JPH05296207A - Confluence-diffluence device in hydraulic circuit - Google Patents

Confluence-diffluence device in hydraulic circuit

Info

Publication number
JPH05296207A
JPH05296207A JP4092502A JP9250292A JPH05296207A JP H05296207 A JPH05296207 A JP H05296207A JP 4092502 A JP4092502 A JP 4092502A JP 9250292 A JP9250292 A JP 9250292A JP H05296207 A JPH05296207 A JP H05296207A
Authority
JP
Japan
Prior art keywords
valve
pressure
pump
merging
spool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4092502A
Other languages
Japanese (ja)
Other versions
JP3109619B2 (en
Inventor
Shinichi Shinozaki
晋一 篠崎
Mitsuharu Yamashita
光治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP04092502A priority Critical patent/JP3109619B2/en
Publication of JPH05296207A publication Critical patent/JPH05296207A/en
Application granted granted Critical
Publication of JP3109619B2 publication Critical patent/JP3109619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To easily compact piping by making a first confluence-diffluence valve by way of providing a first spool to communicate and to cut off a plural number of pump ports on a valve block installed on an operation valve main body and by making a second confluence-diffluence valve by way of providing a second spool to communicate and to cut off a plural number of load pressure introduction ports. CONSTITUTION:A valve block 73 is installed on an operation valve main body 70. A first spool 87 to communicate and to cut off first and second pump boards 77, 78 is provided on this valve block 73, held at a position to communicate this first spool 87 by a first spring 88 and made as a first confluence-diffluence valve by way of making it as a cutoff position by pilot hydraulic pressure, and a second spool 89 to communicate and cut off two load pressure introduction passages of the operation valve main body 70 is provided on the valve block 73 held at a position to communicate this second spool 89 by a second spring 93 and made as a second confluence-diffluence valve by way of making it as a cutoff position by the pilot hydraulic pressure. It is not necessary to arrange piping on an operation valve and first and second confluencediffluence valves 55, 56, and piping is facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数のポンプの吐出圧
油を複数の操作弁によって複数のアクチュエータに供給
する油圧回路における合分流装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a merging / dividing device in a hydraulic circuit for supplying pressure oil discharged from a plurality of pumps to a plurality of actuators by a plurality of operating valves.

【0002】[0002]

【従来の技術】図1に示すように、第1ポンプ1と第2
ポンプ2の吐出路1a,2aを接続し、その吐出路1
a,1bに複数のクローズドセンタ型式の操作弁3を配
設し、その操作弁3とアクチュエータの接続回路4に圧
力補償弁5を設け、各アクチュエータの負荷圧における
最高圧をシャトル弁6で検出し、その負荷圧を各圧力補
償弁5のバネ室5aに供給して、その負荷圧に対応する
セット圧とする油圧回路が知られている。
2. Description of the Related Art As shown in FIG. 1, a first pump 1 and a second pump 1
The discharge paths 1a and 2a of the pump 2 are connected to each other, and the discharge path 1
A plurality of closed center type operation valves 3 are provided in a and 1b, a pressure compensation valve 5 is provided in a connection circuit 4 between the operation valve 3 and the actuator, and the maximum pressure of the load pressure of each actuator is detected by the shuttle valve 6. However, there is known a hydraulic circuit in which the load pressure is supplied to the spring chamber 5a of each pressure compensating valve 5 to obtain a set pressure corresponding to the load pressure.

【0003】かかる油圧回路であれば、複数の操作弁3
を同時操作した時に複数のアクチュエータの負荷圧にお
ける最高圧によって圧力補償弁5がセットされ、複数の
アクチェータの負荷圧が異なっても操作弁3の開口面積
比によって複数のアクチュエータに流量分配できる。
With such a hydraulic circuit, a plurality of operating valves 3
The pressure compensating valve 5 is set by the maximum pressure among the load pressures of the plurality of actuators when the actuators are simultaneously operated, and even if the load pressures of the plurality of actuators are different, the flow rates can be distributed to the plurality of actuators by the opening area ratio of the operation valve 3.

【0004】かかる油圧回路であると、複数のアクチュ
エータを同時作動する場合に圧力補償弁は高い方の負荷
圧でセットされポンプ吐出圧力はそのセット圧より若干
高い高圧となるので、アクチュエータの負荷圧の差が大
きい場合には負荷圧の小さいアクチュエータ側の圧力補
償弁における圧力損失が大となり、第1・第2ポンプ
1,2を駆動する原動機の損失馬力が大となると共に、
作動油の温度が高くなって作動油の劣化を早めることに
なる。例えば、パワーショベルのブームシリンダと旋回
モータに圧油を供給してブーム下降、上部車体旋回する
場合に、ブームは自重降下するから負荷圧は低圧である
が、旋回モータは上部車体を起動・加速するため負荷圧
が高圧となり、その時のポンプ吐出圧はセット圧より若
干高い高圧となるので、ブームシリンダ側の圧力補償弁
では高圧−低圧の分が圧力損失となり、前述のように負
荷圧の差が大であるから圧力損失が大となってしまう。
このことは、アームシリンダでアームを上昇させバケッ
トシリンダでバケットをダンプして土砂を排出する場合
に、アームシリンダの負荷圧が高く、バケットシリンダ
の負荷圧が低くなるから同様である。
In such a hydraulic circuit, when a plurality of actuators are simultaneously operated, the pressure compensating valve is set at a higher load pressure and the pump discharge pressure becomes a pressure slightly higher than the set pressure. When the difference between the two is large, the pressure loss in the pressure compensating valve on the actuator side where the load pressure is small becomes large, and the loss horsepower of the prime mover driving the first and second pumps 1 and 2 becomes large, and
The temperature of the hydraulic oil rises, which accelerates the deterioration of the hydraulic oil. For example, when supplying pressure oil to the boom cylinder and swing motor of a power shovel to lower the boom and swing the upper body, the load pressure is low because the boom descends by its own weight, but the swing motor starts and accelerates the upper body. Therefore, the load pressure becomes high, and the pump discharge pressure at that time is slightly higher than the set pressure.Therefore, at the boom cylinder side pressure compensating valve, the high pressure-low pressure component causes a pressure loss. Is large, the pressure loss will be large.
This is the same as when the arm cylinder raises the arm and the bucket cylinder dumps the bucket to discharge the earth and sand, the load pressure of the arm cylinder is high and the load pressure of the bucket cylinder is low.

【0005】このことを解消する油圧回路として図2に
示すものが知られている。すなわち、図2に示すように
第1ポンプ1の吐出路1aと第2ポンプ2の吐出路2a
を合分流弁16で接続し、第1ポンプ1の吐出路1aに
接続した操作弁3の圧力補償弁5の負荷圧導入路17と
第2ポンプ2の吐出路2aに接続した操作弁3の圧力補
償弁5の負荷圧導入路18を合分流弁19で接続した油
圧回路であり、これによって、合分流弁16,19によ
って各吐出路1a,1b及び各負荷圧導入路17,18
をそれぞれ独立させ、一方の吐出路1aに接続したアク
チュエータ10,11,12と他方の吐出路2aに接続
したアクチュエータ13,14,15を同時操作した時
に、それぞれのアクチュエータの負荷圧で圧力補償弁を
セットして、圧力損失を低減できるようにできる。
A hydraulic circuit shown in FIG. 2 is known as a hydraulic circuit for solving this problem. That is, as shown in FIG. 2, the discharge passage 1 a of the first pump 1 and the discharge passage 2 a of the second pump 2 are shown.
Of the operation valve 3 connected to the discharge passage 1a of the first pump 1 and the load pressure introduction passage 17 of the pressure compensation valve 5 of the operation valve 3 connected to the discharge passage 2a of the second pump 2 This is a hydraulic circuit in which the load pressure introducing passage 18 of the pressure compensating valve 5 is connected by a merging / dividing valve 19, whereby the discharge passages 1a, 1b and the load pressure introducing passages 17, 18 are connected by the merging / dividing valves 16, 19.
When the actuators 10, 11, 12 connected to one discharge passage 1a and the actuators 13, 14, 15 connected to the other discharge passage 2a are operated simultaneously, the pressure compensating valve is adjusted by the load pressure of each actuator. Can be set to reduce pressure loss.

【0006】[0006]

【発明が解決しようとする課題】かかる合分流機能を有
する油圧回路であると、2つの合分流弁16,19が必
要となるので、油圧回路を構成する機器が多くなって全
体が大型となるばかりか、2つの合分流弁16,19へ
の配管が増えて配管が複雑となる。
In the hydraulic circuit having such a merging / branching function, two merging / branching valves 16 and 19 are required, so that the number of devices forming the hydraulic circuit increases and the whole becomes large. In addition, the number of pipes to the two merging / branching valves 16 and 19 is increased, and the pipes are complicated.

【0007】そこで、本発明は前述の課題を解決できる
ようにした油圧回路における合分流装置を提供すること
を目的とする。
Therefore, an object of the present invention is to provide a merging / branching device in a hydraulic circuit that can solve the above-mentioned problems.

【0008】[0008]

【課題を解決するための手段】操作弁本体70に弁ブロ
ック73を取付け、この弁ブロック73に複数のポンプ
ポートを連通、遮断する第1スプール87を設けて第1
合分流弁55とし、前記弁ブロック73に複数の負荷圧
導入ポートを連通、遮断する第2スプール89を設けて
第2合分流弁56とした油圧回路における合分流装置。
A valve block 73 is attached to an operation valve main body 70, and a first spool 87 for connecting and disconnecting a plurality of pump ports is provided in the valve block 73.
A merging / dividing device in a hydraulic circuit that is a merging / dividing valve 55, and a second spool 89 that connects and disconnects a plurality of load pressure introducing ports to the valve block 73 is provided as a second merging / dividing valve 56.

【0009】[0009]

【作 用】操作弁本体70と弁ブロック73より成る
からコンパクトにできるし、操作弁本体70と第1・第
2合分流弁55,56との間の配管が不要で配管が簡単
となる。
[Operation] Since the operation valve body 70 and the valve block 73 are used, the size can be made compact, and piping between the operation valve body 70 and the first and second combined flow dividing valves 55 and 56 is not required, which simplifies the piping.

【0010】[0010]

【実 施 例】図3に基づいて合分流機能を有する油圧
回路を説明する。図3に示すように、油圧ポンプ30の
吐出路30aには操作弁31が設けられ、この操作弁3
1とアクチュエータ32を接続する回路33に圧力補償
弁34が設けてあり、そのアクチュエータ32の負荷圧
は操作弁30内の絞りを通して負荷圧導入路35に導入
される。前記油圧ポンプ30の斜板36は小径ピストン
37で容量大方向に傾転され、大径ピストン38で容量
小方向に傾転されると共に、その小径ピストン37の小
径受圧室37aは前記吐出路30aに接続してポンプ吐
出圧が供給され、前記大径ピストン38の大径受圧室3
8aはLS弁39で吐出路30aとタンク40に連通制
御される。前記LS弁39は負荷圧とばね41でドレー
ン位置Aに押され、ポンプ吐出圧で供給位置Bに押され
るようになって、ポンプ吐出圧を負荷圧よりも若干高い
圧力、例えば20kg/cm2 となるように斜板36を
傾転動作する。前記油圧ポンプ30の吐出路30aには
アンロード弁42が設けられ、このアンロード弁42は
ばねと第1受圧部43に供給される負荷圧でオンロード
位置42aに押され、第2受圧部44に供給されるポン
プ吐出圧でアンロード位置42bに押され、ポンプ吐出
圧と負荷圧の差圧が設定圧力、例えば30kg/cm2
以上となるとアンロード位置42bとなるもので、複数
の油圧ポンプの個別のポンプ吐出圧と負荷圧のみによっ
て作動する。パイロット油圧弁45はレバー46を操作
することで補助ポンプ47の吐出圧油を第1・第2パイ
ロット管路48,49で操作弁31の第1・第2受圧部
50,51に供給して操作弁31を中立位置31aから
第1位置31b、第2位置31cに切換えるものであ
り、この第1・第2パイロット管路48,49には第1
・第2圧力スイッチ52,53が設けられて圧力が発生
すると電気信号をコントローラ54に出力する。以上の
説明は図3において左側の油圧ポンプ30のみを示し、
右側の油圧ポンプ30も同様であるから符号を同一とし
て説明を省略する。
[Example] A hydraulic circuit having a merging / branching function will be described with reference to FIG. As shown in FIG. 3, an operating valve 31 is provided in the discharge passage 30 a of the hydraulic pump 30, and the operating valve 3
A pressure compensating valve 34 is provided in a circuit 33 that connects 1 and the actuator 32, and the load pressure of the actuator 32 is introduced into a load pressure introducing passage 35 through a throttle in the operation valve 30. The swash plate 36 of the hydraulic pump 30 is tilted in the large capacity direction by the small diameter piston 37 and tilted in the small capacity direction by the large diameter piston 38, and the small diameter pressure receiving chamber 37a of the small diameter piston 37 is disposed in the discharge passage 30a. Is connected to the pump and the pump discharge pressure is supplied to the large-diameter pressure receiving chamber 3 of the large-diameter piston 38.
LS valve 39 controls communication between the discharge passage 30a and the tank 8a. The LS valve 39 is pushed to the drain position A by the load pressure and the spring 41, and is pushed to the supply position B by the pump discharge pressure, so that the pump discharge pressure is slightly higher than the load pressure, for example, 20 kg / cm 2. The swash plate 36 is tilted so that An unloading valve 42 is provided in the discharge passage 30a of the hydraulic pump 30, and the unloading valve 42 is pushed to the on-load position 42a by the load pressure supplied to the spring and the first pressure receiving portion 43, and the second pressure receiving portion 42a. It is pushed to the unload position 42b by the pump discharge pressure supplied to the pump 44, and the differential pressure between the pump discharge pressure and the load pressure is set pressure, for example, 30 kg / cm 2.
With the above, the unload position 42b is reached, and the hydraulic pumps are operated only by the individual pump discharge pressure and load pressure. The pilot hydraulic valve 45 supplies the discharge pressure oil of the auxiliary pump 47 to the first and second pressure receiving portions 50 and 51 of the operation valve 31 through the first and second pilot conduits 48 and 49 by operating the lever 46. The operation valve 31 is switched from the neutral position 31a to the first position 31b and the second position 31c, and the first and second pilot lines 48 and 49 have the first valve 31a.
Second pressure switches 52 and 53 are provided to output an electric signal to the controller 54 when pressure is generated. The above description shows only the hydraulic pump 30 on the left side in FIG.
Since the hydraulic pump 30 on the right side is also the same, the same reference numerals are used and the description thereof is omitted.

【0011】前記左側の油圧ポンプ30の吐出路30a
と右側の油圧ポンプ30の吐出路30aは第1合分流弁
55で合流・分流可能となり、前記左側の負荷圧導入路
35と右側の負荷圧導入路35は第2合分流弁56で合
流・分流可能となり、その第1・第2合分流弁55,5
6はばね力で合流位置55a,56aに押され、受圧部
57,58に供給されるパイロット圧油で分流位置55
b,56bに切換える。前記補助ポンプ47の吐出圧油
は電磁弁59で受圧部57,58に供給制御され、その
電磁弁59はばね力でドレーン位置59aに保持され、
ソレノイド60に通電されると供給位置59bに切換わ
り、そのソレノイド60には前記コントローラ54によ
り通電制御される。
Discharge passage 30a of the left hydraulic pump 30
And the discharge passage 30a of the hydraulic pump 30 on the right side can be joined / split by the first joining / dividing valve 55, and the load pressure introducing passage 35 on the left side and the load pressure introducing passage 35 on the right side are joined by the second joining / dividing valve 56. Flow splitting becomes possible, and the first and second combined split valves 55, 5
6 is pushed by the spring force to the merging positions 55a and 56a, and the pilot pressure oil supplied to the pressure receiving portions 57 and 58 is used to divide the diverging position 55.
Switch to b, 56b. The pressure oil discharged from the auxiliary pump 47 is controlled to be supplied to the pressure receiving portions 57 and 58 by an electromagnetic valve 59, and the electromagnetic valve 59 is held at the drain position 59a by a spring force.
When the solenoid 60 is energized, it is switched to the supply position 59b, and the solenoid 60 is energized by the controller 54.

【0012】前記左側の負荷圧導入路35と右側の負荷
圧導入路35は一対のチェック弁61,61を有する短
絡路62で連通し、この短絡路62にリリーフ弁63が
設けてあり、前記左側の油圧ポンプ30の吐出路30a
と右側の油圧ポンプ30の吐出路30aは一対のチェッ
ク弁64,64を有する短絡路65で連通し、この短絡
路65にアンロード弁66が接続してある。このアンロ
ード弁66はばね力と前記短絡路62の負荷圧によって
オンロード位置66aに保持され、前記短絡路65のポ
ンプ吐出圧でアンロード位置66bとなるもので、この
アンロード弁66のセット圧は前記個別のアンロード弁
42のセット圧よりも低くしてある。つまり、アンロー
ドする時のポンプ吐出圧と負荷圧の差圧が低くしてもあ
る。
The left-side load pressure introducing passage 35 and the right-side load pressure introducing passage 35 communicate with each other through a short circuit 62 having a pair of check valves 61, 61, and a relief valve 63 is provided in the short circuit 62. Discharge passage 30a of the left hydraulic pump 30
And the discharge passage 30a of the hydraulic pump 30 on the right side are communicated with each other by a short circuit 65 having a pair of check valves 64, 64, and an unload valve 66 is connected to the short circuit 65. The unload valve 66 is held at the on-load position 66a by the spring force and the load pressure of the short-circuit path 62 and becomes the unload position 66b by the pump discharge pressure of the short-circuit path 65. The pressure is lower than the set pressure of the individual unload valves 42. That is, the differential pressure between the pump discharge pressure and the load pressure when unloading may be low.

【0013】次に作動を説明する。左側の操作レバー4
6でパイロット油圧弁45を操作して第1パイロット管
路48にパイロット圧油を供給すると操作弁31の第1
受圧部50にパイロット圧油が供給されて操作弁31は
第1位置31bとなり、左側の油圧ポンプ30の吐出圧
油が左側のアクチュエータ32に供給される。このアク
チュエータ32の負荷圧は操作弁31の第1位置31b
に設けた絞りを経て負荷圧導入路35に導入される。こ
れにより、第1圧力スイッチ52が電気信号をコントロ
ーラ54に入力してコントローラ54は左側の操作弁3
1が第1位置31bとなったと判断し、それによって合
流するかしないかを予め設定したパターンに基づいて演
算し、合流する場合には電磁弁59のソレノイド60に
操作せずにドレーン位置59aとし、第1・第2合分流
弁55,56を合流位置55a,56aとして左側と右
側の油圧ポンプ30の吐出圧を合流して左側のアクチュ
エータ32に供給する。分流する場合には電磁弁59の
ソレノイド60に通電して供給位置59bとし、補助油
圧ポンプ47の吐出圧油を第1・第2合分流弁55,5
6の受圧部57,58に供給して分流位置55b,56
bとし、左側の油圧ポンプ30の吐出圧油のみを左側の
アクチュエータ32に供給する。他方、負荷圧導入路3
5の負荷圧はLS弁39に作用して油圧ポンプ30の斜
板36を傾転しポンプ吐出圧と負荷圧の差圧を設定圧力
とすると共に、その負荷圧は圧力補償弁34に作用して
圧力補償する。左側の操作レバー46を前述と反対に操
作して第2パイロット管路49にパイロット圧油を供給
した場合及び、右側の操作レバー46を操作した場合も
前述と同様になる。
Next, the operation will be described. Left operating lever 4
6 operates the pilot hydraulic valve 45 to supply pilot pressure oil to the first pilot line 48, and the first operation of the operation valve 31
The pilot pressure oil is supplied to the pressure receiving portion 50, the operation valve 31 is in the first position 31b, and the discharge pressure oil of the left hydraulic pump 30 is supplied to the left actuator 32. The load pressure of the actuator 32 is the first position 31b of the operation valve 31.
It is introduced into the load pressure introducing passage 35 through the throttle provided in the. As a result, the first pressure switch 52 inputs an electric signal to the controller 54, and the controller 54 causes the left operation valve 3 to operate.
1 is determined to be the first position 31b, and whether or not to join the first position 31b is calculated based on a preset pattern. , The first and second merging / dividing valves 55 and 56 are set as merging positions 55a and 56a, and the discharge pressures of the left and right hydraulic pumps 30 are merged and supplied to the left actuator 32. When the flow is divided, the solenoid 60 of the solenoid valve 59 is energized to the supply position 59b, and the pressure oil discharged from the auxiliary hydraulic pump 47 is divided into the first and second combined flow dividing valves 55 and 5.
6 to supply pressure to the pressure receiving portions 57 and 58, and the flow dividing positions 55b and 56
b, only the pressure oil discharged from the left hydraulic pump 30 is supplied to the left actuator 32. On the other hand, load pressure introduction path 3
The load pressure of 5 acts on the LS valve 39 to tilt the swash plate 36 of the hydraulic pump 30 to set the differential pressure between the pump discharge pressure and the load pressure as the set pressure, and the load pressure acts on the pressure compensating valve 34. To compensate the pressure. The same applies to the case where the left operation lever 46 is operated in the opposite manner to supply pilot pressure oil to the second pilot conduit 49 and the case where the right operation lever 46 is operated.

【0014】次に合流時のアンロード弁42のアンロー
ド動作(油圧ホンプの最高ポンプ吐出圧の制限動作)を
説明する。前述の状態で左側のアクチュエータ32がス
トロークエンドとなった時、又はアクチュエータ32の
負荷が非常に大きく、負荷圧が非常に高い時には、その
負荷圧はチェック弁61より短絡路62に流入してリリ
ーフ弁63よりリリーフする。左右側の油圧ポンプ3
0,30のポンプ吐出圧油はチェック弁64より短絡路
65に流入してアンロード弁66の入口側に流入すると
同時にアンロード弁66に作用する。これにより、アン
ロード弁66に作用する負荷圧がポンプ吐出圧よりも低
下してアンロード弁66がアンロード位置66bとなっ
て左右側の油圧ポンプ30の吐出圧の一部がアンロード
する。
Next, the unloading operation of the unloading valve 42 at the time of merging (the operation of limiting the maximum pump discharge pressure of the hydraulic pump) will be described. When the left actuator 32 reaches the stroke end in the above-mentioned state, or when the load of the actuator 32 is very large and the load pressure is very high, the load pressure flows from the check valve 61 into the short circuit path 62 and the relief is performed. Relief from valve 63. Hydraulic pump 3 on the left and right
The pump discharge pressure oils of 0 and 30 flow from the check valve 64 into the short-circuit path 65, flow into the inlet side of the unload valve 66, and simultaneously act on the unload valve 66. As a result, the load pressure acting on the unload valve 66 becomes lower than the pump discharge pressure, and the unload valve 66 becomes the unload position 66b, so that part of the discharge pressure of the left and right hydraulic pumps 30 is unloaded.

【0015】次に分流時のアンロード弁42のアンロー
ド動作(油圧ポンプの最高ポンプ吐出圧の制限動作)を
説明する。左側の油圧ポンプ30の吐出路30aと右側
の油圧ポンプ30の吐出路30aとが分離すると同時に
左側の負荷圧導入路35と右側の負荷圧導入路35が分
離するので、前述の左側のアクチュエータ32の負荷圧
が非常に高くなると、その負荷圧は左側のチェック弁6
1より短絡路62に流入し右側のチェック弁61で右側
の負荷圧導入路35に流れることを阻止され、その負荷
圧は前述と同様にリリーフ弁63よりリリーフする。左
側の油圧ポンプ30の吐出圧は左側のチェック弁64よ
り短絡路65に流入して右側のチェック弁64で右側の
油圧ポンプ30の吐出路30aに流れることを阻止さ
れ、そのポンプ吐出圧はアンロード66の入口側に作用
する。これにより合流時と同様にしてアンロード弁66
がアンロード位置66bとなってポンプ吐出圧の一部を
アンロードする。以上の動作において、右側の操作弁3
1が中立位置31aであると右側の負荷圧導入路35は
操作弁31の中立位置31aを経てタンクに接続される
から、その負荷圧はほぼ0kg/cm2 であり、右側の
アンロード弁42の第1受圧部43に作用する負荷圧が
ほぼ0kg/cm2 となってそのアンロード弁42は第
2受圧部44に作用する低圧のポンプ吐出圧でアンロー
ド位置42bとなり、右側の油圧ポンプ30のポンプ吐
出圧はごく低圧となる。
Next, the unloading operation of the unloading valve 42 at the time of branching (the operation of limiting the maximum pump discharge pressure of the hydraulic pump) will be described. Since the discharge passage 30a of the left hydraulic pump 30 and the discharge passage 30a of the right hydraulic pump 30 are separated, the load pressure introduction passage 35 on the left side and the load pressure introduction passage 35 on the right side are separated from each other. When the load pressure on the check valve 6 becomes too high,
From 1 to the short-circuit path 62, the check valve 61 on the right side is blocked from flowing to the load pressure introducing path 35 on the right side, and the load pressure is relieved from the relief valve 63 as described above. The discharge pressure of the left hydraulic pump 30 flows into the short circuit path 65 from the left check valve 64 and is prevented from flowing to the discharge path 30a of the right hydraulic pump 30 by the right check valve 64. It acts on the inlet side of the load 66. As a result, the unloading valve 66 can be operated in the same manner as when merging
Becomes the unloading position 66b to unload a part of the pump discharge pressure. In the above operation, the operation valve 3 on the right side
When 1 is the neutral position 31a, the load pressure introducing passage 35 on the right side is connected to the tank via the neutral position 31a of the operation valve 31, so the load pressure is about 0 kg / cm 2 , and the unload valve 42 on the right side The load pressure acting on the first pressure receiving portion 43 becomes almost 0 kg / cm 2, and the unload valve 42 is at the unload position 42b due to the low-pressure pump discharge pressure acting on the second pressure receiving portion 44, and the right hydraulic pump The pump discharge pressure of 30 is very low.

【0016】以上のように合流時でも分流時でも負荷圧
は1つのリリーフ弁63よりリリーフするから、アンロ
ード弁66がアンロードする差圧となるリリーフ流量が
リリーフ弁63のオーバライド特性により決定され、そ
の際の負荷圧が図6に示すように同一となり、最高ポン
プ吐出圧を合流時と分流時で同一にできる。また、図5
においてリリーフ弁63の流入側とタンクを小径のオリ
フィス67で連通してあるが、これは操作弁31を中立
位置31aとした時に一対のチェック弁61,61で遮
断されている短絡路62の負荷圧をすみやかにタンクに
流出するためである。
As described above, since the load pressure is relieved by one relief valve 63 during the merging or the diversion, the relief flow rate which is the differential pressure for unloading the unload valve 66 is determined by the override characteristic of the relief valve 63. At that time, the load pressure becomes the same as shown in FIG. 6, and the maximum pump discharge pressure can be made the same at the time of merging and the time of diverting. Also, FIG.
In the above, the inflow side of the relief valve 63 and the tank are communicated with each other by the small diameter orifice 67. This is because the load of the short circuit path 62 which is blocked by the pair of check valves 61, 61 when the operation valve 31 is set to the neutral position 31a. This is because the pressure quickly flows into the tank.

【0017】次に第1・第2合分流弁55,56の取付
構造について説明する。図5に示すように、操作弁本体
70は直方体形状となり、その相対向する両側面70a
間に複数のスプール71が摺動自在に嵌挿されて複数の
操作弁31を有する操作弁装置72を構成し、その操作
弁本体70の両側面70aと隣接する一側面70bに弁
ブロック73の一側面73aがボルト74で取付けてあ
る。前記弁ブロック73には図6に示すように第1スプ
ール孔75と第2スプール孔76が上下に間隔を置いて
形成され、弁ブロック73には、その第1スプール孔7
5に開口する第1・第2ポンプポート77,78及び第
1スプール孔75と第2スプール孔76を連通するパイ
ロット用ポート79、空洞部80並びに第2スプール孔
76と一側面73aに開口した第1・第2・第3ポート
81,82,83がそれぞれ形成してあり、前記第1・
第2ポンプポート77,78に図4の左側の油圧ポンプ
30と右側の油圧ポンプ30の吐出路30aがそれぞれ
接続し、その第1・第2ポンプポート77,78は操作
弁本体70の各スプール71により切換えられる各ポン
プポートに連通し、第1・第2・第3ポート81,8
2,83は操作弁本体70の第1・第2・第3油孔8
4,85,86に連通し、その第1油孔84が図4にお
ける左側の負荷圧導入路35となり、第3油孔86が右
側の負荷圧導入路35となっている。前記パイロット用
ポート79は電磁弁59で補助ポンプ47の吐出側に接
続している。前記第1スプール孔75には第1スプール
87が嵌挿され、この第1スプール87は第1バネ88
で第1・第2ポンプポート77,78を連通する合流位
置に保持され、パイロット用ポート79にパイロット圧
油が供給されると第1・第2ポンプポート77,78を
遮断する分流位置となり、これにより第1合分流弁55
を構成している。前記第2スプール孔76には第2スプ
ール89が嵌挿され、この第2スプール89には軸孔9
0と第1・第2径方向孔91,92が形成してあり、そ
の第2スプール89は第2バネ93で前記第1・第3ポ
ート81,83を軸孔90と第1・第2径方向孔91,
92で連通する合分流位置に保持され、前記パイロット
用ポート79の圧油で遮断する分流位置に押されるよう
になって第2合分流弁56を構成している。
Next, the mounting structure of the first and second combined flow valves 55, 56 will be described. As shown in FIG. 5, the operation valve main body 70 has a rectangular parallelepiped shape, and the opposite side surfaces 70a thereof face each other.
A plurality of spools 71 are slidably inserted between them to form an operating valve device 72 having a plurality of operating valves 31, and a valve block 73 is provided on one side surface 70b adjacent to both side surfaces 70a of the operating valve body 70. One side surface 73a is attached with a bolt 74. As shown in FIG. 6, a first spool hole 75 and a second spool hole 76 are vertically spaced apart from each other in the valve block 73, and the valve block 73 has a first spool hole 7 formed therein.
5, the first and second pump ports 77 and 78, the pilot port 79 that communicates the first spool hole 75 and the second spool hole 76, the cavity 80, the second spool hole 76, and the one side surface 73a. First, second, and third ports 81, 82, and 83 are formed, respectively, and the first and second ports are formed.
The discharge passages 30a of the hydraulic pump 30 on the left side and the hydraulic pump 30 on the right side of FIG. 4 are connected to the second pump ports 77 and 78, and the first and second pump ports 77 and 78 are the spools of the operation valve body 70. The first, second, and third ports 81, 8 communicate with each pump port that is switched by 71.
2 and 83 are the first, second and third oil holes 8 of the operation valve body 70.
4, 85, 86 are communicated with each other, and the first oil hole 84 serves as the left load pressure introducing passage 35 in FIG. 4, and the third oil hole 86 serves as the right load pressure introducing passage 35. The pilot port 79 is connected to the discharge side of the auxiliary pump 47 by a solenoid valve 59. A first spool 87 is fitted in the first spool hole 75, and the first spool 87 has a first spring 88.
Is held at the merging position where the first and second pump ports 77 and 78 communicate with each other, and when pilot pressure oil is supplied to the pilot port 79, it becomes a diverting position that shuts off the first and second pump ports 77 and 78. As a result, the first combined flow valve 55
Are configured. A second spool 89 is fitted in the second spool hole 76, and the shaft hole 9 is inserted in the second spool 89.
0 and first and second radial holes 91 and 92 are formed, and the second spool 89 has a second spring 93 for connecting the first and third ports 81 and 83 to the shaft hole 90 and the first and second ports. Radial holes 91,
The second merging / dividing valve 56 is configured so that it is held at the merging / diverging position where it communicates with each other by 92 and is pushed to the diverting position where it is blocked by the pressure oil of the pilot port 79.

【0018】次に作動を説明する。電磁弁59によって
パイロット用ポート79に圧油を供給しない時には図6
に示すように第1・第2スプール87,89が第1・第
2スプリング88,89で合流位置となる。これによ
り、第1・第2ポンプポート77,78が連通して左側
の油圧ポンプ30の吐出油と右側の油圧ポンプ30の吐
出圧油が合流し、第1ポート81と第2ポート83が連
通し、左側の負荷圧導入路35と右側の負荷圧導入路3
5が連通して合流モードとなる。電磁弁59を切換えて
パイロット用ポート79に圧油を供給すると図7に示す
ように第1・第2ポンプポート77,78が遮断して左
側の油圧ポンプ30と右側の油圧ポンプ30が分離し、
第1・第3ポート81,83が遮断して左側の負荷圧導
入路35と右側の負荷圧導入路35が分離して分流モー
ドとなる。
Next, the operation will be described. When pressure oil is not supplied to the pilot port 79 by the solenoid valve 59, as shown in FIG.
As shown in (1), the first and second spools 87 and 89 are brought to the merging position by the first and second springs 88 and 89. As a result, the first and second pump ports 77 and 78 communicate with each other, and the discharge oil of the left hydraulic pump 30 and the discharge hydraulic oil of the right hydraulic pump 30 merge, and the first port 81 and the second port 83 communicate with each other. However, the load pressure introducing path 35 on the left side and the load pressure introducing path 3 on the right side
5 communicate with each other, and the merging mode is set. When the solenoid valve 59 is switched to supply pressure oil to the pilot port 79, the first and second pump ports 77 and 78 are shut off and the left hydraulic pump 30 and the right hydraulic pump 30 are separated as shown in FIG. ,
The first and third ports 81 and 83 are shut off, and the left load pressure introducing passage 35 and the right load pressure introducing passage 35 are separated from each other to be in the shunt mode.

【0019】また、第1・第2スプール87,89を第
1・第2バネ88,93で図6に示す合流位置に保持し
たので、第1又は第2ポンプポートの77,78に1つ
の油圧ポンプの吐出圧油を供給することで1ポンプ多ア
クチュエータの油圧回路に容易に変更できる。
Since the first and second spools 87 and 89 are held at the merging position shown in FIG. 6 by the first and second springs 88 and 93, one of the first and second pump ports 77 and 78 is provided. By supplying the hydraulic fluid discharged from the hydraulic pump, it is possible to easily change the hydraulic circuit to one-pump multi-actuator.

【0020】[0020]

【発明の効果】操作弁本体70に取付けた弁ブロック7
3に第1・第2スプール87,89を設けて第1・第2
合分流弁55,56としたので、全体をコンパクトにで
きるばかりか操作弁31と第1・第2合分流弁55,5
6に配管する必要がなく配管が簡単となる。
The valve block 7 mounted on the operation valve body 70
The first and second spools 87 and 89 are provided on the first and second spools.
Since the merging / dividing valves 55 and 56 are used, not only the whole can be made compact, but also the operation valve 31 and the first and second merging / dividing valves 55 and 5
Piping becomes simple because there is no need to connect to 6.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の油圧回路図である。FIG. 1 is a conventional hydraulic circuit diagram.

【図2】改良した従来の油圧回路図である。FIG. 2 is an improved conventional hydraulic circuit diagram.

【図3】本発明の実施例を示す油圧回路図である。FIG. 3 is a hydraulic circuit diagram showing an embodiment of the present invention.

【図4】リリーフ流量と負荷圧の関係を示す図表であ
る。
FIG. 4 is a chart showing the relationship between relief flow rate and load pressure.

【図5】合分流弁を取付けた操作弁の正面図である。FIG. 5 is a front view of an operation valve to which a merging / branching valve is attached.

【図6】図5の−断面図である。FIG. 6 is a − sectional view of FIG. 5;

【図7】動作説明図である。FIG. 7 is an operation explanatory diagram.

【符号の説明】 30…油圧ポンプ、30a…吐出路、31…操作弁、3
2…アクチュエータ、34…圧力補償弁、35…負荷圧
導入路、55…第1合分流弁、56…第2合分流弁、7
0…操作弁本体、73…弁ブロック、77…第1ポンプ
ポート、78…第2ポンプポート、79…パイロット用
ポート、81…第1ポート、83…第3ポート、87…
第1スプール、88…第1バネ、89…第2スプール、
93…第2バネ。
[Explanation of Codes] 30 ... Hydraulic Pump, 30a ... Discharge Path, 31 ... Operation Valve, 3
2 ... Actuator, 34 ... Pressure compensating valve, 35 ... Load pressure introducing passage, 55 ... First merging / dividing valve, 56 ... Second merging / dividing valve, 7
0 ... Operation valve main body, 73 ... Valve block, 77 ... First pump port, 78 ... Second pump port, 79 ... Pilot port, 81 ... First port, 83 ... Third port, 87 ...
1st spool, 88 ... 1st spring, 89 ... 2nd spool,
93 ... Second spring.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の油圧ポンプ30と、圧力補償弁3
4を有する複数の操作弁31と、複数の操作弁31の負
荷圧を検出して圧力補償弁34にフィードバックする複
数の負荷圧導入路35と、複数の油圧ポンプ30の吐出
路30aを合流、分離させる第1合分流弁55と、複数
の負荷圧導入路35を合流、分離させる第2合分流弁5
6を有する油圧回路において、 前記操作弁31の操作弁本体70に弁ブロック73を取
付け、この弁ブロック73に複数のポンプポートを連
通、遮断する第1スプール87を設けて前記第1合分流
弁55とし、前記弁ブロック73に複数の負荷圧導入路
35を連通、遮断する第2スプール89を設けて前記第
2合分流弁56として成る油圧回路における合分流装
置。
1. A plurality of hydraulic pumps 30 and a pressure compensating valve 3.
4, a plurality of operation valves 31 having a plurality of four, a plurality of load pressure introduction passages 35 for detecting load pressures of the plurality of operation valves 31 and feeding back to the pressure compensation valve 34, and a discharge passage 30a of a plurality of hydraulic pumps 30 are joined, The first merging / dividing valve 55 for separating and the second merging / dividing valve 5 for merging and separating the plurality of load pressure introducing passages 35.
In the hydraulic circuit having 6, the valve block 73 is attached to the operation valve body 70 of the operation valve 31, and the valve block 73 is provided with the first spool 87 for communicating and blocking a plurality of pump ports. 55, and a second spool 89 that connects and disconnects the plurality of load pressure introducing passages 35 to the valve block 73, and serves as the second merging / dividing valve 56.
【請求項2】 前記第1・第2スプール87,89を第
1・第2バネ88,93で連通位置に保持した請求項1
記載の油圧回路における合分流装置。
2. The first and second spools 87, 89 are held in a communicating position by first and second springs 88, 93.
A merging / branching device in the described hydraulic circuit.
JP04092502A 1992-04-13 1992-04-13 Combining device in hydraulic circuit Expired - Fee Related JP3109619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04092502A JP3109619B2 (en) 1992-04-13 1992-04-13 Combining device in hydraulic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04092502A JP3109619B2 (en) 1992-04-13 1992-04-13 Combining device in hydraulic circuit

Publications (2)

Publication Number Publication Date
JPH05296207A true JPH05296207A (en) 1993-11-09
JP3109619B2 JP3109619B2 (en) 2000-11-20

Family

ID=14056090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04092502A Expired - Fee Related JP3109619B2 (en) 1992-04-13 1992-04-13 Combining device in hydraulic circuit

Country Status (1)

Country Link
JP (1) JP3109619B2 (en)

Also Published As

Publication number Publication date
JP3109619B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
US6170261B1 (en) Hydraulic fluid supply system
US5259192A (en) Hydraulic circuit system
JP3491771B2 (en) Pressure compensation valve and pressure oil supply device
JP5427370B2 (en) Multiple direction switching valve with bucket translation function
US5845678A (en) Pressurized fluid supply system
US5673557A (en) Displacement control system for variable displacement type hydraulic pump
JP3625149B2 (en) Hydraulic control circuit for construction machinery
JP3142170B2 (en) Pressure relief device in hydraulic circuit
EP0913586A1 (en) Hydraulic oil supply apparatus
JPH0755031A (en) Directional control valve for flow rate assistance
JPH05296207A (en) Confluence-diffluence device in hydraulic circuit
JPH05272504A (en) Hydraulic circuit
KR0166100B1 (en) Hydraulic circuit in swingable working apparatus
US6325104B1 (en) Hydraulic circuit, precedence valve block and operation valve block assembly
JP2021038792A (en) Control valve device and hydraulic drive system including the same
JPH07279905A (en) Controller for operating cylinder
JPH04136511A (en) Control valve unit for hydraulic circuit
JP3097041B2 (en) Return flow sharing circuit for pressure oil supply device
JPH02248706A (en) Hydraulic circuit
JPH0324302A (en) Hydraulic circuit
JPH08200308A (en) Hydraulic circuit
JPH0663521B2 (en) Control valve device
KR970011610B1 (en) Load sensing type liquid pressure system in a heavy working machine
JP2000314404A (en) Hydraulic circuit
JPH04136512A (en) Control valve unit for hydraulic circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees