vacuum. In addition, as a result of the interruption test, there was no difference between the above-mentioned example product and the vacuum sintered product. It was attached to the operating mechanism and the open / close life test was performed 20000 times.
No abnormality such as cracking or chipping occurred in Nos. 1 and 22.

【0024】上記例は、耐火金属としてCrを用いたも
のであるが、そのほかにMo,W,Ti,SUS,F
e,Ta,Nbなどを1種類もしくは2種類以上採用す
ることができる。ただし、2種類以上含む場合は、耐火
金属間で固溶,拡散,金属間化合物を形成しないのもの
の組合せであることが必要である。
In the above example, Cr is used as a refractory metal, but in addition, Mo, W, Ti, SUS, F
One kind or two or more kinds of e, Ta, Nb, etc. can be adopted. However, when two or more kinds are included, it is necessary that the refractory metals be a combination of those that do not form a solid solution, diffuse, or form an intermetallic compound.

【0025】次に、他の実施例として、出発原料として
Cu−Crアトマイズ粉体を用いたものを示す。ここで
採用したCu−Crアトマイズ粉体は、80重量%Cu
−20重量%Crの混合物を真空中で加熱溶解後、アル
ゴンガスにより5〜8MPaの圧力で噴露して得られた
ものである。このCu−Cr粉体の粒径は150μm以
下であり、成分は初期の混合物と同等であった。また、
この合金粉末を電子顕微鏡で観察すると、5μm以下の
Cr粒子が均一に分散していることが確認された。
Next, as another example, one using Cu-Cr atomized powder as a starting material will be shown. The Cu-Cr atomized powder adopted here is 80 wt% Cu.
It was obtained by melting and melting a mixture of -20 wt% Cr in vacuum and then spraying it with argon gas at a pressure of 5 to 8 MPa. The particle size of this Cu—Cr powder was 150 μm or less, and the components were equivalent to those of the initial mixture. Also,
When this alloy powder was observed with an electron microscope, it was confirmed that Cr particles of 5 μm or less were uniformly dispersed.

【0026】上記Cu−Crアトマイズ粉体に電解Cu
粉末(粒径50μm)を15重量%の範囲で混合し、金
型に充填し、理論密度に対する成形密度が88%の成形
体を得た。
Electrolytic Cu is added to the Cu-Cr atomized powder.
Powder (particle size 50 μm) was mixed in the range of 15% by weight and filled in a mold to obtain a molded product having a molding density of 88% with respect to the theoretical density.

【0027】次に、得られた成形体を真空炉において、
5×10-5Torrの真空中で、かつ不活性ガスとしてアル
ゴン(Ar)を分圧0.2Torrで導入下、Cuの融点直
下の温度1060℃で2時間加熱処理を施し、焼結体を
得た。得られた焼結体、即ち電極をそのまま用いて先の
実施例と同様に図2に示すような真空インタラプタを作
製し、各種試験を行った。
Then, the obtained molded body is placed in a vacuum furnace.
In a vacuum of 5 × 10 −5 Torr and with argon (Ar) as an inert gas introduced at a partial pressure of 0.2 Torr, heat treatment was performed at a temperature of 1060 ° C. just below the melting point of Cu for 2 hours to obtain a sintered body. Obtained. Using the obtained sintered body, that is, the electrode as it was, a vacuum interrupter as shown in FIG. 2 was produced in the same manner as in the previous example, and various tests were conducted.

【0028】接触抵抗は、単に真空中で焼結したものに
比し、約20%程度低かった。遮断性能については、真
空焼結品と差はなかった。20000回の開閉寿命試験
においても、電極に割れや欠け等の異常は生じなかっ
た。また、得られた電極の表面の断面組織を観察したと
ころ、Cuの飛散が改善されていることが判明した。
The contact resistance was about 20% lower than that obtained by simply sintering in vacuum. The breaking performance was not different from the vacuum sintered product. In the open / close life test of 20000 times, no abnormality such as cracking or chipping occurred in the electrode. Further, when the cross-sectional structure of the surface of the obtained electrode was observed, it was found that the scattering of Cu was improved.

【0029】なお、上記実施例は、Cu−Cr粉末とし
てアトマイズ法により作製されたものを用いたが、アト
マイズ法としては、水アトマイズ法、ガスアトマイズ法
を問わない。また、他の粉末製造法で得られたCu−C
r合金粉末を使用することもできる。さらにCu−Cr
合金製の電極材料としては、Crの含有量が接触抵抗
比、耐溶着電流値に影響を及ぼすことが明らかにされて
おり、実用性のあるCr含有量は5〜20重量%であ
る。このCu−Cr粉末に添加するCu粉の割合は、1
0重量%以上25重量%未満とする。25重量%より少
ないと、成形体に先端カケが生じ、ハンドリングの面で
も不具合が生じた。また、25重量%より多く添加する
と、Crの偏析が著しく、しゃ断性能を低下させてしま
うという問題が生じる。
In the above examples, the Cu--Cr powder prepared by the atomizing method was used, but the atomizing method may be the water atomizing method or the gas atomizing method. In addition, Cu-C obtained by another powder manufacturing method
It is also possible to use r alloy powder. Cu-Cr
As an alloy electrode material, it has been clarified that the Cr content affects the contact resistance ratio and the welding current resistance value, and the practical Cr content is 5 to 20% by weight. The ratio of Cu powder added to this Cu-Cr powder is 1
It is 0% by weight or more and less than 25% by weight. If the amount is less than 25% by weight, the molded product will be chipped at the tip, and a problem will occur in terms of handling. Further, if it is added in an amount of more than 25% by weight, segregation of Cr is remarkable, and there arises a problem that the breaking performance is deteriorated.

【0030】[0030]

【発明の効果】本発明に係る真空インタラプタ用電極の
製造方法によれば、Cu粉末を成形体密度が理論密度の
65%以上となるように加圧成形し、得られた成形体を
Cuの融点以下の温度で焼結して電極材料を得るという
ように、出発原料,成形時の密度,焼結温度を特定した
ことにより、カケ,ワレのない焼結体を得ることができ
る。また、焼結をCuの蒸気圧以上の不活性雰囲気で行
うようにしたので、蒸発ガスによる影響は回避でき、し
かも電極表面からのCuの飛散が抑制され、接触抵抗が
改善された。Cuの飛散がないことから焼結炉内の汚損
も少なくなる。さらに、高真空を維持するための油拡散
ポンプ、トラップ用の液体窒素を使用する必要がないた
め、運転コストが安価になる。
According to the method for manufacturing a vacuum interrupter electrode of the present invention, Cu powder is pressure-molded so that the density of the compact is 65% or more of the theoretical density, and the obtained compact is made of Cu. By specifying the starting material, the density at the time of molding, and the sintering temperature such that the electrode material is obtained by sintering at a temperature below the melting point, it is possible to obtain a sintered body without chipping or cracking. Further, since the sintering is carried out in an inert atmosphere having a vapor pressure higher than that of Cu, the influence of evaporative gas can be avoided, and further, the scattering of Cu from the electrode surface is suppressed and the contact resistance is improved. Since there is no scattering of Cu, pollution in the sintering furnace is reduced. Furthermore, since it is not necessary to use an oil diffusion pump for maintaining a high vacuum and liquid nitrogen for a trap, the operating cost is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により得られる真空インタラプタ用電極
の一例の半面図と側面図である。
1A and 1B are a half view and a side view of an example of a vacuum interrupter electrode obtained by the present invention.

【図2】得られた電極を用いて製作した真空インタラプ
タの一例の断面図である。
FIG. 2 is a cross-sectional view of an example of a vacuum interrupter manufactured by using the obtained electrode.

【図3】スパイラル溝を有する真空インタラプタ用電極
の平面図と断面図である。
3A and 3B are a plan view and a cross-sectional view of a vacuum interrupter electrode having a spiral groove.

【図4】成形時の欠陥発生を示す部分的説明図である。FIG. 4 is a partial explanatory view showing the occurrence of defects during molding.

【図5】ペダル先端部に発生したカケ,ワレの説明図で
ある。
FIG. 5 is an explanatory diagram of chips and cracks generated at the tip of the pedal.

【図6】溝を浅くした成形体の一例の平面図である。FIG. 6 is a plan view of an example of a molded body having shallow grooves.

【図7】ぺダル根元部に発生する破損部の説明図であ
る。
FIG. 7 is an explanatory diagram of a damaged portion occurring at the base of the pedal.

【符号の説明】[Explanation of symbols]

1 電極 2 スパイラル溝 3 ペダル 21,22 電極 23,24 リード棒 1 electrode 2 spiral groove 3 pedal 21, 22 electrode 23, 24 lead rod

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 銅粉末を含有する原料粉体を成形体密度
が理論密度の65%以上となるように加圧成形し、得ら
れた成形体を、銅の蒸気圧以上の不活性雰囲気下で、銅
の融点以下の温度で加熱して焼結体とすることを特徴と
する真空インタラプタ用電極の製造方法。
1. A raw material powder containing copper powder is pressure-molded so that the density of the compact is 65% or more of the theoretical density, and the obtained compact is placed in an inert atmosphere at a vapor pressure of copper or higher. 2. A method for manufacturing a vacuum interrupter electrode, which comprises heating at a temperature equal to or lower than the melting point of copper to form a sintered body.
JP10433592A 1992-04-23 1992-04-23 Manufacture of vacuum interrupter electrode Pending JPH05298957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10433592A JPH05298957A (en) 1992-04-23 1992-04-23 Manufacture of vacuum interrupter electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10433592A JPH05298957A (en) 1992-04-23 1992-04-23 Manufacture of vacuum interrupter electrode

Publications (1)

Publication Number Publication Date
JPH05298957A true JPH05298957A (en) 1993-11-12

Family

ID=14378068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10433592A Pending JPH05298957A (en) 1992-04-23 1992-04-23 Manufacture of vacuum interrupter electrode

Country Status (1)

Country Link
JP (1) JPH05298957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527755A (en) * 2017-07-27 2017-12-29 许继集团有限公司 A kind of disconnecting switch and its contact assembly and its contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527755A (en) * 2017-07-27 2017-12-29 许继集团有限公司 A kind of disconnecting switch and its contact assembly and its contact

Similar Documents

Publication Publication Date Title
EP0469578B1 (en) Electrical contact material
US5421918A (en) Silver- or silver-copper alloy-metal oxide composite material
EP2492032B1 (en) Method for manufacturing a copper-based composite material for electrical contacts
JP2010514921A (en) Method for repairing sputtering target
JP2002313196A (en) Electric contact member and manufacturing method for the same
JPH0512965A (en) Manufacture of contact alloy for vacuum valve
JPH05298957A (en) Manufacture of vacuum interrupter electrode
JPS60211717A (en) Method of producing electrode for vacuum breaker
JPH05325740A (en) Manufacture of vacuum interrupter electrode
JP6743867B2 (en) W-Ti sputtering target
JP3191382B2 (en) Electrode materials for vacuum interrupters
JPS62130235A (en) Production of target material
US5512240A (en) Tungsten electrode material
JPH0455086A (en) Production of brazing material
JP2748658B2 (en) Manufacturing method of brazing material
JPH0729446A (en) Manufacture of electrode for vacuum interrupter
JP3106598B2 (en) Manufacturing method of electrode material
JPH0682532B2 (en) Method for manufacturing contact alloy for vacuum valve
JPH05314868A (en) Manufacture of electrode for vacuum interrupter
JP2557143B2 (en) Method for producing silver-tin oxide composite material
JPH07278703A (en) Electrode material for vacuum interrupter
JPH05242773A (en) Vacuum interrupter electrode material
JPH07220560A (en) Manufacture of electrode for vacuum interrupter
JPH05242770A (en) Electrode material for vacuum interrupter
JPH05242769A (en) Electrode material for vacuum interrupter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010821