JPH05272504A - Hydraulic circuit - Google Patents

Hydraulic circuit

Info

Publication number
JPH05272504A
JPH05272504A JP4102547A JP10254792A JPH05272504A JP H05272504 A JPH05272504 A JP H05272504A JP 4102547 A JP4102547 A JP 4102547A JP 10254792 A JP10254792 A JP 10254792A JP H05272504 A JPH05272504 A JP H05272504A
Authority
JP
Japan
Prior art keywords
pressure
valve
load
hydraulic
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4102547A
Other languages
Japanese (ja)
Inventor
Tadao Karakama
忠雄 唐鎌
Teruo Akiyama
照夫 秋山
Mitsuharu Yamashita
光治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP4102547A priority Critical patent/JPH05272504A/en
Publication of JPH05272504A publication Critical patent/JPH05272504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To maintain the maximum pump-delivery pressures of two hydraulic pumps at the same level both at the time when the flows from the pumps are confluent and at the time when the flows are separated. CONSTITUTION:A delivery passage 30a of a left side hydraulic pump 30 and a delivery passage 30a of a right side hydraulic pump 30 are connected to each other by a first short-circuit passage 65 through a pair of check valves 64, 64, and an unloading valve 66 is provided in the first short-circuit passage 65. Load pressure introducing passages 35, 35 on the sides of the hydraulic pumps 30, 30 are connected to each other by a second short-circuit passage 62 through a pair of check valves 61, 61, and a relief valve 63 is provided in the short-circuit passage 62. Thus, when the unloading valve 66 is unloaded by the differential pressure between pump-delivery pressure in the second short- circuit passage 62 and load pressure in the first short-circuit passage 65, the relief valve 63 is operated to maintain the maximum pump-delivery pressures at the same level both at the time when the flows from both the pumps are confluent and at the time when the flows are separated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数のポンプの吐出圧
油を複数の操作弁によって複数のアクチュエータに供給
する油圧回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic circuit for supplying pressure oil discharged from a plurality of pumps to a plurality of actuators by a plurality of operating valves.

【0002】[0002]

【従来の技術】図1に示すように、第1ポンプ1と第2
ポンプ2の吐出路1a,2aを接続し、その吐出路1
a,1bに複数のクローズドセンタ型式の操作弁3を配
設し、その操作弁3とアクチュエータの接続回路4に圧
力補償弁5を設け、各アクチュエータの負荷圧における
最高圧をシャトル弁6で検出し、その負荷圧を各圧力補
償弁5のバネ室5aに供給して、その負荷圧に対応する
セット圧とする油圧回路が知られている。
2. Description of the Related Art As shown in FIG. 1, a first pump 1 and a second pump 1
The discharge paths 1a and 2a of the pump 2 are connected to each other, and the discharge path 1
A plurality of closed center type operation valves 3 are provided in a and 1b, a pressure compensation valve 5 is provided in a connection circuit 4 between the operation valve 3 and the actuator, and the maximum pressure of the load pressure of each actuator is detected by the shuttle valve 6. However, there is known a hydraulic circuit in which the load pressure is supplied to the spring chamber 5a of each pressure compensating valve 5 to obtain a set pressure corresponding to the load pressure.

【0003】かかる油圧回路であれば、複数の操作弁3
を同時操作した時に複数のアクチュエータの負荷圧にお
ける最高圧によって圧力補償弁5がセットされ、複数の
アクチェータの負荷圧が異なっても操作弁3の開口面積
比によって複数のアクチュエータに流量分配できる。
With such a hydraulic circuit, a plurality of operating valves 3
The pressure compensating valve 5 is set by the maximum pressure among the load pressures of the plurality of actuators when the actuators are simultaneously operated, and even if the load pressures of the plurality of actuators are different, the flow rates can be distributed to the plurality of actuators by the opening area ratio of the operation valve 3.

【0004】かかる油圧回路であると、複数のアクチュ
エータを同時作動する場合に圧力補償弁は高い方の負荷
圧でセットされポンプ吐出圧力はそのセット圧より若干
高い高圧となるので、アクチュエータの負荷圧の差が大
きい場合には負荷圧の小さいアクチュエータ側の圧力補
償弁における圧力損失が大となり、第1・第2ポンプ
1,2を駆動する原動機の損失馬力が大となると共に、
作動油の温度が高くなって作動油の劣化を早めることに
なる。例えば、パワーショベルのブームシリンダと旋回
モータに圧油を供給してブーム下降、上部車体旋回する
場合に、ブームは自重降下するから負荷圧は低圧である
が、旋回モータは上部車体を起動・加速するため負荷圧
が高圧となり、その時のポンプ吐出圧はセット圧より若
干高い高圧となるので、ブームシリンダ側の圧力補償弁
では高圧−低圧の分が圧力損失となり、前述のように負
荷圧の差が大であるから圧力損失が大となってしまう。
このことは、アームシリンダでアームを上昇させバケッ
トシリンダでバケットをダンプして土砂を排出する場合
に、アームシリンダの負荷圧が高く、バケットシリンダ
の負荷圧が低くなるから同様である。
In such a hydraulic circuit, when a plurality of actuators are simultaneously operated, the pressure compensating valve is set at a higher load pressure and the pump discharge pressure becomes a pressure slightly higher than the set pressure. When the difference between the two is large, the pressure loss in the pressure compensating valve on the actuator side where the load pressure is small becomes large, and the loss horsepower of the prime mover driving the first and second pumps 1 and 2 becomes large, and
The temperature of the hydraulic oil rises, which accelerates the deterioration of the hydraulic oil. For example, when supplying pressure oil to the boom cylinder and swing motor of a power shovel to lower the boom and swing the upper body, the load pressure is low because the boom descends by its own weight, but the swing motor starts and accelerates the upper body. Therefore, the load pressure becomes high, and the pump discharge pressure at that time is slightly higher than the set pressure.Therefore, at the boom cylinder side pressure compensating valve, the high pressure-low pressure component causes a pressure loss. Is large, the pressure loss will be large.
This is the same as when the arm cylinder raises the arm and the bucket cylinder dumps the bucket to discharge the earth and sand, the load pressure of the arm cylinder is high and the load pressure of the bucket cylinder is low.

【0005】このことを解消する油圧回路として特開平
号公報に示すものが知られている。すなわち、図2に
示すように第1ポンプ1の吐出路1aと第2ポンプ2の
吐出路2aを合分流弁16で接続し、第1ポンプ1の吐
出路1aに接続した操作弁3の圧力補償弁5の負荷圧導
入路17と第2ポンプ2の吐出路2aに接続した操作弁
3の圧力補償弁5の負荷圧導入路18を合分流弁19で
接続した油圧回路であり、これによって、合分流弁1
6,19によって各吐出路1a,1b及び各負荷圧導入
路17,18をそれぞれ独立させ、一方の吐出路1aに
接続したアクチュエータ10,11,12と他方の吐出
路2aに接続したアクチュエータ13,14,15を同
時操作した時に、それぞれのアクチュエータの負荷圧で
圧力補償弁をセットして、圧力損失を低減できるように
できる。
As a hydraulic circuit for solving this problem, there is known a hydraulic circuit disclosed in Japanese Patent Laid-Open Publication No. That is, as shown in FIG. 2, the discharge passage 1a of the first pump 1 and the discharge passage 2a of the second pump 2 are connected by the merging / dividing valve 16, and the pressure of the operation valve 3 connected to the discharge passage 1a of the first pump 1 is increased. This is a hydraulic circuit in which the load pressure introducing passage 17 of the compensating valve 5 and the load pressure introducing passage 18 of the pressure compensating valve 5 of the operation valve 3 connected to the discharge passage 2a of the second pump 2 are connected by a diverging valve 19. , Junction valve 1
The respective discharge passages 1a, 1b and the respective load pressure introduction passages 17, 18 are made independent by 6, 19 and the actuators 10, 11, 12 connected to one discharge passage 1a and the actuator 13, connected to the other discharge passage 2a, When 14 and 15 are operated at the same time, the pressure compensation valve can be set by the load pressure of each actuator to reduce the pressure loss.

【0006】[0006]

【発明が解決しようとする課題】かかる油圧回路におい
ては、油圧ポンプ、回路、アクチュエータなどの保護の
ために油圧ポンプの最高ポンプ吐出圧を制限する必要が
ある。しかしながら、かかる油圧回路においてはポンプ
吐出圧P1 を負荷圧PLSに基づいてその負荷圧より若干
高い圧力に制御しているので、ただ単に油圧ポンプの吐
出路にリリーフ弁を設けたのでは前述の油圧回路として
の機能を発揮できないことがある。これを解消するため
に例えば図3に示すように、第1・第2油圧ポンプ1,
2の吐出路1a,2aにアンロード弁20をそれぞれ設
け、各負荷圧導入路17,18にリリーフ弁21をそれ
ぞれ設け、前記アンロード弁20を負荷圧PLSよりもポ
ンプ吐出圧P1 が前述の設定圧力以上高くなった時にア
ンロードする構成とする油圧回路が考えられる。
In such a hydraulic circuit, it is necessary to limit the maximum pump discharge pressure of the hydraulic pump in order to protect the hydraulic pump, the circuit, the actuator and the like. However, in such a hydraulic circuit, the pump discharge pressure P 1 is controlled to a pressure slightly higher than the load pressure P LS on the basis of the load pressure P LS, and therefore, the relief valve is simply provided in the discharge passage of the hydraulic pump as described above. May not be able to exert its function as a hydraulic circuit. In order to eliminate this, for example, as shown in FIG. 3, the first and second hydraulic pumps 1,
The unloading valve 20 is provided in each of the two discharge passages 1a and 2a, the relief valve 21 is provided in each of the load pressure introducing passages 17 and 18, and the pump discharge pressure P 1 is set to be higher than the load pressure P LS. A hydraulic circuit configured to unload when it becomes higher than the set pressure described above is conceivable.

【0007】かかる油圧回路であれば、負荷圧導入路1
7,18の負荷圧PLSがリリーフ弁21の設定圧力以上
となるとリリーフ弁21がリリーフ作動して負荷圧PLS
の一部がタンクに流出し、その負荷圧PLSが低下してポ
ンプ吐出圧P1 との差圧が前記設定圧力以上となるとア
ンロード弁20がアンロードしてポンプ吐出圧P1 の一
部がタンクに流出して最高ポンプ吐出圧を制限できる。
With such a hydraulic circuit, the load pressure introducing path 1
When the load pressure P LS of Nos. 7 and 18 becomes equal to or higher than the set pressure of the relief valve 21, the relief valve 21 operates to perform the relief pressure P LS.
Part of the pump discharges to the tank, the load pressure P LS decreases, and when the pressure difference from the pump discharge pressure P 1 becomes equal to or higher than the set pressure, the unload valve 20 unloads the pump discharge pressure P 1 The part can flow out to the tank to limit the maximum pump discharge pressure.

【0008】図3に示す油圧回路であると第1・第2油
圧ポンプ1,2の吐出圧油を合流してアクチュエータに
供給する合流時と第1又は第2油圧ポンプ1,2の吐出
圧油を単独にアクチュエータに供給する分流時で油圧ポ
ンプの最高ポンプ吐出圧が異なってしまう。
In the hydraulic circuit shown in FIG. 3, when the discharge pressure oil of the first and second hydraulic pumps 1 and 2 merges and is supplied to the actuator, the discharge pressure of the first or second hydraulic pump 1 or 2 The maximum pump discharge pressure of the hydraulic pump will differ when the oil is split into the actuators.

【0009】すなわち、合流時には第1・第2負荷圧導
入路17,18が接続するので、負荷圧PLSがリリーフ
弁21の設定圧力以上となると2つのリリーフ弁21,
21から負荷圧の一部がタンクに流出し、分流時には第
1・第2負荷圧導入路17,18が分離するので、負荷
圧がリリーフ弁21の設定圧力以上となると1つのリリ
ーフ弁21のみから負荷圧の一部がタンクに流出するの
で、その負荷圧に対するリリーフ流量は図4に示すよう
になり、アンロード弁21がアンロードする差圧(ポン
プ吐出圧−負荷圧)となる際の負荷圧が異なる。例え
ば、合流時には2つのリリーフ弁21からリリーフする
からリリーフ流量が図4のaに示すように多く低い負荷
圧PLS1 で所定のリリーフ流量となるが、分流時にはリ
リーフ流量がそのリリーフ弁21のオーバライド特性
(図4のb)によって決定されるから前述のリリーフ流
量となる時の負荷圧PLS2 が高圧となる。
That is, since the first and second load pressure introduction passages 17 and 18 are connected at the time of merging, when the load pressure P LS becomes equal to or higher than the set pressure of the relief valve 21, the two relief valves 21 and
A part of the load pressure flows from the tank 21 to the tank, and the first and second load pressure introducing passages 17 and 18 are separated at the time of branching. Therefore, when the load pressure exceeds the set pressure of the relief valve 21, only one relief valve 21 is provided. Since a part of the load pressure flows out of the tank to the tank, the relief flow rate with respect to the load pressure is as shown in FIG. 4, and when the unloading valve 21 has a differential pressure (pump discharge pressure-load pressure). Load pressure is different. For example, since two relief valves 21 are relieved at the time of merging, the relief flow rate becomes large at a low load pressure P LS1 as shown in FIG. Since it is determined by the characteristics (b in FIG. 4), the load pressure P LS2 when the relief flow rate is the above becomes high pressure.

【0010】これにより、合流時の油圧ポンプの最高ポ
ンプ吐出圧はPLS1 +差圧となり、分流時の油圧ポンプ
の最高ポンプの吐出圧はPLS2 +差圧となってPLS2
LS1 だけ分流時の最高ポンプ吐出圧が高くなる。
As a result, the maximum pump discharge pressure of the hydraulic pump at the time of merging becomes P LS1 + differential pressure, and the maximum pump discharge pressure of the hydraulic pump at the time of shunt becomes P LS2 + differential pressure, P LS2
The maximum pump discharge pressure when splitting is increased by P LS1 .

【0011】このために、油圧回路設計時の定格圧力を
合流時の最高ポンプ吐出圧とすると分流時に定格圧力を
こえることになって油圧ポンプ、回路、アクチュエータ
等の油圧機器の寿命に影響を及ぼし、前述の定格圧力を
分流時の最高ポンプ吐出圧とすると合流時に定格圧力に
達しないためアクチュエータの能力が低下する。
For this reason, if the rated pressure in the hydraulic circuit design is taken as the maximum pump discharge pressure at the time of merging, the rated pressure will be exceeded during shunting, which will affect the life of hydraulic equipment such as hydraulic pumps, circuits, and actuators. If the rated pressure described above is used as the maximum pump discharge pressure during diverting, the rated pressure will not be reached at the time of merging, and the capacity of the actuator will decrease.

【0012】そこで、本発明は前述の課題を解決できる
ようにした油圧回路を提供することを目的とする。
Therefore, an object of the present invention is to provide a hydraulic circuit which can solve the above-mentioned problems.

【0013】[0013]

【課題を解決するための手段】複数の油圧ポンプ30
と、圧力補償弁34を有する複数の操作弁31と、複数
の操作弁31の負荷圧を検出して圧力補償弁34にフィ
ードバックする複数の負荷圧導入路35と、複数の油圧
ポンプ30の吐出路30aを合流、分離させる第1合分
流弁55と、複数の負荷圧導入路35を合流、分離させ
る第2合分流弁56を有する油圧回路において、前記複
数の油圧ポンプ30a吐出路30aをチェック弁64を
介して連通する第1の短絡路65と、前記複数の負荷圧
導入路35をチェック弁61を介して連通する第2の短
絡路62と、この第2の短絡路62に設けたリリーフ弁
63と、前記第1の短絡路65に設けられてそのポンプ
吐出圧と前記第2の短絡路62の負荷圧の差圧でアンロ
ードするアンロード弁66を設けて成る油圧回路。
Means for Solving the Problems A plurality of hydraulic pumps 30
A plurality of operating valves 31 having pressure compensating valves 34, a plurality of load pressure introducing passages 35 for detecting load pressures of the plurality of operating valves 31 and feeding back to the pressure compensating valves 34, and discharges of a plurality of hydraulic pumps 30. In a hydraulic circuit having a first merging / branching valve 55 for merging and separating the passage 30a and a second merging / branching valve 56 for merging and separating the plurality of load pressure introduction passages 35, the plurality of hydraulic pumps 30a discharge passages 30a are checked. The first short circuit path 65 communicating with the valve 64, the second short circuit path 62 communicating the plurality of load pressure introducing paths 35 with the check valve 61, and the second short circuit path 62 are provided. A hydraulic circuit comprising a relief valve 63 and an unload valve 66 provided in the first short circuit 65 for unloading by a differential pressure between the pump discharge pressure and the load pressure of the second short circuit 62.

【0014】[0014]

【作 用】合流時でも分流時でも1つのリリーフ弁6
3がリリーフし、それによって1つのアンロード弁66
がアンロードして最高ポンプ吐出圧を制限しているか
ら、最高ポンプ吐出圧を合流時と分流時で同一にでき
る。
[Operation] One relief valve 6 for both merging and branching
3 is relieved, which results in one unloading valve 66
Limits the maximum pump discharge pressure by unloading, so that the maximum pump discharge pressure can be made the same when merging and branching.

【0015】[0015]

【実 施 例】図5に示すように、油圧ポンプ30の吐
出路30aには操作弁31が設けられ、この操作弁31
とアクチュエータ32を接続する回路33に圧力補償弁
34が設けてあり、そのアクチュエータ32の負荷圧は
操作弁30内の絞りを通して負荷圧導入路35に導入さ
れる。前記油圧ポンプ30の斜板36は小径ピストン3
7で容量大方向に傾転され、大径ピストン38で容量小
方向に傾転されると共に、その小径ピストン37の小径
受圧室37aは前記吐出路30aに接続してポンプ吐出
圧が供給され、前記大径ピストン38の大径受圧室38
aはLS弁39で吐出路30aとタンク40に連通制御
される。前記LS弁39は負荷圧とばね41でドレーン
位置Aに押され、ポンプ吐出圧で供給位置Bに押される
ようになって、ポンプ吐出圧を負荷圧よりも若干高い圧
力、例えば20kg/cm2 となるように斜板36を傾
転動作する。前記油圧ポンプ30の吐出路30aにはア
ンロード弁42が設けられ、このアンロード弁42はば
ねと第1受圧部43に供給される負荷圧でオンロード位
置42aに押され、第2受圧部44に供給されるポンプ
吐出圧でアンロード位置42bに押され、ポンプ吐出圧
と負荷圧の差圧が設定圧力、例えば30kg/cm2
上となるとアンロード位置42bとなるもので、複数の
油圧ポンプの個別のポンプ吐出圧と負荷圧のみによって
作動する。パイロット油圧弁45はレバー46を操作す
ることで補助ポンプ47の吐出圧油を第1・第2パイロ
ット管路48,49で操作弁31の第1・第2受圧部5
0,51に供給して操作弁31を中立位置31aから第
1位置31b、第2位置31cに切換えるものであり、
この第1・第2パイロット管路48,49には第1・第
2圧力スイッチ52,53が設けられて圧力が発生する
と電気信号をコントローラ54に出力する。以上の説明
は図5において左側の油圧ポンプ30のみを示し、右側
の油圧ポンプ30も同様であるから符号を同一として説
明を省略する。
[Examples] As shown in FIG. 5, an operating valve 31 is provided in the discharge passage 30a of the hydraulic pump 30.
A pressure compensating valve 34 is provided in a circuit 33 connecting the actuator 32 and the actuator 32, and the load pressure of the actuator 32 is introduced into the load pressure introducing passage 35 through the throttle in the operation valve 30. The swash plate 36 of the hydraulic pump 30 is a small-diameter piston 3
7, the large-diameter piston 38 tilts in the large-capacity direction, and the large-diameter piston 38 tilts in the small-capacity direction. The small-diameter pressure receiving chamber 37a of the small-diameter piston 37 is connected to the discharge passage 30a to supply pump discharge pressure. Large-diameter pressure receiving chamber 38 of the large-diameter piston 38
The a is controlled by the LS valve 39 so as to communicate with the discharge passage 30a and the tank 40. The LS valve 39 is pushed to the drain position A by the load pressure and the spring 41, and is pushed to the supply position B by the pump discharge pressure, so that the pump discharge pressure is slightly higher than the load pressure, for example, 20 kg / cm 2. The swash plate 36 is tilted so that An unloading valve 42 is provided in the discharge passage 30a of the hydraulic pump 30, and the unloading valve 42 is pushed to the on-load position 42a by the load pressure supplied to the spring and the first pressure receiving portion 43, and the second pressure receiving portion 42a. It is pushed to the unload position 42b by the pump discharge pressure supplied to the pump 44, and becomes the unload position 42b when the pressure difference between the pump discharge pressure and the load pressure reaches a set pressure, for example, 30 kg / cm 2 or more. Operates only on the individual pump discharge and load pressures of the pump. The pilot hydraulic valve 45 operates the lever 46 so that the pressure oil discharged from the auxiliary pump 47 is transferred to the first and second pressure receiving portions 5 of the operation valve 31 through the first and second pilot conduits 48 and 49.
0, 51 to switch the operating valve 31 from the neutral position 31a to the first position 31b and the second position 31c.
First and second pressure switches 52 and 53 are provided in the first and second pilot lines 48 and 49, and when pressure is generated, an electric signal is output to the controller 54. In the above description, only the hydraulic pump 30 on the left side in FIG. 5 is shown, and the hydraulic pump 30 on the right side is the same, so the same reference numerals are used and the description thereof is omitted.

【0016】前記左側の油圧ポンプ30の吐出路30a
と右側の油圧ポンプ30の吐出路30aは第1合分流弁
55で合流・分流可能となり、前記左側の負荷圧導入路
35と右側の負荷圧導入路35は第2合分流弁56で合
流・分流可能となり、その第1・第2合分流弁55,5
6はばね力で合流位置55a,56aに押され、受圧部
57,58に供給されるパイロット圧油で分流位置55
b,56bに切換える。前記補助ポンプ47の吐出圧油
は電磁弁59で受圧部57,58に供給制御され、その
電磁弁59はばね力でドレーン位置59aに保持され、
ソレノイド60に通電されると供給位置59bに切換わ
り、そのソレノイド60には前記コントローラ54によ
り通電制御される。
Discharge passage 30a of the left hydraulic pump 30
And the discharge passage 30a of the hydraulic pump 30 on the right side can be joined / split by the first joining / dividing valve 55, and the load pressure introducing passage 35 on the left side and the load pressure introducing passage 35 on the right side are joined by the second joining / dividing valve 56. Flow splitting becomes possible, and the first and second combined split valves 55, 5
6 is pushed by the spring force to the merging positions 55a and 56a, and the pilot pressure oil supplied to the pressure receiving portions 57 and 58 is used to divide the diverging position 55.
Switch to b, 56b. The pressure oil discharged from the auxiliary pump 47 is controlled to be supplied to the pressure receiving portions 57 and 58 by an electromagnetic valve 59, and the electromagnetic valve 59 is held at the drain position 59a by a spring force.
When the solenoid 60 is energized, it is switched to the supply position 59b, and the solenoid 60 is energized by the controller 54.

【0017】前記左側の負荷圧導入路35と右側の負荷
圧導入路35は一対のチェック弁61,61を有する短
絡路62で連通し、この短絡路62にリリーフ弁63が
設けてあり、前記左側の油圧ポンプ30の吐出路30a
と右側の油圧ポンプ30の吐出路30aは一対のチェッ
ク弁64,64を有する短絡路65で連通し、この短絡
路65にアンロード弁66が接続してある。このアンロ
ード弁66はばね力と前記短絡路62の負荷圧によって
オンロード位置66aに保持され、前記短絡路65のポ
ンプ吐出圧でアンロード位置66bとなるもので、この
アンロード弁66のセット圧は前記個別のアンロード弁
42のセット圧よりも低くしてある。つまり、アンロー
ドする時のポンプ吐出圧と負荷圧の差圧が低くしてもあ
る。
The left-side load pressure introducing passage 35 and the right-side load pressure introducing passage 35 communicate with each other through a short circuit 62 having a pair of check valves 61, 61, and a relief valve 63 is provided in the short circuit 62. Discharge passage 30a of the left hydraulic pump 30
And the discharge passage 30a of the hydraulic pump 30 on the right side are communicated with each other by a short circuit 65 having a pair of check valves 64, 64, and an unload valve 66 is connected to the short circuit 65. The unload valve 66 is held at the on-load position 66a by the spring force and the load pressure of the short-circuit path 62 and becomes the unload position 66b by the pump discharge pressure of the short-circuit path 65. The pressure is lower than the set pressure of the individual unload valves 42. That is, the differential pressure between the pump discharge pressure and the load pressure when unloading may be low.

【0018】次に作動を説明する。左側の操作レバー4
6でパイロット油圧弁45を操作して第1パイロット管
路48にパイロット圧油を供給すると操作弁31の第1
受圧部50にパイロット圧油が供給されて操作弁31は
第1位置31bとなり、左側の油圧ポンプ30の吐出圧
油が左側のアクチュエータ32に供給される。このアク
チュエータ32の負荷圧は操作弁31の第1位置31b
に設けた絞りを経て負荷圧導入路35に導入される。こ
れにより、第1圧力スイッチ52が電気信号をコントロ
ーラ54に入力してコントローラ54は左側の操作弁3
1が第1位置31bとなったと判断し、それによって合
流するかしないかを予め設定したパターンに基づいて演
算し、合流する場合には電磁弁59のソレノイド60に
操作せずにドレーン位置59aとし、第1・第2合分流
弁55,56を合流位置55a,56aとして左側と右
側の油圧ポンプ30の吐出圧を合流して左側のアクチュ
エータ32に供給する。分流する場合には電磁弁59の
ソレノイド60に通電して供給位置59bとし、補助油
圧ポンプ47の吐出圧油を第1・第2合分流弁55,5
6の受圧部57,58に供給して分流位置55b,56
bとし、左側の油圧ポンプ30の吐出圧油のみを左側の
アクチュエータ32に供給する。他方、負荷圧導入路3
5の負荷圧はLS弁39に作用して油圧ポンプ30の斜
板36を傾転しポンプ吐出圧と負荷圧の差圧を設定圧力
とすると共に、その負荷圧は圧力補償弁34に作用して
圧力補償する。左側の操作レバー46を前述と反対に操
作して第2パイロット管路49にパイロット圧油を供給
した場合及び、右側の操作レバー46を操作した場合も
前述と同様になる。
Next, the operation will be described. Left operating lever 4
6 operates the pilot hydraulic valve 45 to supply pilot pressure oil to the first pilot line 48, and the first operation of the operation valve 31
The pilot pressure oil is supplied to the pressure receiving portion 50, the operation valve 31 is in the first position 31b, and the discharge pressure oil of the left hydraulic pump 30 is supplied to the left actuator 32. The load pressure of the actuator 32 is the first position 31b of the operation valve 31.
It is introduced into the load pressure introducing passage 35 through the throttle provided in the. As a result, the first pressure switch 52 inputs an electric signal to the controller 54, and the controller 54 causes the left operation valve 3 to operate.
1 is determined to be the first position 31b, and whether or not to join the first position 31b is calculated based on a preset pattern. , The first and second merging / dividing valves 55 and 56 are set as merging positions 55a and 56a, and the discharge pressures of the left and right hydraulic pumps 30 are merged and supplied to the left actuator 32. When the flow is divided, the solenoid 60 of the solenoid valve 59 is energized to the supply position 59b, and the pressure oil discharged from the auxiliary hydraulic pump 47 is divided into the first and second combined flow dividing valves 55 and 5.
6 to supply pressure to the pressure receiving portions 57 and 58, and the flow dividing positions 55b and 56
b, only the pressure oil discharged from the left hydraulic pump 30 is supplied to the left actuator 32. On the other hand, load pressure introduction path 3
The load pressure of 5 acts on the LS valve 39 to tilt the swash plate 36 of the hydraulic pump 30 to set the differential pressure between the pump discharge pressure and the load pressure as the set pressure, and the load pressure acts on the pressure compensating valve 34. To compensate the pressure. The same applies to the case where the left operation lever 46 is operated in the opposite manner to supply pilot pressure oil to the second pilot conduit 49 and the case where the right operation lever 46 is operated.

【0019】次に合流時のアンロード弁42のアンロー
ド動作(油圧ホンプの最高ポンプ吐出圧の制限動作)を
説明する。前述の状態で左側のアクチュエータ32がス
トロークエンドとなった時、又はアクチュエータ32の
負荷が非常に大きく、負荷圧が非常に高い時には、その
負荷圧はチェック弁61より短絡路62に流入してリリ
ーフ弁63よりリリーフする。左右側の油圧ポンプ3
0,30のポンプ吐出圧油はチェック弁64より短絡路
65に流入してアンロード弁66の入口側に流入すると
同時にアンロード弁66に作用する。これにより、アン
ロード弁66に作用する負荷圧がポンプ吐出圧よりも低
下してアンロード弁66がアンロード位置66bとなっ
て左右側の油圧ポンプ30の吐出圧の一部がアンロード
する。
Next, the unloading operation of the unloading valve 42 at the time of merging (the operation of limiting the maximum pump discharge pressure of the hydraulic pump) will be described. When the left actuator 32 reaches the stroke end in the above-mentioned state, or when the load of the actuator 32 is very large and the load pressure is very high, the load pressure flows from the check valve 61 into the short circuit path 62 and the relief is performed. Relief from valve 63. Hydraulic pump 3 on the left and right
The pump discharge pressure oils of 0 and 30 flow from the check valve 64 into the short-circuit path 65, flow into the inlet side of the unload valve 66, and simultaneously act on the unload valve 66. As a result, the load pressure acting on the unload valve 66 becomes lower than the pump discharge pressure, and the unload valve 66 becomes the unload position 66b, so that part of the discharge pressure of the left and right hydraulic pumps 30 is unloaded.

【0020】次に分流時のアンロード弁42のアンロー
ド動作(油圧ポンプの最高ポンプ吐出圧の制限動作)を
説明する。左側の油圧ポンプ30の吐出路30aと右側
の油圧ポンプ30の吐出路30aとが分離すると同時に
左側の負荷圧導入路35と右側の負荷圧導入路35が分
離するので、前述の左側のアクチュエータ32の負荷圧
が非常に高くなると、その負荷圧は左側のチェック弁6
1より短絡路62に流入し右側のチェック弁61で右側
の負荷圧導入路35に流れることを阻止され、その負荷
圧は前述と同様にリリーフ弁63よりリリーフする。左
側の油圧ポンプ30の吐出圧は左側のチェック弁64よ
り短絡路65に流入して右側のチェック弁64で右側の
油圧ポンプ30の吐出路30aに流れることを阻止さ
れ、そのポンプ吐出圧はアンロード66の入口側に作用
する。これにより合流時と同様にしてアンロード弁66
がアンロード位置66bとなってポンプ吐出圧の一部を
アンロードする。以上の動作において、右側の操作弁3
1が中立位置31aであると右側の負荷圧導入路35は
操作弁31の中立位置31aを経てタンクに接続される
から、その負荷圧はほぼ0kg/cm2 であり、右側の
アンロード弁42の第1受圧部43に作用する負荷圧が
ほぼ0kg/cm2 となってそのアンロード弁42は第
2受圧部44に作用する低圧のポンプ吐出圧でアンロー
ド位置42bとなり、右側の油圧ポンプ30のポンプ吐
出圧はごく低圧となる。
Next, the unloading operation of the unloading valve 42 at the time of branching (the operation of limiting the maximum pump discharge pressure of the hydraulic pump) will be described. Since the discharge passage 30a of the left hydraulic pump 30 and the discharge passage 30a of the right hydraulic pump 30 are separated, the load pressure introduction passage 35 on the left side and the load pressure introduction passage 35 on the right side are separated from each other. When the load pressure on the check valve 6 becomes too high,
From 1 to the short-circuit path 62, the check valve 61 on the right side is blocked from flowing to the load pressure introducing path 35 on the right side, and the load pressure is relieved from the relief valve 63 as described above. The discharge pressure of the left hydraulic pump 30 flows into the short circuit path 65 from the left check valve 64 and is prevented from flowing to the discharge path 30a of the right hydraulic pump 30 by the right check valve 64. It acts on the inlet side of the load 66. As a result, the unloading valve 66 can be operated in the same manner as when merging
Becomes the unloading position 66b to unload a part of the pump discharge pressure. In the above operation, the operation valve 3 on the right side
When 1 is the neutral position 31a, the load pressure introducing passage 35 on the right side is connected to the tank via the neutral position 31a of the operation valve 31, so the load pressure is about 0 kg / cm 2 , and the unload valve 42 on the right side The load pressure acting on the first pressure receiving portion 43 becomes almost 0 kg / cm 2, and the unload valve 42 is at the unload position 42b due to the low-pressure pump discharge pressure acting on the second pressure receiving portion 44, and the right hydraulic pump The pump discharge pressure of 30 is very low.

【0021】以上のように合流時でも分流時でも負荷圧
は1つのリリーフ弁63よりリリーフするから、アンロ
ード弁66がアンロードする差圧となるリリーフ流量が
リリーフ弁63のオーバライド特性により決定され、そ
の際の負荷圧が図6に示すように同一となり、最高ポン
プ吐出圧を合流時と分流時で同一にできる。また、図5
においてリリーフ弁63の流入側とタンクを小径のオリ
フィス67で連通してあるが、これは操作弁31を中立
位置31aとした時に一対のチェック弁61,61で遮
断されている短絡路62の負荷圧をすみやかにタンクに
流出するためである。
As described above, since the load pressure is relieved from one relief valve 63 during the merging or the diversion, the relief flow rate which is the differential pressure for unloading the unload valve 66 is determined by the override characteristic of the relief valve 63. At that time, the load pressure becomes the same as shown in FIG. 6, and the maximum pump discharge pressure can be made the same at the time of merging and the time of diverting. Also, FIG.
In the above, the inflow side of the relief valve 63 and the tank are communicated with each other by the small diameter orifice 67. This is because the load of the short circuit path 62 which is blocked by the pair of check valves 61, 61 when the operation valve 31 is set to the neutral position 31a. This is because the pressure quickly flows into the tank.

【0022】[0022]

【発明の効果】合流時でも分流時でも1つのリリーフ弁
63がリリーフし、それによって1つのアンロード弁6
6がアンロードして最高ポンプ吐出圧を制限しているか
ら、最高ポンプ吐出圧を合流時と分流時で同一にでき
る。操作弁31を中立位置とした時に第2の短絡路62
内の負荷圧をすみやかにタンクに流出して応答性を向上
できる。
[Effect of the Invention] One relief valve 63 is relieved at the time of merging and at the time of diverting, whereby one unload valve 6 is released.
Since 6 unloads and limits the maximum pump discharge pressure, the maximum pump discharge pressure can be made the same at the time of merging and at the time of branching. When the operation valve 31 is in the neutral position, the second short circuit 62
The load pressure inside can be quickly discharged to the tank to improve responsiveness.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の油圧回路図である。FIG. 1 is a conventional hydraulic circuit diagram.

【図2】改良した従来の油圧回路図である。FIG. 2 is an improved conventional hydraulic circuit diagram.

【図3】最高ポンプ吐出圧を制限する回路図である。FIG. 3 is a circuit diagram for limiting the maximum pump discharge pressure.

【図4】リリーフ流量と負荷圧の関係を示す図表であ
る。
FIG. 4 is a chart showing the relationship between relief flow rate and load pressure.

【図5】本発明の実施例を示す油圧回路図である。FIG. 5 is a hydraulic circuit diagram showing an embodiment of the present invention.

【図6】リリーフ流量と負荷圧の関係を示す図表であ
る。
FIG. 6 is a chart showing the relationship between relief flow rate and load pressure.

【符号の説明】 30…油圧ポンプ、30a…吐出路、31…操作弁、3
2…アクチュエータ、34…圧力補償弁、35…負荷圧
導入路、42…アンロード弁、55…合分流弁、56…
合分流弁、61…チェック弁、62…第1の短絡路、6
3…リリーフ弁、64…チェック弁、65…第2の短絡
路、66…アンロード弁、67…オリフィス。
[Explanation of Codes] 30 ... Hydraulic Pump, 30a ... Discharge Path, 31 ... Operation Valve, 3
2 ... Actuator, 34 ... Pressure compensating valve, 35 ... Load pressure introducing passage, 42 ... Unload valve, 55 ... Combined / diverted valve, 56 ...
Junction flow valve, 61 ... Check valve, 62 ... First short circuit, 6
3 ... Relief valve, 64 ... Check valve, 65 ... Second short circuit, 66 ... Unload valve, 67 ... Orifice.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の油圧ポンプ30と、圧力補償弁3
4を有する複数の操作弁31と、複数の操作弁31の負
荷圧を検出して圧力補償弁34にフィードバックする複
数の負荷圧導入路35と、複数の油圧ポンプ30の吐出
路30aを合流、分離させる第1合分流弁55と、複数
の負荷圧導入路35を合流、分離させる第2合分流弁5
6を有する油圧回路において、 前記複数の油圧ポンプ30a吐出路30aをチェック弁
64を介して連通する第1の短絡路65と、前記複数の
負荷圧導入路35をチェック弁61を介して連通する第
2の短絡路62と、この第2の短絡路62に設けたリリ
ーフ弁63と、前記第1の短絡路65に設けられてその
ポンプ吐出圧と前記第2の短絡路62の負荷圧の差圧で
アンロードするアンロード弁66を設けて成る油圧回
路。
1. A plurality of hydraulic pumps 30 and a pressure compensating valve 3.
4, a plurality of operation valves 31 having a plurality of four, a plurality of load pressure introduction passages 35 for detecting load pressures of the plurality of operation valves 31 and feeding back to the pressure compensation valve 34, and a discharge passage 30a of a plurality of hydraulic pumps 30 are joined, The first merging / dividing valve 55 for separating and the second merging / dividing valve 5 for merging and separating the plurality of load pressure introducing passages 35.
In the hydraulic circuit having 6, a first short circuit path 65 that connects the plurality of hydraulic pumps 30a to the discharge path 30a via a check valve 64 and a plurality of load pressure introduction paths 35 to connect to the plurality of load pressure introduction paths 35 via a check valve 61. The second short-circuit path 62, the relief valve 63 provided in the second short-circuit path 62, the pump discharge pressure provided in the first short-circuit path 65, and the load pressure in the second short-circuit path 62. A hydraulic circuit provided with an unload valve 66 for unloading with a differential pressure.
【請求項2】 前記第2の短絡路65をオリフィス67
でタンクに接続した請求項1記載の油圧回路。
2. The second short circuit 65 is provided with an orifice 67.
The hydraulic circuit according to claim 1, wherein the hydraulic circuit is connected to the tank by.
JP4102547A 1992-03-30 1992-03-30 Hydraulic circuit Pending JPH05272504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4102547A JPH05272504A (en) 1992-03-30 1992-03-30 Hydraulic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4102547A JPH05272504A (en) 1992-03-30 1992-03-30 Hydraulic circuit

Publications (1)

Publication Number Publication Date
JPH05272504A true JPH05272504A (en) 1993-10-19

Family

ID=14330279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4102547A Pending JPH05272504A (en) 1992-03-30 1992-03-30 Hydraulic circuit

Country Status (1)

Country Link
JP (1) JPH05272504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028318A1 (en) * 1996-02-01 1997-08-07 Shin Caterpillar Mitsubishi Ltd. Hydraulic circuit for hydraulic machine
JP2013079552A (en) * 2011-10-05 2013-05-02 Komatsu Ltd Work vehicle
JP2013532260A (en) * 2010-05-28 2013-08-15 キャタピラー インコーポレイテッド Hydraulic system that shares instrument flow and steering flow

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028318A1 (en) * 1996-02-01 1997-08-07 Shin Caterpillar Mitsubishi Ltd. Hydraulic circuit for hydraulic machine
JP2013532260A (en) * 2010-05-28 2013-08-15 キャタピラー インコーポレイテッド Hydraulic system that shares instrument flow and steering flow
JP2013079552A (en) * 2011-10-05 2013-05-02 Komatsu Ltd Work vehicle

Similar Documents

Publication Publication Date Title
US6170261B1 (en) Hydraulic fluid supply system
US5481872A (en) Hydraulic circuit for operating plural actuators and its pressure compensating valve and maximum load pressure detector
US5259192A (en) Hydraulic circuit system
JP5427370B2 (en) Multiple direction switching valve with bucket translation function
JP3694355B2 (en) Hydraulic drive unit with load sensing control
JPH05288203A (en) Pressure relieving device in oil hydraulic circuit having pressure compensating valve
JPH05272504A (en) Hydraulic circuit
KR20170026553A (en) Hydraulic circuit for construction machine
JPH1061608A (en) Hydraulic driving device
JP2799045B2 (en) Hydraulic circuit for crane
JP3006777B2 (en) Load sensing hydraulic circuit
JP3109619B2 (en) Combining device in hydraulic circuit
JPH05172115A (en) Hydraulic circuit
JP3072804B2 (en) Vehicle straight-running control circuit
JPH10299706A (en) Drive system of hydraulic motor
JP2000314404A (en) Hydraulic circuit
JPH10274210A (en) Hydraulic circuit for vehicle
JPH0666303A (en) Hydraulic circuit
KR970011610B1 (en) Load sensing type liquid pressure system in a heavy working machine
US20200087891A1 (en) Hydraulic system for working machine
JPH10131237A (en) Control circuit for construction machine
JPH05272505A (en) Hydraulic circuit having pressure-compensation valve
JPH09217390A (en) Hydraulic driving device by load sensing control
JPH04136511A (en) Control valve unit for hydraulic circuit
KR100490110B1 (en) Main Control Valve for Heavy Equipment