JPH05288286A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH05288286A
JPH05288286A JP4085270A JP8527092A JPH05288286A JP H05288286 A JPH05288286 A JP H05288286A JP 4085270 A JP4085270 A JP 4085270A JP 8527092 A JP8527092 A JP 8527092A JP H05288286 A JPH05288286 A JP H05288286A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure side
passage
valve rod
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4085270A
Other languages
Japanese (ja)
Inventor
Tomomi Umeda
知巳 梅田
Ryoji Sato
良次 佐藤
Toshihiko Fukushima
敏彦 福島
Shozo Nakamura
昭三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4085270A priority Critical patent/JPH05288286A/en
Publication of JPH05288286A publication Critical patent/JPH05288286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Details Of Valves (AREA)

Abstract

PURPOSE:To reduce the vibration of piping and an expansion valve by providing in a valve rod a plurality of refrigerant circulation passages for circulating a refrigerant from a high pressure side to a low pressure side. CONSTITUTION:A refrigerant circulation passage 11 that is in parallel with a low pressure side refrigerant passage 8 and refrigerant circulation passages 10a, 10b that are in parallel with a high pressure side refrigerant passage 7, and which connect the high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8 to a valve rod 5, are provided intersectingly in the valve rod 5. A refrigerant that has flowed through the high pressure side refrigerant passage 7, passes under depressurization refrigerant circulation passages 10a, 10b besides an opening 19 between the valve rod 5 and a valve seat 9, and flows out into the low pressure side refrigerant passage 8. Even in the case of a single phase current by a liquid refrigerant alone, and even in the case of a gas-liquid two phase current in which a gas refrigerant and a liquid refrigerant coexist, and even if there is a number of air bubbles or a large air bubble mass due to the gas refrigerant, passages necessary for gas and liquid regrigerants to flow out to the low pressure side from the high pressure side can be secured. As a result, the unstable phenomenon of fluidity can be made small, and refrigerant fluidity sound can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和機および冷凍
装置に用いられている冷媒用膨張弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant expansion valve used in air conditioners and refrigeration systems.

【0002】[0002]

【従来の技術】従来の空気調和機に使用されていた膨張
弁の基本的な構造は、例えば、特開昭55−163378号公報
に記載されているように、弁本体と、弁本体に備えられ
た高圧側冷媒通路および低圧側冷媒通路と、高圧側冷媒
通路に連通する一端および低圧側冷媒通路に連通する他
端を有していてそれら両冷媒通路を互いに連通させ、高
圧側冷媒通路に対しほぼ直角な軸線をもつオリフィス
と、オリフィスの他端に関連していてオリフィスを通る
冷媒流量を調節する弁部材とを有する構造となってい
る。この時、高圧側冷媒通路と低圧側冷媒通路とを連通
する絞りの冷媒流通通路は一通路である。
2. Description of the Related Art The basic structure of an expansion valve used in a conventional air conditioner is provided with a valve body and a valve body as described in, for example, Japanese Patent Application Laid-Open No. 55-163378. The high-pressure-side refrigerant passage and the low-pressure-side refrigerant passage, and one end communicating with the high-pressure-side refrigerant passage and the other end communicating with the low-pressure-side refrigerant passage, and these two refrigerant passages are communicated with each other, the high-pressure-side refrigerant passage The structure has an orifice having an axis substantially perpendicular to the orifice and a valve member which is associated with the other end of the orifice and regulates the flow rate of the refrigerant passing through the orifice. At this time, the refrigerant flow passage of the throttle that connects the high-pressure side refrigerant passage and the low-pressure side refrigerant passage is one passage.

【0003】また、多孔の絞りを用いたものは、例え
ば、特開昭57−129371号公報や、実開昭60−69970 号公
報に記載されているように、膨張弁の主減圧手段である
絞り部の上流側の低圧側冷媒通路に、多孔の絞りを補助
減圧手段として設けた膨張弁がある。また、例えば、実
開昭55−152880号公報に記載されているように、膨張弁
の主減圧手段である絞り部に、複数の小孔を低圧側流路
内に開口するように設けた膨張弁がある。
Further, a device using a porous throttle is a main depressurizing means of an expansion valve as described in, for example, JP-A-57-129371 and JP-A-60-69970. An expansion valve provided with a porous throttle as an auxiliary pressure reducing means is provided in the low pressure side refrigerant passage upstream of the throttle. Further, for example, as described in Japanese Utility Model Laid-Open No. 55-152880, an expansion provided with a plurality of small holes in a throttle portion which is the main pressure reducing means of an expansion valve so as to open in the low pressure side passage. There is a valve.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、高
圧側冷媒通路と低圧側冷媒通路とを連通する絞りの冷媒
流通通路は一つしか設けられておらず、そのため気泡を
含む冷媒流れがその絞りに流入するような状況下では、
気泡は液と比較し、流量係数が小さい、すなわち、冷媒
流通通路を流れにくいため、絞りの入り口(冷媒流通通
路の入り口)で閉塞を発生したりする。その結果、液冷
媒の流れるところがなくなり、これが高圧側冷媒通路内
での圧力の急激な変化を生じ、膨張弁の振動,配管振
動、ならびに騒音の発生となっているが、この点に関し
て考慮はされていない。
In the above-mentioned prior art, only one refrigerant flow passage of the throttle that connects the high pressure side refrigerant passage and the low pressure side refrigerant passage is provided, and therefore the refrigerant flow containing bubbles is In the situation where it flows into the throttle,
The bubbles have a smaller flow coefficient as compared with the liquid, that is, it is difficult for the bubbles to flow in the refrigerant flow passage, so that blockage occurs at the inlet of the throttle (the inlet of the refrigerant flow passage). As a result, there is no place where the liquid refrigerant flows, and this causes a rapid change in pressure in the high-pressure side refrigerant passage, which causes vibration of the expansion valve, pipe vibration, and noise, but this point is not taken into consideration. Not not.

【0005】通常、空気調和機に設置されている膨張弁
には冷媒は液冷媒のみが流入するようになっているが、
ある運転条件下では、膨張弁に気液二相状態の冷媒が流
入することも発生する。また、主として、空気調和機内
の配管は、水平配管と、垂直配管で構成されているた
め、流れは、水平流と垂直流とが存在している。冷媒が
気液二相状態で存在している場合、垂直上昇流,垂直下
降流とも、ガス冷媒と液冷媒に速度差があるため、スラ
グ流のような間欠気泡塊のある流れ、気泡流および環状
流が流動様式の大半を占めている。そのため、気液二相
状態の垂直上昇流や垂直下降で、膨張弁の絞りに流入す
ると、絞り入口で気泡塊による閉塞が生じ、圧力変動が
発生する。さらに、この気泡閉塞が間欠的であると、圧
力変動が不規則で間欠的になり、これが冷媒流動音の発
生ならびに膨張弁の振動発生の原因となっている。
Normally, only the liquid refrigerant flows into the expansion valve installed in the air conditioner.
Under certain operating conditions, it may occur that the refrigerant in a gas-liquid two-phase state flows into the expansion valve. In addition, since the pipes in the air conditioner are mainly composed of horizontal pipes and vertical pipes, there are horizontal flows and vertical flows. When the refrigerant exists in a gas-liquid two-phase state, there is a difference in speed between the gas refrigerant and the liquid refrigerant in both the vertical ascending flow and the vertical descending flow. Annular flow dominates the flow pattern. Therefore, when flowing into the throttle of the expansion valve in a vertical upward flow or vertical downward flow in a gas-liquid two-phase state, blockage due to a bubble mass occurs at the throttle inlet, and pressure fluctuation occurs. Further, if the bubbles are intermittently blocked, the pressure fluctuations are irregular and intermittent, which causes the refrigerant flow noise and the expansion valve vibration.

【0006】本発明の目的は、多孔板の絞りを用いると
一孔板の絞りを用いた場合に比較し、冷媒流動音が低減
したという実験的発見、また、膨張弁の絞りに気液二相
流の状態で流入する場合であっても、ガス冷媒と液冷媒
とがそれぞれ連続した流動状態で流入する時は冷媒流動
音が低減するという実験的発見に基づき、現在、一般に
使用されている膨張弁の弁棒に着目して、膨張弁の基本
構造、冷媒流量の調節という機能を損なうことなく、膨
張弁の高圧側冷媒通路と低圧側冷媒通路を連通する絞り
に複数の冷媒流通通路を設け、多孔板の絞りと同様に、
膨張弁で発生している冷媒流動音を低減することにあ
る。
The object of the present invention is to experimentally find that the use of a perforated plate throttle reduces the flow noise of the refrigerant as compared with the case of using a one-hole plate throttle. Based on the experimental finding that the refrigerant flow noise is reduced when the gas refrigerant and the liquid refrigerant flow in a continuous flow state, respectively, even if they flow in a phase flow state, they are now commonly used. Focusing on the valve stem of the expansion valve, the basic structure of the expansion valve, without impairing the function of adjusting the refrigerant flow rate, a plurality of refrigerant flow passages in the throttle that connects the high pressure side refrigerant passage and the low pressure side refrigerant passage of the expansion valve. Provided, like the diaphragm of the perforated plate,
It is to reduce the refrigerant flow noise generated in the expansion valve.

【0007】また、同時に、冷媒流動による配管内の圧
力変動,膨張弁ならびに配管の振動の低減を図ることを
も目的としている。
At the same time, it is also intended to reduce the pressure fluctuation in the pipe due to the flow of the refrigerant and the vibration of the expansion valve and the pipe.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の膨張弁は、弁本体内に設けられて冷媒を流
通させる高圧側冷媒通路と低圧側冷媒通路、前記高圧側
冷媒通路に連通する弁口と前記低圧側冷媒通路に連通す
る開放口をもち、それら両冷媒通路を連通させるととも
に、冷媒を減圧膨張させるために使用する前記低圧側冷
媒通路に対して直交して設けられた絞りと、前記絞りを
通過する冷媒流量を調節するために、前記絞りの開口面
積を変えるために使用する、前記絞り内を往復運動可能
な弁棒とを備えた膨張弁において、前記弁棒内に冷媒を
前記高圧側冷媒通路から前記低圧側冷媒通路に流通させ
るための冷媒流通通路を複数個有していることを特徴と
している。
In order to achieve the above object, an expansion valve of the present invention is provided with a high pressure side refrigerant passage and a low pressure side refrigerant passage which are provided in a valve body and through which a refrigerant flows, and the high pressure side refrigerant passage. Has a valve opening communicating with the low pressure side refrigerant passage and an opening opening communicating with the low pressure side refrigerant passage, and is provided orthogonal to the low pressure side refrigerant passage used for decompressing and expanding the refrigerant while communicating both the refrigerant passages. An expansion valve having a throttle and a valve rod reciprocating in the throttle used to change the opening area of the throttle in order to adjust the flow rate of the refrigerant passing through the throttle, It is characterized in that it has a plurality of refrigerant circulation passages for circulating the refrigerant from the high pressure side refrigerant passage to the low pressure side refrigerant passage.

【0009】[0009]

【作用】上記のように構成された膨張弁において、弁棒
内に冷媒を前記高圧側冷媒通路から前記低圧側冷媒通路
に流通させるための冷媒流通通路を複数個設けたり、ま
た、弁棒の周囲壁に冷媒を前記高圧側冷媒通路から前記
低圧側冷媒通路に流通させるための溝を複数個有し、ま
た前記絞りの内壁と前記弁棒の溝部分以外の周壁とを接
触あるいは前記絞りの内壁と前記弁棒の溝部分以外の周
壁との間隔を冷媒が通過できないほど狭くしたことで、
前記溝をそれぞれ独立した冷媒流通通路とすることで、
膨張弁の高圧側冷媒通路と低圧側冷媒通路とを連通して
いる絞りの冷媒流通通路を複数有することができる。
In the expansion valve configured as described above, a plurality of refrigerant circulation passages for circulating the refrigerant from the high pressure side refrigerant passage to the low pressure side refrigerant passage may be provided in the valve rod, and The peripheral wall has a plurality of grooves for circulating the refrigerant from the high-pressure side refrigerant passage to the low-pressure side refrigerant passage, and the inner wall of the throttle and the peripheral wall other than the groove portion of the valve rod are in contact with each other or of the throttle. By making the gap between the inner wall and the peripheral wall other than the groove portion of the valve rod so narrow that the refrigerant cannot pass,
By making the grooves each independent refrigerant flow passage,
It is possible to have a plurality of throttle refrigerant flow passages communicating the high pressure side refrigerant passage and the low pressure side refrigerant passage of the expansion valve.

【0010】[0010]

【実施例】以下、本発明による膨張弁の実施例を図面を
参照して説明する。
Embodiments of the expansion valve according to the present invention will be described below with reference to the drawings.

【0011】図20に、本発明の実施例の膨張弁を用い
る冷凍サイクルの構成を示す。冷凍サイクルは、圧縮機
100,凝縮器101,本発明の膨張弁102,蒸発器
103およびこれらの機器を接続する配管104から構成
されている。冷凍サイクル内の冷媒は、圧縮機100で
圧縮されて高温高圧のガス冷媒となり、凝縮器101で
冷却されて凝縮し高圧の液冷媒となる。この冷媒が膨張
弁102に流入し減圧膨張され、室内空気温度よりも十
分に低い温度の気液二相状態の冷媒になり、蒸発器10
3で、室内空気から熱を奪いながら蒸発し、ガス冷媒と
なって再び圧縮機100に戻るサイクルで循環する。こ
うして、蒸発器で冷風を得る。
FIG. 20 shows the structure of a refrigeration cycle using the expansion valve of the embodiment of the present invention. The refrigeration cycle includes a compressor 100, a condenser 101, an expansion valve 102 of the present invention, and an evaporator.
It is composed of 103 and a pipe 104 connecting these devices. The refrigerant in the refrigeration cycle is compressed by the compressor 100 to become a high temperature and high pressure gas refrigerant, and is cooled and condensed in the condenser 101 to become a high pressure liquid refrigerant. This refrigerant flows into the expansion valve 102 and is decompressed and expanded to become a refrigerant in a gas-liquid two-phase state having a temperature sufficiently lower than the room air temperature, and the evaporator 10
At 3, the heat is evaporated from the room air while evaporating, becoming a gas refrigerant, and is circulated in the cycle of returning to the compressor 100 again. In this way, cool air is obtained in the evaporator.

【0012】図1から図11に、本発明の実施例で、膨
張弁の弁棒内に冷媒を高圧側冷媒通路から低圧側冷媒通
路に流通させるための冷媒流通通路を複数個もった膨張
弁を示す。
1 to 11, in an embodiment of the present invention, an expansion valve having a plurality of refrigerant flow passages for allowing refrigerant to flow from a high pressure side refrigerant passage to a low pressure side refrigerant passage in a valve rod of an expansion valve. Indicates.

【0013】図1は、膨張弁の断面図である。図1に示
す電子膨張弁では、弁棒5を上下に動かすための駆動系
であるモータ1,モータ1によりステータ3が送りねじ
4上を上下に移動し、また、ステータ3には弁棒5が止
め金具2によって固定されており、その結果、弁棒が上
下に移動するようになっている。また、モータ1のユニ
ットは、弁体6に接続されており、弁体6には、高圧側
冷媒通路7および低圧側冷媒通路8が接続され、高圧側
冷媒通路7と低圧側冷媒通路8とが連通されている部分
が弁座9であり、弁棒5の先端は弁座9内に配置され、
弁棒5と弁座9との隙間で冷媒の減圧と流量制御を行っ
ている。なお、弁棒5内には、高圧側冷媒通路7と低圧
側冷媒通路8とを連通する冷媒流通通路10が設けられ
ている。
FIG. 1 is a sectional view of the expansion valve. In the electronic expansion valve shown in FIG. 1, the stator 3 moves up and down on the feed screw 4 by the motor 1 and the motor 1 which are drive systems for moving the valve rod 5 up and down, and the stator 3 has the valve rod 5 Are fixed by the stoppers 2, so that the valve rod can move up and down. The unit of the motor 1 is connected to the valve body 6, and the valve body 6 is connected to the high-pressure side refrigerant passage 7 and the low-pressure side refrigerant passage 8 to connect the high-pressure side refrigerant passage 7 and the low-pressure side refrigerant passage 8 to each other. Is a valve seat 9, and the tip of the valve rod 5 is arranged in the valve seat 9.
The pressure reduction and flow rate control of the refrigerant are performed in the gap between the valve rod 5 and the valve seat 9. In addition, in the valve rod 5, a refrigerant flow passage 10 that connects the high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8 is provided.

【0014】図2は、図1において一点鎖線で囲まれた
領域Iの拡大図である。本実施例の弁棒5内には、高圧
側冷媒通路7と低圧側冷媒通路8とを連通させる高圧側
冷媒通路7と平行な冷媒流通通路10a,10bおよび
低圧側冷媒通路8と平行な冷媒流通通路11が弁棒5内
で交わって設けられている。高圧側冷媒通路7を流れて
きた冷媒は、弁棒5と弁座9との隙間19のほかに、弁
棒5内の冷媒流通通路10a,10bそれから冷媒流通
通路11を減圧されながら通過し、低圧側冷媒通路8に
流出することになる。
FIG. 2 is an enlarged view of the region I surrounded by the one-dot chain line in FIG. In the valve rod 5 of the present embodiment, the high-pressure side refrigerant passage 7 and the low-pressure side refrigerant passage 8 are communicated with each other, the high-pressure side refrigerant passage 7 is in parallel with the refrigerant flow passages 10 a and 10 b, and the low-pressure side refrigerant passage 8 is in parallel with the refrigerant. The flow passages 11 are provided so as to intersect with each other in the valve rod 5. The refrigerant flowing through the high pressure side refrigerant passage 7 passes through the refrigerant circulation passages 10a and 10b in the valve rod 5 and the refrigerant circulation passage 11 while being decompressed, in addition to the gap 19 between the valve rod 5 and the valve seat 9, It will flow out to the low-pressure side refrigerant passage 8.

【0015】図3は、図2の弁棒5を高圧側冷媒通路7
の方向から見た図である。本実施例では、高圧側冷媒通
路7に平行な冷媒流通通路は、通路10a,10b,1
0c,10dと4通路設けられており、また、低圧側冷
媒通路8に平行な冷媒流通通路11は十字型の通路とな
っており、高圧側冷媒通路7に平行な冷媒流通通路10
a,10b,10c,10dに接続されている。
In FIG. 3, the valve rod 5 shown in FIG.
It is the figure seen from the direction. In this embodiment, the refrigerant flow passages parallel to the high pressure side refrigerant passage 7 are the passages 10a, 10b, 1
0c, 10d and 4 passages are provided, and the refrigerant flow passage 11 parallel to the low pressure side refrigerant passage 8 is a cross-shaped passage, and the refrigerant flow passage 10 parallel to the high pressure side refrigerant passage 7 is provided.
It is connected to a, 10b, 10c, and 10d.

【0016】図4は、前述の膨張弁において、弁棒内部
に設けられた低圧側冷媒通路8に平行な冷媒流通通路1
1の開口面積を変化させることによって、弁棒5内の冷
媒流通通路を流れる冷媒の流量制御を可能にし、弁棒5
と弁座9との隙間19を流れる冷媒の流量制御をも可能
にした実施例である。また、図5は、図4において、二
点鎖線で囲まれた領域IIの拡大図である。低圧側冷媒通
路8と平行な冷媒流通通路11の下端が、弁座9の絞り
出口面9aよりも下に存在するように設ける。その結
果、弁棒5の上下移動に応じ、絞り出口面9aと冷媒流
通通路11の上壁との隙間Hが変化し、冷媒の総流量を
制御できる。なお、冷媒流通通路11の絞り出口面9a
よりも下側の部分を流れる冷媒は、弁棒5と弁座9との
隙間を流れる冷媒と再び合流し、隙間Wで制御され低圧
側冷媒通路8に流出することになる。
FIG. 4 shows the above-described expansion valve, in which the refrigerant flow passage 1 parallel to the low pressure side refrigerant passage 8 provided inside the valve rod.
By changing the opening area of No. 1, it becomes possible to control the flow rate of the refrigerant flowing through the refrigerant flow passage in the valve rod 5,
In this embodiment, the flow rate of the refrigerant flowing through the gap 19 between the valve seat 9 and the valve seat 9 can be controlled. Further, FIG. 5 is an enlarged view of a region II surrounded by a chain double-dashed line in FIG. The lower end of the refrigerant flow passage 11 parallel to the low-pressure side refrigerant passage 8 is provided below the throttle outlet surface 9a of the valve seat 9. As a result, the gap H between the throttle outlet surface 9a and the upper wall of the refrigerant flow passage 11 changes according to the vertical movement of the valve rod 5, and the total flow rate of the refrigerant can be controlled. In addition, the throttle outlet surface 9a of the refrigerant flow passage 11
The refrigerant flowing in the lower part of the flow path merges again with the refrigerant flowing in the clearance between the valve rod 5 and the valve seat 9, and is controlled by the clearance W to flow out to the low pressure side refrigerant passage 8.

【0017】図1から図4に示す実施例の膨張弁では、
冷媒流通通路11を弁座9よりも上流側に位置させるよ
うに、弁棒5を移動することで、高圧側冷媒通路7と低
圧側冷媒通路8とを断絶させることができる。
In the expansion valve of the embodiment shown in FIGS. 1 to 4,
The high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8 can be disconnected by moving the valve rod 5 so that the refrigerant circulation passage 11 is located upstream of the valve seat 9.

【0018】図6および図7は、弁棒内部に設けられた
高圧側冷媒通路7に平行な冷媒流通通路10を流れる冷
媒の流量制御をするための実施例である。
6 and 7 show an embodiment for controlling the flow rate of the refrigerant flowing through the refrigerant flow passage 10 parallel to the high pressure side refrigerant passage 7 provided inside the valve rod.

【0019】図6は、冷媒流通通路10の先端にテーパ
のついた制御棒16を挿入することによって、冷媒流通
通路10の開口面積を変化させ、流量制御を可能にす
る。制御棒16は、制御棒ユニット12に設けられてお
り、その先端が絞りの適当な位置に来るように、スペー
サ15で制御棒ユニット12の設置位置を調整し、固定
輪13により制御棒ユニット12を挾むようにして固定
する。なお、この時の冷媒流通通路10の通路軸線に直
角な断面は円で、断面積の大きさは一定でよい。また、
冷媒流通通路10の直径と制御棒16の最大径とを同寸
法にすることで、高圧側冷媒通路7と低圧側冷媒通路8
とを断絶させることができる。
In FIG. 6, by inserting a control rod 16 having a taper at the tip of the refrigerant flow passage 10, the opening area of the refrigerant flow passage 10 is changed and the flow rate can be controlled. The control rod 16 is provided on the control rod unit 12, and the installation position of the control rod unit 12 is adjusted by the spacer 15 so that the tip of the control rod unit 12 comes to an appropriate position of the diaphragm, and the control rod unit 12 is fixed by the fixed ring 13. Hold it in place. At this time, the cross section of the refrigerant flow passage 10 perpendicular to the passage axis is a circle, and the size of the cross sectional area may be constant. Also,
By making the diameter of the refrigerant flow passage 10 and the maximum diameter of the control rod 16 the same, the high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8
Can be cut off.

【0020】図7は、冷媒流通通路10に円筒形の制御
棒16を挿入することによって、冷媒流通通路10の開
口面積を変化させ、流量制御を可能にする。制御棒16
は、制御棒ユニット12に設けられており、その先端が
絞りの適当な位置に来るように、スペーサ15で制御棒
ユニット12の設置位置を調整し、固定輪13により制
御棒ユニット12を挾むようにして固定する。なお、こ
の時も冷媒流通通路10の通路軸線に直角な断面は円で
よいが、高圧側冷媒通路7から低圧側冷媒通路8に向い
断面積が縮小するように、管壁をテーパ状にする。
In FIG. 7, by inserting the cylindrical control rod 16 into the refrigerant flow passage 10, the opening area of the refrigerant flow passage 10 is changed and the flow rate can be controlled. Control rod 16
Is provided in the control rod unit 12, and the installation position of the control rod unit 12 is adjusted by the spacer 15 so that the tip of the control rod unit 12 is at an appropriate position of the diaphragm, and the control ring unit 12 is sandwiched by the fixed ring 13. Fix it. At this time, the cross section of the refrigerant flow passage 10 perpendicular to the passage axis may be circular, but the pipe wall is tapered so that the cross-sectional area from the high pressure side refrigerant passage 7 to the low pressure side refrigerant passage 8 is reduced. ..

【0021】また、冷媒流通通路10の最小径と制御棒
16の直径とを同寸法とすることで、高圧側冷媒通路7
と低圧側冷媒通路8とを断絶させることができる。
Further, by making the minimum diameter of the refrigerant flow passage 10 and the diameter of the control rod 16 the same, the high pressure side refrigerant passage 7
The low pressure side refrigerant passage 8 can be disconnected.

【0022】図1から図7に示す実施例の膨張弁には、
弁棒5と弁座9との隙間19が存在し、この隙間19を
冷媒が流れるが、弁座9の直径と弁棒5の直径とを同寸
法とし、冷媒は複数の冷媒流通通路10のみを流れるよ
うにしてもよい。
In the expansion valve of the embodiment shown in FIGS. 1 to 7,
There is a gap 19 between the valve rod 5 and the valve seat 9, and the refrigerant flows through this gap 19. However, the diameter of the valve seat 9 and the diameter of the valve rod 5 have the same size, and the refrigerant has only a plurality of refrigerant flow passages 10. May be allowed to flow.

【0023】図8から図11に制御棒ユニットの一実施
例を示す。
An embodiment of the control rod unit is shown in FIGS. 8 to 11.

【0024】図8は、制御棒16の先端にテーパがつい
た形状となっている。
In FIG. 8, the tip of the control rod 16 is tapered.

【0025】図9は、制御棒16が円筒の形状となって
いる。なお、図8,図9に示す、制御棒16を膨張弁に
固定するための足17は、十字形になっており、制御棒
16と膨張弁に固定するための足17とで、制御棒ユニ
ットが構成されている。
In FIG. 9, the control rod 16 has a cylindrical shape. The legs 17 for fixing the control rod 16 to the expansion valve shown in FIGS. 8 and 9 are in the shape of a cross, and the control rod 16 and the leg 17 for fixing to the expansion valve are the control rods. The unit is configured.

【0026】図10は、制御棒16を膨張弁に固定する
ための足17が、環状になっているものである。
In FIG. 10, the foot 17 for fixing the control rod 16 to the expansion valve has an annular shape.

【0027】図11は、制御棒が制御棒16a,16
b,16c,16dと複数有るもので、これは膨張弁の
弁棒に複数の冷媒流通通路が有るときに使用する。
In FIG. 11, the control rods are control rods 16a and 16a.
There are a plurality of b, 16c and 16d, which are used when the valve rod of the expansion valve has a plurality of refrigerant flow passages.

【0028】なお、図8から図11に示す制御棒ユニッ
トは、制御棒16と制御棒16を膨張弁に固定するため
の足17は、一体加工で製作されることが好ましいが、
個別に製作し接続させてもよい。また、使用する材質も
冷媒に対し耐食性,耐久性がある金属もしくはFRP等
の強化プラスチック,樹脂等を使用することが必要であ
る。
In the control rod unit shown in FIGS. 8 to 11, it is preferable that the control rod 16 and the foot 17 for fixing the control rod 16 to the expansion valve are integrally manufactured.
They may be manufactured individually and connected. Further, as the material to be used, it is necessary to use metal having corrosion resistance and durability against the refrigerant, or reinforced plastic such as FRP, resin, or the like.

【0029】図12から図19に、本発明の実施例で、
膨張弁の弁棒に冷媒を高圧側冷媒通路から低圧側冷媒通
路に流通させるための冷媒流通通路としての溝を複数個
有していることを特徴とする膨張弁を示す。
12 to 19 show an embodiment of the present invention,
An expansion valve is characterized in that a valve rod of the expansion valve has a plurality of grooves as a refrigerant circulation passage for allowing the refrigerant to flow from the high pressure side refrigerant passage to the low pressure side refrigerant passage.

【0030】図12は、膨張弁の構成を示す図である。
図12に示す電子膨張弁では、弁棒5を上下に動かすた
めの駆動系であるモータ1,モータ1によりステータ3
が送りねじ4上を上下に移動し、また、ステータ3には
弁棒5が止め金具2によって固定されており、その結
果、弁棒が上下に移動するようになっている。また、モ
ータ1のユニットは、弁体6に接続されており、弁体6
には、高圧側冷媒通路7および低圧側冷媒通路8が直交
して接続されており、高圧側冷媒通路7と低圧側冷媒通
路8とが連通されている部分が弁座9であり、弁棒5の
先端は弁座9内に配置され、弁棒5と絞り9との隙間で
冷媒の減圧と流量制御を行っている。
FIG. 12 is a diagram showing the structure of the expansion valve.
In the electronic expansion valve shown in FIG. 12, the stator 3 is constituted by the motor 1 and the motor 1 which are drive systems for moving the valve rod 5 up and down.
Moves up and down on the feed screw 4, and the valve rod 5 is fixed to the stator 3 by the stoppers 2, so that the valve rod moves up and down. The unit of the motor 1 is connected to the valve body 6 and
A high pressure side refrigerant passage 7 and a low pressure side refrigerant passage 8 are orthogonally connected to each other, and a portion where the high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8 communicate with each other is a valve seat 9 and a valve rod. The tip of 5 is arranged in the valve seat 9, and the pressure reduction and flow rate control of the refrigerant are performed in the gap between the valve rod 5 and the throttle 9.

【0031】図13は、図12において一点鎖線で囲ま
れた領域Iの拡大図である。本実施例の弁棒5の壁面上
には、高圧側冷媒通路7と低圧側冷媒通路8とを連通さ
せる、溝18が設けられている。高圧側冷媒通路7を流
れてきた冷媒は、弁棒5と弁座9との隙間である弁棒5
の壁面上の溝を減圧されながら通過し、低圧側冷媒通路
8に流出することになる。なお、この実施例に示されて
いる弁棒5の溝は、平行溝となっており、弁棒の軸方向
に対し溝の深さは一定となっている。
FIG. 13 is an enlarged view of a region I surrounded by a chain line in FIG. A groove 18 is provided on the wall surface of the valve rod 5 of this embodiment so that the high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8 communicate with each other. The refrigerant flowing through the high-pressure side refrigerant passage 7 is the valve rod 5 which is a gap between the valve rod 5 and the valve seat 9.
Will pass through the groove on the wall surface while being depressurized, and will flow out to the low pressure side refrigerant passage 8. The groove of the valve rod 5 shown in this embodiment is a parallel groove, and the depth of the groove is constant in the axial direction of the valve rod.

【0032】図14は、図12および図13の弁棒5を
高圧側冷媒通路7の方向から見た図である。本実施例で
は、弁棒5の壁面上に高圧側冷媒通路7と低圧側冷媒通
路8とを接続する冷媒流通通路としての溝18a,18
b,18c,18dが設けられている。
FIG. 14 is a view of the valve rod 5 of FIGS. 12 and 13 as seen from the direction of the high pressure side refrigerant passage 7. In the present embodiment, the grooves 18a, 18 as the refrigerant flow passages that connect the high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8 on the wall surface of the valve rod 5 are provided.
b, 18c, 18d are provided.

【0033】図15は、図13の弁棒5の断面図であ
り、弁棒5に設けられた溝の深さWと弁座9の絞り出口
面9aからの弁棒5の溝高さHを示している。この時、
弁棒5の上下移動による冷媒流量の制御は、弁棒5に設
けられた溝の深さWと弁座9の絞り出口面9aからの弁
棒5の溝高さHとの関係で設定される。すなわち、H/
W≦1となる範囲内で弁棒5を動かせば冷媒流量の制御
が可能である。例えば、弁棒5が下方へ動けば、弁座9
の絞り出口面9aからの弁棒5の溝高さHが減少し、そ
の結果、冷媒流量は減少する。なお、H/W>1となる
範囲内では、弁棒5の移動量に係らず、溝を通過する冷
媒流量は一定量となる。
FIG. 15 is a sectional view of the valve rod 5 of FIG. 13, showing the depth W of the groove formed in the valve rod 5 and the groove height H of the valve rod 5 from the throttle outlet surface 9a of the valve seat 9. Is shown. At this time,
The control of the refrigerant flow rate by the vertical movement of the valve rod 5 is set by the relationship between the depth W of the groove provided in the valve rod 5 and the groove height H of the valve rod 5 from the throttle outlet surface 9a of the valve seat 9. It That is, H /
The flow rate of the refrigerant can be controlled by moving the valve rod 5 within the range of W ≦ 1. For example, if the valve rod 5 moves downward, the valve seat 9
The groove height H of the valve rod 5 from the throttle outlet surface 9a is reduced, and as a result, the refrigerant flow rate is reduced. In the range of H / W> 1, the flow rate of the refrigerant passing through the groove is constant regardless of the movement amount of the valve rod 5.

【0034】図16は、弁棒5に溝を設けた別の実施例
である。本実施例の弁棒5の壁面上には、高圧側冷媒通
路7と低圧側冷媒通路8とを連通させる溝20が設けら
れている。高圧側冷媒通路7を流れてきた冷媒は、弁棒
5と弁座9との隙間である弁棒5の壁面上の溝20を減
圧されながら通過し、低圧側冷媒通路8に流出する。な
お、この実施例に示されている弁棒5の溝20の形状
は、テーパ溝であり、弁棒5の先端から軸方向に溝の深
さは徐々に浅くなっている。
FIG. 16 shows another embodiment in which the valve rod 5 is provided with a groove. A groove 20 is provided on the wall surface of the valve rod 5 of the present embodiment for communicating the high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8. The refrigerant flowing through the high pressure side refrigerant passage 7 passes through the groove 20 on the wall surface of the valve rod 5 which is a gap between the valve rod 5 and the valve seat 9 while being depressurized and flows out to the low pressure side refrigerant passage 8. The shape of the groove 20 of the valve rod 5 shown in this embodiment is a tapered groove, and the depth of the groove gradually decreases from the tip of the valve rod 5 in the axial direction.

【0035】図17は、図16の弁棒5を高圧側冷媒通
路7の方向から見た図である。本実施例では、弁棒5の
壁面上に高圧側冷媒通路7と低圧側冷媒通路8とを接続
する冷媒流通通路として溝20a,20b,20c,2
0dが設けられている。
FIG. 17 is a view of the valve rod 5 of FIG. 16 seen from the direction of the high pressure side refrigerant passage 7. In the present embodiment, the grooves 20a, 20b, 20c, 2 are formed as refrigerant flow passages connecting the high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8 on the wall surface of the valve rod 5.
0d is provided.

【0036】図18は、図16の弁棒5の断面図であ
り、弁棒5に設けられた溝の深さWを示している。この
時の弁棒5の上下移動による冷媒流量の制御は、弁棒5
に設けられた溝の深さWは弁棒5の先端から軸方向に溝
の深さは徐々に浅くなっているため、弁棒5の上下動だ
けで任意に行われる。例えば、弁棒5が下方へ動けば、
弁棒5に設けられた溝の深さWが減少し、その結果、冷
媒流量は減少する。
FIG. 18 is a sectional view of the valve rod 5 shown in FIG. 16, showing the depth W of the groove formed in the valve rod 5. At this time, the control of the refrigerant flow rate by the vertical movement of the valve rod 5 is performed by the valve rod 5
Since the depth W of the groove provided in the valve rod 5 is gradually shallowed in the axial direction from the tip of the valve rod 5, it can be arbitrarily performed only by the vertical movement of the valve rod 5. For example, if the valve rod 5 moves downward,
The depth W of the groove provided in the valve rod 5 is reduced, and as a result, the refrigerant flow rate is reduced.

【0037】なお、溝の形状は、前述の実施例とは逆
に、弁棒5の先端から軸方向に溝の深さを徐々に深くし
てもよい。この時、例えば、弁棒5が下方に動くと弁棒
5に設けられた溝の深さWが増加し、その結果、冷媒流
量は増加する。
The groove may have a shape in which the depth of the groove is gradually increased from the tip of the valve rod 5 in the axial direction, contrary to the above-described embodiment. At this time, for example, when the valve rod 5 moves downward, the depth W of the groove provided in the valve rod 5 increases, and as a result, the refrigerant flow rate increases.

【0038】図12から図18に示す実施例の膨張弁に
おいて、弁棒5に設けられた溝18,20を弁座9より
も上流側に位置するように、弁棒5を移動させること
で、高圧側冷媒通路7と低圧側冷媒通路8とを断絶させ
ることができる。
In the expansion valve of the embodiment shown in FIGS. 12 to 18, the valve rod 5 is moved so that the grooves 18 and 20 provided in the valve rod 5 are located upstream of the valve seat 9. The high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8 can be disconnected.

【0039】図19は、弁棒5内に、高圧側冷媒通路7
と低圧側冷媒通路8とを連通させる冷媒流通通路10、
および弁棒5の壁面上に高圧側冷媒通路7と低圧側冷媒
通路8とを連通させる溝18を設け、さらに、制御棒ユ
ニット12を設置することで、冷媒流通通路10を流れ
る冷媒の流量と共に溝18をテーパ溝とすることで、溝
を流れる冷媒の流量を制御した実施例である。なお、弁
棒5に設けられた溝18,20を弁座9よりも上流側に
位置するように、弁棒5を移動させ、かつ、冷媒流通通
路10の直径と制御棒16の最大径とを同寸法にするこ
とで、高圧側冷媒通路7と低圧側冷媒通路8とを断絶さ
せることができる。
FIG. 19 shows the high pressure side refrigerant passage 7 in the valve rod 5.
And a refrigerant flow passage 10 for communicating the low-pressure side refrigerant passage 8 with each other,
Further, by providing a groove 18 for communicating the high-pressure side refrigerant passage 7 and the low-pressure side refrigerant passage 8 on the wall surface of the valve rod 5 and further providing the control rod unit 12, the flow rate of the refrigerant flowing through the refrigerant flow passage 10 is increased. In this embodiment, the flow rate of the refrigerant flowing through the groove is controlled by using the groove 18 as a tapered groove. The valve rod 5 is moved so that the grooves 18 and 20 formed in the valve rod 5 are located upstream of the valve seat 9, and the diameter of the refrigerant flow passage 10 and the maximum diameter of the control rod 16 are With the same size, the high pressure side refrigerant passage 7 and the low pressure side refrigerant passage 8 can be disconnected.

【0040】[0040]

【発明の効果】本発明によれば、空気調和機などに使用
されている膨張弁の弁棒内に、膨張弁の高圧側冷媒通路
と低圧側冷媒通路とを連通する複数の冷媒流通通路を設
けたり、また、弁棒の周囲壁に膨張弁の高圧側冷媒通路
と低圧側冷媒通路とを連通する複数の溝を設けることに
より、液冷媒のみの単相流の場合はもとより、ガス冷媒
と液冷媒とが共存する気液二相流の場合も、絞りの冷媒
流通通路が複数設けられているため、ガス冷媒による気
泡が多数または大きな気泡塊が存在しても、ガス冷媒と
液冷媒とが高圧側冷媒通路から低圧側冷媒通路に流出す
るのに必要な冷媒流通通路をそれぞれ確保することがで
きる。
According to the present invention, a plurality of refrigerant flow passages that connect the high pressure side refrigerant passage and the low pressure side refrigerant passage of the expansion valve are provided in the valve rod of the expansion valve used in an air conditioner or the like. By providing, or by providing a plurality of grooves for communicating the high-pressure side refrigerant passage and the low-pressure side refrigerant passage of the expansion valve on the peripheral wall of the valve rod, not only in the case of a single-phase flow of only liquid refrigerant, but also as a gas refrigerant. Even in the case of a gas-liquid two-phase flow in which a liquid refrigerant coexists, since a plurality of throttle refrigerant flow passages are provided, even if there are a large number of bubbles due to the gas refrigerant or a large bubble lump, the gas refrigerant and the liquid refrigerant are It is possible to secure the respective refrigerant flow passages required for the refrigerant to flow from the high pressure side refrigerant passage to the low pressure side refrigerant passage.

【0041】その結果、ガス冷媒と液冷媒とがそれぞれ
連続した流動状態で絞りを冷媒が通過することと同じこ
とになり、気泡塊による膨張弁絞りでの閉塞発生などに
よって起こる、冷媒流動の不安定現象、例えば、圧力変
動を小さくすることができる。
As a result, it becomes the same as the refrigerant passing through the restrictor in a continuous flow state of the gas refrigerant and the liquid refrigerant, and the refrigerant flow failure caused by the occurrence of blockage in the expansion valve restrictor due to the bubble mass. Stability phenomena, eg pressure fluctuations, can be reduced.

【0042】このため、圧力変動を原因として発生する
冷媒流動音を低減でき、さらに、膨張弁や配管の振動を
低減することができる。また、耳ざわりな冷媒流動音が
低減することができるため、快適性も向上する。
Therefore, it is possible to reduce the refrigerant flow noise generated due to the pressure fluctuation, and further it is possible to reduce the vibration of the expansion valve and the piping. Further, since the noise of the flowing refrigerant can be reduced, comfort is also improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】弁棒に冷媒流通通路を設けた膨張弁の断面図。FIG. 1 is a cross-sectional view of an expansion valve in which a refrigerant flow passage is provided in a valve rod.

【図2】膨張弁絞り部の断面図。FIG. 2 is a sectional view of an expansion valve throttle portion.

【図3】図2中の弁棒を高圧側冷媒通路側から見た平面
図。
FIG. 3 is a plan view of the valve rod in FIG. 2 as viewed from the high pressure side refrigerant passage side.

【図4】流量制御冷媒流通通路を設けた膨張弁の絞り部
の断面図。
FIG. 4 is a sectional view of a throttle portion of an expansion valve provided with a flow rate control refrigerant flow passage.

【図5】流量制御冷媒流通通路を持つ弁棒の断面図。FIG. 5 is a sectional view of a valve rod having a flow rate control refrigerant flow passage.

【図6】ニードル形制御棒を用いた流量制御装置の断面
図。
FIG. 6 is a cross-sectional view of a flow rate control device using a needle type control rod.

【図7】丸棒形制御棒を用いた流量制御装置の断面図。FIG. 7 is a sectional view of a flow rate control device using a round bar type control rod.

【図8】ニードル形制御棒ユニットの斜視図。FIG. 8 is a perspective view of a needle type control rod unit.

【図9】丸棒形制御棒ユニットの斜視図。FIG. 9 is a perspective view of a round bar type control rod unit.

【図10】円形固定板を用いたユニットの斜視図。FIG. 10 is a perspective view of a unit using a circular fixing plate.

【図11】多制御棒ユニットの斜視図。FIG. 11 is a perspective view of a multi-control rod unit.

【図12】弁棒に溝を設けた膨張弁の断面図。FIG. 12 is a cross-sectional view of an expansion valve in which a valve rod has a groove.

【図13】平行溝を用いた膨張弁の絞り部の断面図。FIG. 13 is a sectional view of a throttle portion of an expansion valve using parallel grooves.

【図14】図13中の弁棒を高圧側冷媒通路から見た平
面図。
FIG. 14 is a plan view of the valve rod in FIG. 13 seen from the high pressure side refrigerant passage.

【図15】弁棒の断面図。FIG. 15 is a sectional view of a valve rod.

【図16】テーパ溝を設けた膨張弁の絞り部の断面図。FIG. 16 is a sectional view of a throttle portion of an expansion valve provided with a taper groove.

【図17】図16中の弁棒を設けた膨張弁の絞り部の断
面図。
17 is a cross-sectional view of the throttle portion of the expansion valve provided with the valve rod in FIG.

【図18】弁棒の断面図。FIG. 18 is a sectional view of a valve rod.

【図19】弁棒に冷媒流通通路と溝を設けた膨張弁の絞
り部の断面図。
FIG. 19 is a cross-sectional view of a throttle portion of an expansion valve in which a refrigerant flow passage and a groove are provided in a valve rod.

【図20】冷凍サイクルの系統図。FIG. 20 is a system diagram of a refrigeration cycle.

【符号の説明】[Explanation of symbols]

1…電子膨張弁、2…止め輪、3…スリーブ、4…送り
ねじ、5…弁棒、6…弁体、7…高圧側冷媒通路、8…
低圧側冷媒通路、9…弁座、10…冷媒流通通路、19
…弁棒と弁座との隙間。
DESCRIPTION OF SYMBOLS 1 ... Electronic expansion valve, 2 ... Retaining ring, 3 ... Sleeve, 4 ... Feed screw, 5 ... Valve rod, 6 ... Valve body, 7 ... High pressure side refrigerant passage, 8 ...
Low pressure side refrigerant passage, 9 ... Valve seat, 10 ... Refrigerant flow passage, 19
... The gap between the valve stem and the valve seat.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 昭三 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shozo Nakamura 502 Kitsudachi-cho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd. Mechanical Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】弁本体内に設けられて冷媒を流通させる高
圧側冷媒通路と低圧側冷媒通路、及び前記高圧側冷媒通
路に連通する弁口と前記低圧側冷媒通路に連通する開放
口を有し、前記両冷媒通路を連通させ、前記冷媒を減圧
膨張させるために使用する前記低圧側冷媒通路に対して
直交して設けられた絞りと、前記絞りを通過する前記冷
媒の流量を調節するために、前記絞りの開口面積を変え
るために使用する、前記絞り内を往復運動可能な弁棒と
を備えた膨張弁において、前記弁棒内に前記冷媒を前記
高圧側冷媒通路から前記低圧側冷媒通路に流通させるた
めの冷媒流通通路を複数個有していることを特徴とする
膨張弁。
1. A high-pressure side refrigerant passage and a low-pressure side refrigerant passage provided in a valve body for circulating a refrigerant, a valve port communicating with the high-pressure side refrigerant passage, and an opening port communicating with the low-pressure side refrigerant passage. In order to adjust the flow rate of the refrigerant passing through the throttle, and the throttle provided to connect the both refrigerant passages and orthogonal to the low-pressure side refrigerant passage used for decompressing and expanding the refrigerant. In an expansion valve having a valve rod capable of reciprocating in the throttle used for changing the opening area of the throttle, the refrigerant in the valve rod from the high pressure side refrigerant passage to the low pressure side refrigerant An expansion valve having a plurality of refrigerant flow passages for flowing through the passages.
JP4085270A 1992-04-07 1992-04-07 Expansion valve Pending JPH05288286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4085270A JPH05288286A (en) 1992-04-07 1992-04-07 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4085270A JPH05288286A (en) 1992-04-07 1992-04-07 Expansion valve

Publications (1)

Publication Number Publication Date
JPH05288286A true JPH05288286A (en) 1993-11-02

Family

ID=13853883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4085270A Pending JPH05288286A (en) 1992-04-07 1992-04-07 Expansion valve

Country Status (1)

Country Link
JP (1) JPH05288286A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019089A1 (en) * 2001-08-24 2003-03-06 Zexel Valeo Climate Control Corporation Refrigerating cycle
JP2005351605A (en) * 2004-06-14 2005-12-22 Daikin Ind Ltd Expansion valve and refrigeration device
US7832653B2 (en) 2005-02-28 2010-11-16 Daikin Industries, Ltd. Expansion valve having a grooved valve member and refrigeration device including the same
JP6024765B2 (en) * 2013-02-05 2016-11-16 株式会社島津製作所 Pressure control valve and control valve
KR101683219B1 (en) * 2016-02-04 2016-12-07 제이엠모터스 주식회사 Safety valve
JP2019045058A (en) * 2017-08-31 2019-03-22 株式会社前川製作所 Flow regulating valve
JP2021055711A (en) * 2019-09-27 2021-04-08 株式会社鷺宮製作所 Motor-driven valve and refrigeration cycle system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019089A1 (en) * 2001-08-24 2003-03-06 Zexel Valeo Climate Control Corporation Refrigerating cycle
JP2005351605A (en) * 2004-06-14 2005-12-22 Daikin Ind Ltd Expansion valve and refrigeration device
US7832653B2 (en) 2005-02-28 2010-11-16 Daikin Industries, Ltd. Expansion valve having a grooved valve member and refrigeration device including the same
JP6024765B2 (en) * 2013-02-05 2016-11-16 株式会社島津製作所 Pressure control valve and control valve
KR101683219B1 (en) * 2016-02-04 2016-12-07 제이엠모터스 주식회사 Safety valve
JP2019045058A (en) * 2017-08-31 2019-03-22 株式会社前川製作所 Flow regulating valve
JP2021055711A (en) * 2019-09-27 2021-04-08 株式会社鷺宮製作所 Motor-driven valve and refrigeration cycle system
JP2022176224A (en) * 2019-09-27 2022-11-25 株式会社鷺宮製作所 Motor-driven valve and refrigeration cycle system

Similar Documents

Publication Publication Date Title
EP2000757B1 (en) Refrigerating cycle apparatus
JP2003302113A (en) Ejector type decompression device
JPH07146032A (en) Expansion valve
JP2006266667A (en) Expansion valve and freezing apparatus
JP5083107B2 (en) Expansion valve and vapor compression refrigeration cycle provided with the same
JP6938401B2 (en) Flow control valve and refrigeration cycle system
US11460124B2 (en) Ejector and refrigerating system
JPH05288286A (en) Expansion valve
JP4285155B2 (en) Multistage electric expansion valve and refrigeration system
KR20080053528A (en) Expansion valve of refrigerating apparatus
JP2006284088A (en) Expansion valve and refrigerating device
JPH0626738A (en) Air conditioning apparatus
JP2003090647A (en) Expansion valve
JP5535098B2 (en) Refrigeration cycle equipment
JP3928084B2 (en) Expansion valve
CN101377239A (en) Heating power expansion valve
JP2001174076A (en) Refrigeration cycle
JP4285156B2 (en) Multistage electric expansion valve and refrigeration system
JP5643925B2 (en) Expansion valve
JP2005351605A (en) Expansion valve and refrigeration device
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
JP2006266666A (en) Expansion valve and freezing apparatus
WO2016143291A1 (en) Ejector and ejector-type refrigeration cycle
JPH10185363A (en) Refrigerant distributor for refrigerating cycle
JP4043195B2 (en) Expansion valve