JPH07146032A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH07146032A
JPH07146032A JP5296817A JP29681793A JPH07146032A JP H07146032 A JPH07146032 A JP H07146032A JP 5296817 A JP5296817 A JP 5296817A JP 29681793 A JP29681793 A JP 29681793A JP H07146032 A JPH07146032 A JP H07146032A
Authority
JP
Japan
Prior art keywords
expansion valve
refrigerant
orifice
flowing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5296817A
Other languages
Japanese (ja)
Inventor
Yuji Sugata
裕治 菅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP5296817A priority Critical patent/JPH07146032A/en
Publication of JPH07146032A publication Critical patent/JPH07146032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To reduce noises of a flowing refrigerant and vibrations of pipes by disposing porous members at the front and rear parts of an expansion valve and changing the flowing state of the refrigerant. CONSTITUTION:When the flow of a refrigerant accompanying a mass of bubbles passes through porous members 1, 1a provided at the front and rear parts of an expansion valve 105, the flowing state of the refrigerant 106 flowing to the expansion valve 105 is shifted to a flowing state that a gas phase of the refrigerant and a liquid phase thereof are incorporated with each other. Therefore, since the pulsation of a refrigerant pressure is continuously repeated at a chocked part 110, noises of the flowing refrigerant and vibrations of pipes can be reduced. Further, since noises of the flowing refrigerant are low, a comfortable space where noises give little offense to the ear can be made in a living space.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヒートポンプ式エアコ
ン等に用いられる膨張弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve used in a heat pump type air conditioner or the like.

【0002】[0002]

【従来の技術】近年、ヒートポンプ式エアコンの冷凍サ
イクルは図7に示すような回路である。すなわち、室外
熱交換器101と室内熱交換器102とに流通させる冷
媒の方向を四方弁103を転換させることにより、冷房
と暖房の切換えを行っている。冷房運転時においては、
圧縮機104から吐出された冷媒は、四方弁103を通
り室外熱交換器101で熱交換され、膨張弁105に流
入し、減圧膨張され、室内熱交換器102で熱交換さ
れ、四方弁103を介して圧縮器104へもどされる。
また、暖房運転時においては、圧縮機104から吐出さ
れた冷媒は、冷房運転時とは逆に、冷媒は四方弁103
により室内熱交換器102へ流され熱交換され、膨張弁
105に流入し減圧膨張され、室外熱交換器101で熱
交換され、四方弁103を介して圧縮器104へもどさ
れる。このように用いられる膨張弁105は、図6に示
すような膨張弁装置となっている。すなわち、膨張弁1
05の内部に冷媒106の流量を調節するための絞り部
110があり、膨張弁105の両端を室外熱交換器10
1と室内熱交換器102とに接続された配管111,1
11aがある。また、配管111,111aと絞り部1
10とに近接する部分にオリフィス部109,109a
を設けている。このように用いられる膨張弁105は、
可逆流通性を有し、流量制御並びに減圧膨張機構として
用いられる。
2. Description of the Related Art Recently, a refrigeration cycle of a heat pump type air conditioner has a circuit as shown in FIG. That is, by switching the four-way valve 103 in the direction of the refrigerant flowing through the outdoor heat exchanger 101 and the indoor heat exchanger 102, cooling and heating are switched. During cooling operation,
The refrigerant discharged from the compressor 104 passes through the four-way valve 103, is heat-exchanged by the outdoor heat exchanger 101, flows into the expansion valve 105, is decompressed and expanded, is heat-exchanged by the indoor heat exchanger 102, and is cooled by the four-way valve 103. It is returned to the compressor 104 via.
Further, during the heating operation, the refrigerant discharged from the compressor 104 is opposite to that during the cooling operation, and the refrigerant is the four-way valve 103.
Then, the heat is exchanged to the indoor heat exchanger 102, flows into the expansion valve 105, is decompressed and expanded, is heat-exchanged in the outdoor heat exchanger 101, and is returned to the compressor 104 via the four-way valve 103. The expansion valve 105 used in this way is an expansion valve device as shown in FIG. That is, the expansion valve 1
05 has a throttle portion 110 for adjusting the flow rate of the refrigerant 106, and both ends of the expansion valve 105 are connected to the outdoor heat exchanger 10.
1 and the pipes 111, 1 connected to the indoor heat exchanger 102
There is 11a. In addition, the pipes 111 and 111a and the throttle unit 1
Orifice portions 109 and 109a in the portion close to 10
Is provided. The expansion valve 105 used in this way is
It has reversible flowability and is used as a flow rate control and pressure reduction expansion mechanism.

【0003】[0003]

【発明が解決しようとする課題】このような従来の膨張
弁では、冷媒がオリフィス部を通過する際に冷媒音が発
生するため、ブチルテープ等の遮音材で、冷媒音を封じ
込めており、外部への影響を防いでおり、絞り部により
絞られオリフィス部を通過する際に発生する冷媒音を根
本から消滅させるに至ってない。また、気相、液相がそ
れぞれの状態すなわち、スラグ流のような気泡魂が突発
的に膨張弁に流入すると、膨張弁の絞り部とオリフィス
部で急激に圧力が変動するため、膨張弁前後で冷媒音及
び、配管振動が発生するという問題があった。
In such a conventional expansion valve, a refrigerant noise is generated when the refrigerant passes through the orifice portion. Therefore, the noise of the refrigerant is confined by a sound insulating material such as butyl tape. Therefore, the refrigerant noise generated when passing through the orifice portion which is throttled by the throttle portion is not completely eliminated. Also, when the gas phase and the liquid phase are in each state, that is, when a bubble soul such as a slug flow suddenly flows into the expansion valve, the pressure suddenly fluctuates in the expansion valve's throttle section and orifice section. However, there is a problem that refrigerant noise and pipe vibration occur.

【0004】本発明は、上記課題を解決するもので、膨
張弁のオリフィス部での圧力脈動を連続的にすることで
発生する冷媒音及び、配管振動を低減することを第1の
目的とする。
SUMMARY OF THE INVENTION The first object of the present invention is to solve the above problems and to reduce the refrigerant noise and pipe vibration generated by making the pressure pulsation at the orifice of the expansion valve continuous. .

【0005】第2の目的は、膨張弁前後に並列に配置し
た極細の管を数本通すことで、膨張弁絞り部での急激な
圧力変動を避けることで発生する冷媒音及び、配管振動
を低減することにある。
A second object is to pass a few fine tubes arranged in parallel in front of and behind the expansion valve to avoid a sudden pressure fluctuation in the expansion valve throttle portion, thereby avoiding refrigerant noise and piping vibration. To reduce.

【0006】第3の目的は、膨張弁前後で発生する圧力
波を減少させることで、冷媒音及び、配管振動を低減す
ることにある。
A third object is to reduce the pressure waves generated before and after the expansion valve to reduce refrigerant noise and pipe vibration.

【0007】第4の目的は、膨張弁前後での冷媒の流れ
をスムーズにし、急激な圧力変化をさけることで、冷媒
音及び、配管振動を低減することにある。
A fourth object is to smooth the flow of the refrigerant before and after the expansion valve and to avoid a sudden pressure change, thereby reducing the refrigerant noise and the pipe vibration.

【0008】第5の目的は、膨張弁オリフィス部で発生
する圧力波を吸収することで配管振動を低減することに
ある。
A fifth object is to reduce pipe vibration by absorbing the pressure wave generated in the expansion valve orifice portion.

【0009】[0009]

【課題を解決するための手段】本発明の膨張弁は上記第
1の目的を達成するために、第1の手段は、冷凍サイク
ル内に配置され、冷媒通路を絞ることによって冷媒流量
を調節する膨張弁において、前記膨張弁前後に出入りす
る冷媒流動状態を微小な気泡に細分化状態にする手段を
設けることを特徴とする膨張弁の構成とする。
In order to achieve the first object, the expansion valve of the present invention is arranged in a refrigeration cycle, and the first means regulates the refrigerant flow rate by throttling the refrigerant passage. In the expansion valve, the expansion valve is provided with a means for dividing the flow state of the refrigerant flowing in and out of the expansion valve into minute bubbles.

【0010】また、第2の目的を達成するために、第2
の手段は、冷凍サイクル内に配置され、冷媒通路を絞る
ことによって冷媒流量を調節する膨張弁において、前記
膨張弁前後に並列に配置した極細の管を数本通して配し
てなる膨張弁の構成とする。
In order to achieve the second object, the second
The means of is an expansion valve that is arranged in the refrigeration cycle and that regulates the refrigerant flow rate by throttling the refrigerant passage, in an expansion valve that has several ultrafine tubes arranged in parallel before and after the expansion valve. The configuration.

【0011】また、第3の目的を達成するために、第3
の手段は、冷凍サイクル内に配置され、冷媒通路を絞る
ことによって冷媒流量を調節する膨張弁において、前記
膨張弁前後に内径を段階的に変えて階段形状としたオリ
フィスを配してなる膨張弁の構成とする。
In order to achieve the third object, the third
In the expansion valve which is arranged in the refrigeration cycle and which regulates the refrigerant flow rate by narrowing the refrigerant passage, the expansion valve having stepwise orifices whose inner diameter is stepwise changed before and after the expansion valve. The configuration is as follows.

【0012】また、第4の目的を達成するために、第4
の手段は、冷凍サイクル内に配置され、冷媒通路を絞る
ことによって冷媒流量を調節する膨張弁において、前記
膨張弁前後に円錐形状のオリフィスを配置し、前記円錐
形状のオリフィスの内周にネジ切り溝を配してなる膨張
弁の構成とする。
In order to achieve the fourth object, the fourth
In the expansion valve, which is arranged in the refrigeration cycle and regulates the refrigerant flow rate by narrowing the refrigerant passage, conical orifices are arranged in front of and behind the expansion valve, and a thread is cut on the inner circumference of the conical orifice. The expansion valve has a groove.

【0013】また、第5の目的を達成するために、第5
の手段は、冷凍サイクル内に配置され、冷媒通路を絞る
ことによって冷媒流量を調節する膨張弁において、前記
膨張弁を多層構造のオリフィスとし、前記多層構造のオ
リフィスに防振材を配してなる膨張弁の構成とする。
Further, in order to achieve the fifth object,
In the expansion valve, which is arranged in the refrigeration cycle and adjusts the refrigerant flow rate by narrowing the refrigerant passage, the expansion valve is a multi-layered orifice, and a vibration damping material is arranged in the multi-layered orifice. Expansion valve configuration.

【0014】[0014]

【作用】本発明は上記した第1の手段の構成により、冷
媒の流動状態が、気泡魂を伴う流れであったものが、多
孔体の部材を膨張弁前後に設置することで、スラグ流の
ような気泡魂であった冷媒を多孔体を通過させること
で、気相、液相がそれぞれ微小な気泡に細分化し、これ
を完全に混じり合った流動様式に移行することができ
る。その結果、膨張弁のオリフィス部での圧力脈動を連
続的にすることができ発生する冷媒音及び、配管振動を
低減することができる。
According to the present invention, by the constitution of the above-mentioned first means, the flow state of the refrigerant is a flow accompanied by bubbles, but by installing the porous member before and after the expansion valve, By passing the refrigerant, which was such a bubble soul, through the porous body, the gas phase and the liquid phase are each subdivided into minute bubbles, which can be transferred to a completely mixed flow mode. As a result, the pressure pulsation at the orifice of the expansion valve can be made continuous, and the generated refrigerant noise and pipe vibration can be reduced.

【0015】また、第2の手段の構成により、冷媒の流
動状態が、気泡魂を伴う流れであったものが、膨張弁前
後に並列に配置した極細の管を数本通すことで、膨張弁
絞り部での急激な圧力変動を避けることができ発生する
冷媒音及び、配管振動を低減することができる。
Further, according to the structure of the second means, the flow state of the refrigerant is a flow accompanied by bubbles, but the expansion valve is passed by passing several fine tubes arranged in parallel before and after the expansion valve. It is possible to avoid sudden pressure fluctuations in the throttle portion, and reduce refrigerant noise and pipe vibration that occur.

【0016】また、第3の手段の構成により、膨張弁前
後での圧力をオリフィスの絞り部の内径を段階的に変え
て階段形状としたオリフィスでの急激な圧力波変動を避
けることで、発生する冷媒音及び、配管振動を低減する
ことができる。
Further, by the structure of the third means, the pressure before and after the expansion valve is changed stepwise by changing the inner diameter of the throttle portion of the orifice in order to avoid a rapid pressure wave fluctuation in the orifice having a stepped shape. It is possible to reduce the refrigerant noise that occurs and the vibration of the pipe.

【0017】また、第4の手段の構成により、膨張弁絞
り部前後での圧力及び、冷媒の流れをスムーズにするた
め、円錐形状のオリフィスとし、膨張弁絞り部での急激
な圧力変化をさけ、円錐形状のオリフィス内周のネジ切
り溝により、冷媒の流れをスムーズにすることで、発生
する冷媒音及び、配管振動を低減することができる。
Further, according to the structure of the fourth means, in order to smooth the pressure before and after the expansion valve throttle portion and the flow of the refrigerant, a conical orifice is used to prevent a sudden pressure change in the expansion valve throttle portion. Since the conical threaded groove on the inner circumference of the orifice smoothes the flow of the refrigerant, it is possible to reduce the generated refrigerant noise and the vibration of the pipe.

【0018】また、第5の手段の構成により、膨張弁を
多層構造のオリフィスとし、防振材を挿入することで、
冷媒の気泡魂によっておこる圧力波を吸収することで、
配管振動を低減することができる。
According to the structure of the fifth means, the expansion valve is made into a multi-layered orifice and a vibration damping material is inserted,
By absorbing the pressure wave caused by the bubble soul of the refrigerant,
Pipe vibration can be reduced.

【0019】[0019]

【実施例】以下、本発明の第1実施例について図1,図
7を参照しながら説明する。なお、従来例と同一部分に
は同一番号をつけて詳細な説明は省略する。図に示すよ
うに膨張弁105は配管111,111aと接続されて
いる。膨張弁105の内部には、多孔質性からなる多孔
体1を設け、この多孔体に接合させてオリフィス部10
9,109aを配置する。また、膨張弁105の中心部
には上下方向に移動する絞り部110があり、絞り部1
10がオリフィス部109とで開閉作用を行うことにな
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. The same parts as those of the conventional example are designated by the same reference numerals and detailed description thereof will be omitted. As shown in the figure, the expansion valve 105 is connected to the pipes 111 and 111a. Inside the expansion valve 105, a porous body 1 made of a porous material is provided, and the orifice portion 10 is bonded to the porous body 1.
9, 109a are arranged. Further, there is a throttle portion 110 that moves in the vertical direction at the center of the expansion valve 105.
The orifice 10 and the orifice portion 109 open and close.

【0020】上記構成により、膨張弁105に接続され
た配管111より流れてきた冷媒106は、流動状態が
気泡魂を伴う流れであるため、膨張弁105の配管11
1側に配置した多孔体1を通過する際、気相、液相がそ
れぞれ混ざり合った流動状態に移行され、オリフィス部
109内を通過する。オリフィス部109を通過した冷
媒106は、絞り部110に到達したときは、圧力脈動
が連続的になっているため均圧された冷媒106は、絞
り部110により減圧膨張される。減圧膨張された冷媒
は、オリフィス部109aを通り、多孔体1aを通過す
る際、気相、液相がそれぞれ混ざり合った流動状態に再
び移行されるため、圧力脈動が連続的になり、均圧され
た冷媒106状態なって膨張弁105から出ていくこと
になる。
With the above-described structure, the refrigerant 106 flowing from the pipe 111 connected to the expansion valve 105 has a flow state accompanied by bubbles, so the pipe 11 of the expansion valve 105 is
When passing through the porous body 1 arranged on the first side, the gas phase and the liquid phase are changed into a mixed fluid state and pass through the inside of the orifice portion 109. When the refrigerant 106 that has passed through the orifice portion 109 reaches the throttle portion 110, the pressure pulsation is continuous, so that the pressure-equalized refrigerant 106 is decompressed and expanded by the throttle portion 110. When the refrigerant that has been decompressed and expanded passes through the orifice portion 109a and the porous body 1a, it is transferred again to a fluidized state in which the gas phase and the liquid phase are mixed, so that the pressure pulsation becomes continuous and the pressure equalization is continued. The state of the discharged refrigerant 106 comes out from the expansion valve 105.

【0021】このように本発明の第1実施例の膨張弁1
05によれば、絞り部110前後の冷媒の流動状態が、
多孔体1,1aを通過する際に気相、液相がそれぞれ混
ざり合った流動状態に移行するため、オリフィス部10
9,109aでの圧力脈動が連続的にすることで、冷媒
音を低減することができる。また、膨張弁105に接続
された配管111,111aへの振動も低減することが
できる。
Thus, the expansion valve 1 of the first embodiment of the present invention
According to 05, the flow state of the refrigerant around the throttle 110 is
When passing through the porous bodies 1 and 1a, the gas phase and the liquid phase shift to a mixed fluid state.
By making the pressure pulsation at 9,109a continuous, the refrigerant noise can be reduced. Further, vibration to the pipes 111 and 111a connected to the expansion valve 105 can be reduced.

【0022】なお、実施例ではオリフィス部109,1
09a前後に多孔体1,1aを用いたが、多孔体1,1
aに代えてステンレスウール及び、極小の粒(ビーズ)
を用いてもよく、その効果に差異を生じない。また、ヒ
ートポンプ式エアコンの冷房時、暖房時の冷媒の流れ
は、四方弁103を切換えることで膨張弁105への冷
媒の流れは、可、逆方向に流れるため、前記説明の逆方
向の作用となる。
In the embodiment, the orifice portions 109, 1
The porous bodies 1 and 1a were used before and after 09a.
Instead of a, stainless wool and very small particles (beads)
May be used and does not make a difference in its effect. Further, when the heat pump type air conditioner is cooled or heated, the flow of the refrigerant to the expansion valve 105 can be changed in the opposite direction by switching the four-way valve 103. Become.

【0023】つぎに本発明の第2実施例について図2,
図7を参照しながら説明する。なお、従来例と同一部分
には同一番号をつけて詳細な説明は省略する。図に示す
ように膨張弁105は配管111,111aと接続され
ている。膨張弁105の内部には、膨張弁105前後に
並列に配置した極細の管2,2aを設け、この極細の管
2,2aに接合させてオリフィス部109,109aを
配置する。
Next, a second embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. The same parts as those of the conventional example are designated by the same reference numerals and detailed description thereof will be omitted. As shown in the figure, the expansion valve 105 is connected to the pipes 111 and 111a. Inside the expansion valve 105, ultrafine pipes 2 and 2a arranged in parallel in front of and behind the expansion valve 105 are provided, and orifice portions 109 and 109a are disposed so as to be joined to the ultrafine pipes 2 and 2a.

【0024】また、膨張弁105の中心部には上下方向
に移動する絞り部110があり、絞り部110がオリフ
ィス部109とで開閉作用を行うことになる。
Further, there is a throttle portion 110 which moves in the vertical direction at the center of the expansion valve 105, and the throttle portion 110 and the orifice portion 109 open and close.

【0025】上記構成により、膨張弁105に接続され
た配管111より流れてきた冷媒106は、流動状態が
気泡魂を伴う流れであるため、膨張弁105の配管11
1側に並列に配置した極細の管2を通過する際、圧力脈
動が均圧及び、また減圧され、オリフィス部109内を
通過する。オリフィス部109を通過してきた冷媒10
6は、絞り部110に到達したときは、オリフィス部1
09ですでに減圧されているため、絞り部110で急激
な圧力変動を受けずに、減圧膨張される。減圧膨張され
た冷媒は、オリフィス109aを通り、極細の管2aを
通過する際、さらに減圧され、均圧された冷媒106状
態となって膨張弁105から出ていくことになる。
With the above-described structure, the refrigerant 106 flowing from the pipe 111 connected to the expansion valve 105 has a flow state accompanied by bubbles, so that the pipe 11 of the expansion valve 105 is
When passing through the ultrafine tubes 2 arranged in parallel on the first side, the pressure pulsation is equalized and depressurized and passes through the inside of the orifice portion 109. Refrigerant 10 that has passed through the orifice portion 109
No. 6 is the orifice section 1 when it reaches the throttle section 110.
Since the pressure has already been reduced at 09, the pressure is expanded at the throttle portion 110 without being subjected to a sudden pressure change. The refrigerant that has been decompressed and expanded passes through the orifice 109a and then passes through the ultra-fine pipe 2a, so that the refrigerant is further decompressed and becomes the pressure-equalized refrigerant 106 and exits from the expansion valve 105.

【0026】このように本発明の第2実施例の膨張弁1
05によれば、絞り部110前後の冷媒の流動状態が、
極細の管2,2aを通過する際に圧力脈動が均圧されて
いるため、絞り部110で急激な圧力変動を受けずに定
常的な、減圧膨張されることで、冷媒音を低減すること
ができる。また、膨張弁105に接続された配管11
1,111aへの振動も低減することができる。また、
ヒートポンプ式エアコンの冷房時、暖房時の冷媒の流れ
は、四方弁103を切換えることで膨張弁105への冷
媒の流れは、可、逆方向に流れるため、前記説明の逆方
向の作用となる。
Thus, the expansion valve 1 of the second embodiment of the present invention
According to 05, the flow state of the refrigerant around the throttle 110 is
Since the pressure pulsation is equalized when passing through the ultra-fine pipes 2 and 2a, the refrigerant noise is reduced by being constantly and decompressed and expanded without receiving a sudden pressure change in the throttle portion 110. You can In addition, the pipe 11 connected to the expansion valve 105
Vibration to 1,111a can also be reduced. Also,
When the heat pump type air conditioner is being cooled or heated, the flow of the refrigerant to the expansion valve 105 is allowed to flow in the opposite direction by switching the four-way valve 103.

【0027】つぎに本発明の第3実施例について図3,
図7を参照しながら説明する。なお、従来例と同一部分
には同一番号をつけて詳細な説明は省略する。図に示す
ように膨張弁105の内部には、オリフィス3,3aと
絞り部110が配置され、膨張弁105前後には配管1
11,111aが接続されている。この膨張弁105の
内部のオリフィス3,3aは同じ形状を有し、内径4の
径を段階的に変えて階段形状にしたものである。また、
膨張弁105の中心部には上下方向に移動する絞り部1
10があり、絞り部110がオリフィス3とで開閉作用
を行うことになる。
Next, a third embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. The same parts as those of the conventional example are designated by the same reference numerals and detailed description thereof will be omitted. As shown in the figure, inside the expansion valve 105, the orifices 3 and 3a and the throttle portion 110 are arranged, and the pipe 1 is provided before and after the expansion valve 105.
11, 111a are connected. The orifices 3 and 3a inside the expansion valve 105 have the same shape, and the diameter of the inner diameter 4 is stepwise changed to be stepwise. Also,
At the center of the expansion valve 105, a throttle unit 1 that moves vertically
10, and the throttle unit 110 opens and closes with the orifice 3.

【0028】上記構成により、膨張弁105に接続され
た配管111より流れてきた冷媒106は、流動状態が
気泡魂を伴う流れであるため、圧力が脈動しており、オ
リフィス3の内径4の径を段階的に変えて階段状にした
ものにおいて圧力波が減衰される。減衰された冷媒10
6は、絞り部110に到達したときは、圧力脈動が小さ
くなっているため、絞り部110において急激な圧力変
動を受けずに、減圧膨張される。減圧膨張された冷媒
は、オリフィス3aを通過し、冷媒の圧力脈動が均圧さ
れた冷媒106状態となって膨張弁105から出ていく
ことになる。
With the above configuration, the refrigerant 106 flowing from the pipe 111 connected to the expansion valve 105 has a pulsating pressure because the flow state is a flow accompanied by bubbles, and the diameter of the inner diameter 4 of the orifice 3 The pressure wave is attenuated in the stepped shape by changing the stepwise. Attenuated refrigerant 10
When No. 6 reaches the throttle unit 110, the pressure pulsation is small, and therefore the pressure is expanded and reduced without undergoing a sudden pressure change in the throttle unit 110. The refrigerant that has been decompressed and expanded passes through the orifice 3a, and exits from the expansion valve 105 in the refrigerant 106 state in which the pressure pulsation of the refrigerant is equalized.

【0029】このように本発明の第3実施例の膨張弁1
05によれば、配管111より流れてきた冷媒106
は、流動状態が気泡魂を伴う流れであるため、圧力が脈
動しており、オリフィス3の内径4の径を段階的に変え
て階段状にしたものにおいて圧力波を減衰されているた
め、絞り部110での圧力波脈動でおこる冷媒音を低減
することができる。また、膨張弁105に接続された配
管111,111aへの振動も低減することができる。
また、ヒートポンプ式エアコンの冷房時、暖房時の冷媒
の流れは、四方弁103を切換えることで膨張弁105
への冷媒の流れは、可、逆方向に流れるため、前記説明
の逆方向の作用となる。
Thus, the expansion valve 1 of the third embodiment of the present invention
According to 05, the refrigerant 106 flowing from the pipe 111
Since the flow state is a flow accompanied by a bubble soul, the pressure is pulsating, and the pressure wave is attenuated in the stepped shape in which the diameter of the inner diameter 4 of the orifice 3 is stepwise changed. The refrigerant noise caused by the pressure wave pulsation in the section 110 can be reduced. Further, vibration to the pipes 111 and 111a connected to the expansion valve 105 can be reduced.
In addition, the flow of the refrigerant during cooling and heating of the heat pump type air conditioner is controlled by switching the four-way valve 103 to expand the expansion valve 105.
Since the flow of the refrigerant to and from the refrigerant flows in the opposite direction, the action is in the opposite direction to the above description.

【0030】つぎに本発明の第4実施例について図4,
図7を参照しながら説明する。なお、従来例と同一部分
には同一番号をつけて詳細な説明は省略する。図に示す
ように膨張弁105は配管111,111aと接続され
ている。膨張弁105の内部には円錐形状のオリフィス
5,5a設け、この円錐形状のオリフィス5,5aの内
周には、ネジ切り溝6,6aをもうけてある。また、膨
張弁105の中心部には上下方向に移動する絞り部11
0があり、絞り部110が円錐形状のオリフィス5とで
開閉作用を行うことになる。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. The same parts as those of the conventional example are designated by the same reference numerals and detailed description thereof will be omitted. As shown in the figure, the expansion valve 105 is connected to the pipes 111 and 111a. The expansion valve 105 is provided with conical orifices 5 and 5a, and threaded grooves 6 and 6a are provided on the inner circumference of the conical orifices 5 and 5a. In addition, in the center of the expansion valve 105, the throttle 11 that moves vertically
0 means that the constricted portion 110 will open and close with the conical orifice 5.

【0031】上記構成により、膨張弁105に接続され
た配管111より流れてきた冷媒106は、流動状態が
脈動を伴う流れであるため、膨張弁105の配管111
側に配置した、円錐形状のオリフィス5の内周のネジ切
り溝6に沿ってスムーズに絞り部110まで導かれる。
冷媒をスムーズに導くことで、絞り部110で急激な圧
力脈動を伴う圧力変化がされず、減圧膨張される。減圧
膨張された冷媒は、円錐形状のオリフィス5aの内周の
ネジ切り溝6aに沿ってスムーズに膨張弁105と接続
された配管111aに流れていくことになる。
With the above-described structure, the refrigerant 106 flowing from the pipe 111 connected to the expansion valve 105 has a pulsating flow state, and therefore the pipe 111 of the expansion valve 105.
It is smoothly guided to the narrowed portion 110 along the threaded groove 6 on the inner circumference of the conical orifice 5 arranged on the side.
By smoothly guiding the refrigerant, the pressure change due to the rapid pressure pulsation does not occur in the throttle portion 110, and the refrigerant is expanded under reduced pressure. The refrigerant decompressed and expanded smoothly flows into the pipe 111a connected to the expansion valve 105 along the threaded groove 6a on the inner periphery of the conical orifice 5a.

【0032】このように本発明の第4実施例の膨張弁1
05によれば、絞り部110前後の冷媒の流動状態が、
膨張弁105の配管111側に配置した、円錐形状のオ
リフィス5の内周のネジ切り溝6に沿ってスムーズに絞
り部110まで導くため、絞り部110で急激な圧力脈
動を伴う圧力変化を受けない。よって、絞り部110で
減圧膨張しても、冷媒音の発生を低減することができ
る。また、膨張弁105に接続された配管111,11
1aへの振動も低減することができる。また、ヒートポ
ンプ式エアコンの冷房時、暖房時の冷媒の流れは、四方
弁103を切換えることで膨張弁105への冷媒の流れ
は、可、逆方向に流れるため、前記説明の逆方向の作用
となる。
Thus, the expansion valve 1 of the fourth embodiment of the present invention
According to 05, the flow state of the refrigerant around the throttle 110 is
Since the expansion valve 105 is smoothly guided to the throttle portion 110 along the threaded groove 6 on the inner circumference of the conical orifice 5 arranged on the pipe 111 side, the throttle portion 110 receives a pressure change accompanied by a sudden pressure pulsation. Absent. Therefore, even if the expansion portion 110 is decompressed and expanded, the generation of refrigerant noise can be reduced. Further, the pipes 111, 11 connected to the expansion valve 105
Vibration to 1a can also be reduced. Further, when the heat pump type air conditioner is cooled or heated, the flow of the refrigerant to the expansion valve 105 can be changed in the opposite direction by switching the four-way valve 103. Become.

【0033】つぎに本発明の第5実施例について図5,
図7を参照しながら説明する。なお、従来例と同一部分
には同一番号をつけて詳細な説明は省略する。図に示す
ように膨張弁105は配管111,111aと接続され
ている。膨張弁105の内部には円錐状に広がる形状の
多層構造のオリフィス7,7a設け、この多層構造のオ
リフィス7,7aは、配管111,111aと多層構造
のオリフィス7,7aの接触部分に防振材8,8aが設
置されている。また、多層構造のオリフィス7,7aの
円錐状に広がる部分9にも防振材8,8aが取付けてあ
る。また、膨張弁105の中心部には上下方向に移動す
る絞り部110があり、絞り部110が多層構造のオリ
フィス7とで開閉作用を行うことになる。
Next, a fifth embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. The same parts as those of the conventional example are designated by the same reference numerals and detailed description thereof will be omitted. As shown in the figure, the expansion valve 105 is connected to the pipes 111 and 111a. Inside the expansion valve 105, there are provided orifices 7 and 7a having a multi-layered structure that spreads in a conical shape. The materials 8 and 8a are installed. Further, vibration-damping materials 8 and 8a are also attached to the conical portion 9 of the multi-layered orifices 7 and 7a. Further, there is a throttle portion 110 that moves in the vertical direction at the center of the expansion valve 105, and the throttle portion 110 opens and closes with the orifice 7 of the multilayer structure.

【0034】上記構成により、膨張弁105に接続され
た配管111より流れてきた冷媒106は、流動状態が
脈動を伴う流れで、圧力が変動しながら、多層構造のオ
リフィス7を通過する。多層構造のオリフィス7を通過
する際、多層構造のオリフィス7と接合された防振材8
で多層構造のオリフィス7内の圧力波の振動を防振材8
で吸収されながら、絞り部110まで導かれる。冷媒1
06は絞り部110で減圧膨張されたのち、多層構造の
オリフィス7aを通過する際、多層構造のオリフィス7
aと接合された防振材8aで多層構造のオリフィス7a
内の圧力波の振動を防振材8aで吸収される。多層構造
のオリフィス7aを通過した冷媒106は、膨張弁10
5と接続された配管111aへ流れる。
With the above structure, the refrigerant 106 flowing from the pipe 111 connected to the expansion valve 105 has a pulsating flow state, and passes through the multi-layered orifice 7 while the pressure fluctuates. When passing through the multi-layered orifice 7, the vibration-proof material 8 joined to the multi-layered orifice 7
The vibration-damping material 8 prevents vibrations of pressure waves in the multi-layered orifice 7.
It is guided to the diaphragm 110 while being absorbed by. Refrigerant 1
After being decompressed and expanded in the throttle portion 110, when passing through the orifice 7a of the multilayer structure, the orifice 06 of the multilayer structure
Orifice 7a having a multi-layer structure with a vibration isolator 8a joined to a
The vibration of the internal pressure wave is absorbed by the vibration isolator 8a. The refrigerant 106 that has passed through the multi-layered orifice 7a is transferred to the expansion valve 10
5 flows to the pipe 111 a connected to the pipe 111.

【0035】このように本発明の第5実施例の膨張弁1
05によれば、冷媒の流動状態が脈動を伴う流れで、圧
力が変動しても、防振材8,8aで圧力波を吸収するた
め膨張弁105に接続された配管111,111aへの
振動を低減することができる。また、ヒートポンプ式エ
アコンの冷房時、暖房時の冷媒の流れは、四方弁103
を切換えることで膨張弁105への冷媒の流れは、可、
逆方向に流れるため、前記説明の逆方向の作用となる。
Thus, the expansion valve 1 of the fifth embodiment of the present invention
According to 05, even if the flow state of the refrigerant is a flow accompanied by pulsation and the pressure fluctuates, vibrations to the pipes 111 and 111a connected to the expansion valve 105 are absorbed because the vibration isolator 8 and 8a absorb the pressure wave. Can be reduced. In addition, the flow of the refrigerant during cooling and heating of the heat pump type air conditioner is controlled by the four-way valve 103.
The flow of the refrigerant to the expansion valve 105 can be changed by switching
Since it flows in the opposite direction, the action is in the opposite direction as described above.

【0036】[0036]

【発明の効果】以上の実施例から明らかなように本発明
によれば、冷媒の流動状態が、気泡魂を伴う流れであっ
たものが、多孔体の部材を膨張弁前後に設置し、気泡魂
であった冷媒を多孔体を通過させることで、気相、液相
がそれぞれ混じり合った流動様式に移行することができ
る。その結果、膨張弁のオリフィス部での圧力脈動を連
続的にすることができ発生する冷媒音及び、配管振動を
低減することができる。さらに、冷媒音が小さいことで
居住空間を快適なものとできる効果のある膨張弁が提供
できる。
As is apparent from the above-described embodiments, according to the present invention, the flow state of the refrigerant is the flow accompanied by the bubble soul. By passing the soul of the refrigerant through the porous body, it is possible to shift to a flow mode in which the gas phase and the liquid phase are mixed. As a result, the pressure pulsation at the orifice of the expansion valve can be made continuous, and the generated refrigerant noise and pipe vibration can be reduced. Furthermore, the expansion valve having the effect of making the living space comfortable by providing a low refrigerant noise can be provided.

【0037】また、冷媒の流動状態が、気泡魂を伴う流
れであったものが、膨張弁前後に並列に配置した極細の
管を数本通すことで、膨張弁絞り部での急激な圧力変動
を避けることができ発生する冷媒音及び、配管振動を低
減することができる。さらに、冷媒音が小さいことで居
住空間を快適なものとできる効果のある膨張弁が提供で
きる。
Further, when the flow state of the refrigerant is a flow accompanied by bubbles, a few fine tubes arranged in parallel in front of and behind the expansion valve are passed to cause a rapid pressure fluctuation in the expansion valve throttle section. It is possible to avoid the noise, and to reduce the generated refrigerant noise and pipe vibration. Furthermore, the expansion valve having the effect of making the living space comfortable by providing a low refrigerant noise can be provided.

【0038】また、膨張弁前後での圧力をオリフィスの
絞り部の内径を段階的に変えて階段形状としたオリフィ
スでの急激な圧力波変動を避けることで、発生する冷媒
音及び、配管振動を低減することができる。さらに、冷
媒音が小さいことで居住空間を快適なものとできる効果
のある膨張弁が提供できる。
Further, the pressure before and after the expansion valve is changed stepwise by changing the inner diameter of the throttle portion of the orifice to avoid a sudden pressure wave fluctuation in the orifice having a step shape, so that the generated refrigerant noise and pipe vibration are prevented. It can be reduced. Furthermore, the expansion valve having the effect of making the living space comfortable by providing a low refrigerant noise can be provided.

【0039】また、膨張弁絞り部前後での圧力及び、冷
媒の流れをスムーズにするため、円錐形状のオリフィス
とし、膨張弁絞り部での急激な圧力変化をさけ、円錐形
状のオリフィス内周のネジ切り溝により、冷媒の流れを
スムーズにすることで、発生する冷媒音及び、配管振動
を低減することができる。さらに、冷媒音が小さいこと
で居住空間を快適なものとできる効果のある膨張弁が提
供できる。
Further, in order to make the pressure before and after the expansion valve throttle portion and the flow of the refrigerant smooth, a conical orifice is used to avoid a sudden pressure change in the expansion valve throttle portion, and By making the flow of the refrigerant smooth by the thread cutting groove, it is possible to reduce the generated refrigerant noise and the vibration of the pipe. Furthermore, the expansion valve having the effect of making the living space comfortable by providing a low refrigerant noise can be provided.

【0040】また、膨張弁を多層構造のオリフィスと
し、防振材を挿入することで、冷媒の気泡魂によってお
こる圧力波を吸収することで、配管振動を低減すること
ができる効果のある膨張弁が提供できる。
Further, the expansion valve is a multi-layered orifice, and a vibration damping material is inserted to absorb the pressure wave generated by the bubble soul of the refrigerant, thereby reducing the vibration of the pipe. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の膨張弁の構成断面図FIG. 1 is a sectional view showing the configuration of an expansion valve according to a first embodiment of the present invention.

【図2】同第2実施例の膨張弁の構成断面図FIG. 2 is a sectional view showing the construction of an expansion valve of the second embodiment.

【図3】同第3実施例の膨張弁の構成断面図FIG. 3 is a sectional view showing the construction of an expansion valve according to the third embodiment.

【図4】同第4実施例の膨張弁の構成断面図FIG. 4 is a sectional view showing the construction of an expansion valve according to the fourth embodiment.

【図5】同第5実施例の膨張弁の構成断面図FIG. 5 is a sectional view showing the structure of an expansion valve according to the fifth embodiment.

【図6】従来の膨張弁の構成断面図FIG. 6 is a sectional view showing the configuration of a conventional expansion valve.

【図7】従来のヒートポンプ式の冷凍サイクル図FIG. 7 is a conventional heat pump type refrigeration cycle diagram.

【符号の説明】[Explanation of symbols]

2 極細の管 2a 極細の管 3 オリフィス 3a オリフィス 4 内径 5 円錐形状のオリフィス 5a 円錐形状のオリフィス 6 ネジ切り溝 6a ネジ切り溝 7 多層構造のオリフィス 7a 多層構造のオリフィス 105 膨張弁 2 Extra-fine tube 2a Extra-fine tube 3 Orifice 3a Orifice 4 Inner diameter 5 Conical orifice 5a Conical orifice 6 Threaded groove 6a Threaded groove 7 Multilayer orifice 7a Multilayer orifice 105 Expansion valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクル内に配置され、冷媒通路を
絞ることによって冷媒流量を調節する膨張弁において、
前記膨張弁前後に出入りする冷媒流動状態を微小な気泡
に細分化状態にする手段を設けることを特徴とする膨張
弁。
1. An expansion valve arranged in a refrigeration cycle for adjusting a refrigerant flow rate by narrowing a refrigerant passage,
An expansion valve comprising means for dividing a refrigerant flow state before and after the expansion valve into fine bubbles into fine bubbles.
【請求項2】 冷凍サイクル内に配置され、冷媒通路を
絞ることによって冷媒流量を調節する膨張弁において、
前記膨張弁前後に並列に配置した極細の管を数本通して
配してなる膨張弁。
2. An expansion valve arranged in a refrigeration cycle for adjusting a refrigerant flow rate by narrowing a refrigerant passage,
An expansion valve in which several ultra-fine tubes are arranged in parallel before and after the expansion valve.
【請求項3】 冷凍サイクル内に配置され、冷媒通路を
絞ることによって冷媒流量を調節する膨張弁において、
前記膨張弁前後のオリフィス部の内径を段階的に変えて
階段形状としたオリフィスを配してなる膨張弁。
3. An expansion valve arranged in a refrigeration cycle for adjusting a refrigerant flow rate by narrowing a refrigerant passage,
An expansion valve in which an orifice having a step shape is arranged by gradually changing the inner diameter of the orifice portion before and after the expansion valve.
【請求項4】 冷凍サイクル内に配置され、冷媒通路を
絞ることによって冷媒流量を調節する膨張弁において、
前記膨張弁前後に円錐形状のオリフィスを配置し、前記
円錐形状のオリフィスの内周にネジ切り溝を配してなる
膨張弁。
4. An expansion valve arranged in a refrigeration cycle for adjusting a refrigerant flow rate by narrowing a refrigerant passage,
An expansion valve in which a conical orifice is arranged in front of and behind the expansion valve, and a threaded groove is arranged on the inner circumference of the conical orifice.
【請求項5】 冷凍サイクル内に配置され、冷媒通路を
絞ることによって冷媒流量を調節する膨張弁において、
前記膨張弁を多層構造のオリフィスとし、前記多層構造
のオリフィスに防振材を配してなる膨張弁。
5. An expansion valve arranged in a refrigeration cycle for adjusting a refrigerant flow rate by narrowing a refrigerant passage,
An expansion valve in which the expansion valve is a multi-layered orifice, and a vibration damping material is arranged in the multi-layered orifice.
JP5296817A 1993-11-26 1993-11-26 Expansion valve Pending JPH07146032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5296817A JPH07146032A (en) 1993-11-26 1993-11-26 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5296817A JPH07146032A (en) 1993-11-26 1993-11-26 Expansion valve

Publications (1)

Publication Number Publication Date
JPH07146032A true JPH07146032A (en) 1995-06-06

Family

ID=17838538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5296817A Pending JPH07146032A (en) 1993-11-26 1993-11-26 Expansion valve

Country Status (1)

Country Link
JP (1) JPH07146032A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019420A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
JPH10111046A (en) * 1996-10-08 1998-04-28 Hitachi Ltd Air conditioner
JPH11118294A (en) * 1997-10-13 1999-04-30 Mitsubishi Electric Corp Refrigerating cycle
JPH11325658A (en) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd Expansion valve
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JPH11351705A (en) * 1998-06-04 1999-12-24 Calsonic Corp Abnormal sound preventive structure of evaporator outlet
JP2000346495A (en) * 1999-06-01 2000-12-15 Mitsubishi Electric Corp Throttle device
JP2001050615A (en) * 1999-08-06 2001-02-23 Mitsubishi Electric Corp Throttling device
JP2001050616A (en) * 1999-08-06 2001-02-23 Mitsubishi Electric Corp Refrigeration cycle device and air conditioner
JP2001311573A (en) * 2000-04-27 2001-11-09 Mitsubishi Electric Corp Metering device and freezing cycle device
JP2002089988A (en) * 2000-09-21 2002-03-27 Mitsubishi Electric Corp Air conditioner, and operating method of air conditioner
JP2002098443A (en) * 2000-09-25 2002-04-05 Mitsubishi Electric Corp Refrigeration cycle system
JP2002098444A (en) * 2000-09-22 2002-04-05 Nippon Soken Inc Expansion valve for use in refrigeration cycle
JP2002195696A (en) * 2000-12-21 2002-07-10 Matsushita Electric Ind Co Ltd Air conditioner
JP2003065632A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2003156269A (en) * 2001-11-20 2003-05-30 Fuji Koki Corp Solenoid valve
JP2003202167A (en) * 2001-10-29 2003-07-18 Mitsubishi Electric Corp Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
JP2003232584A (en) * 2003-01-27 2003-08-22 Mitsubishi Electric Corp Air conditioner
JP2004003793A (en) * 2001-09-07 2004-01-08 Saginomiya Seisakusho Inc Throttle valve device and air conditioner
JP2004028488A (en) * 2002-06-27 2004-01-29 Denso Corp Valve gear used for refrigeration cycle device
JP2004132498A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Shutoff valve and air conditioner
JP2004183950A (en) * 2002-12-02 2004-07-02 Daikin Ind Ltd Solenoid valve
JP2004360708A (en) * 2003-02-21 2004-12-24 Fuji Koki Corp Solenoid valve
WO2005075903A1 (en) * 2004-02-10 2005-08-18 Daikin Industries, Ltd. Expansion valve of refrigerating apparatus
JP2005351605A (en) * 2004-06-14 2005-12-22 Daikin Ind Ltd Expansion valve and refrigeration device
JP2006275452A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Expansion valve
JP2006284088A (en) * 2005-03-31 2006-10-19 Daikin Ind Ltd Expansion valve and refrigerating device
JP2007016958A (en) * 2005-07-11 2007-01-25 Fuji Koki Corp Motor-operated valve
JP2007024384A (en) * 2005-07-15 2007-02-01 Fuji Koki Corp Motor operated valve
JP2007032979A (en) * 2005-07-28 2007-02-08 Mitsubishi Electric Corp Refrigerating cycle device
JP2007032980A (en) * 2005-07-28 2007-02-08 Mitsubishi Electric Corp Expansion valve
CN1304803C (en) * 2001-01-31 2007-03-14 三菱电机株式会社 Refrigeratng cycle device, air conditioner, choke, and flow rate controller
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
JP2009014292A (en) * 2007-07-06 2009-01-22 Zhejiang Chunhui Intelligent Control Co Ltd Two throttle two-way expansion valve with filtering structure
US7832653B2 (en) 2005-02-28 2010-11-16 Daikin Industries, Ltd. Expansion valve having a grooved valve member and refrigeration device including the same
US7849705B2 (en) 2006-04-05 2010-12-14 Lg Electronics Inc. Noise reduction device and air conditioner having the same
CN102102923A (en) * 2009-12-22 2011-06-22 株式会社不二工机 Expansion valve
JP2012047213A (en) * 2010-08-25 2012-03-08 Saginomiya Seisakusho Inc Motor-operated valve
CN102384611A (en) * 2010-08-26 2012-03-21 株式会社不二工机 Expansion valve
US20130239602A1 (en) * 2011-01-31 2013-09-19 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2016113898A1 (en) * 2015-01-16 2016-07-21 三菱重工業株式会社 Pressure reducing device for cooling system and cooling system
WO2017018143A1 (en) * 2015-07-29 2017-02-02 東芝ライフスタイル株式会社 Solenoid valve for liquid, method for producing solenoid valve for liquid, and washing machine
WO2018230159A1 (en) * 2017-06-15 2018-12-20 株式会社鷺宮製作所 Electrically operated valve and refrigeration cycle system
WO2019017388A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Air conditioner
WO2019044661A1 (en) * 2017-08-29 2019-03-07 東芝キヤリア株式会社 Multi-type air conditioning system and indoor unit
EP3499152A1 (en) 2017-12-12 2019-06-19 Mitsubishi Heavy Industries Thermal Systems, Ltd. Sound absorbing element for refrigeration cycle system, decompression unit including the same, and refrigeration cycle system
CN110173569A (en) * 2018-02-21 2019-08-27 株式会社鹭宫制作所 Flow control valve and refrigerating circulation system
CN114857666A (en) * 2022-05-31 2022-08-05 青岛海信日立空调***有限公司 Multi-connected air conditioner

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019420A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
JPH10111046A (en) * 1996-10-08 1998-04-28 Hitachi Ltd Air conditioner
JPH11118294A (en) * 1997-10-13 1999-04-30 Mitsubishi Electric Corp Refrigerating cycle
JPH11325658A (en) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd Expansion valve
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JPH11351705A (en) * 1998-06-04 1999-12-24 Calsonic Corp Abnormal sound preventive structure of evaporator outlet
JP2000346495A (en) * 1999-06-01 2000-12-15 Mitsubishi Electric Corp Throttle device
JP2001050615A (en) * 1999-08-06 2001-02-23 Mitsubishi Electric Corp Throttling device
JP2001050616A (en) * 1999-08-06 2001-02-23 Mitsubishi Electric Corp Refrigeration cycle device and air conditioner
JP2001311573A (en) * 2000-04-27 2001-11-09 Mitsubishi Electric Corp Metering device and freezing cycle device
JP2002089988A (en) * 2000-09-21 2002-03-27 Mitsubishi Electric Corp Air conditioner, and operating method of air conditioner
JP2002098444A (en) * 2000-09-22 2002-04-05 Nippon Soken Inc Expansion valve for use in refrigeration cycle
JP2002098443A (en) * 2000-09-25 2002-04-05 Mitsubishi Electric Corp Refrigeration cycle system
JP2002195696A (en) * 2000-12-21 2002-07-10 Matsushita Electric Ind Co Ltd Air conditioner
EP2003409A2 (en) 2001-01-31 2008-12-17 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus
CN1304803C (en) * 2001-01-31 2007-03-14 三菱电机株式会社 Refrigeratng cycle device, air conditioner, choke, and flow rate controller
EP2000756A2 (en) 2001-01-31 2008-12-10 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
EP2000757A2 (en) 2001-01-31 2008-12-10 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus
US7290567B2 (en) 2001-01-31 2007-11-06 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle device, air conditioner, choke, and flow rate controller
US7225630B2 (en) 2001-01-31 2007-06-05 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller
JP2003065632A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2004003793A (en) * 2001-09-07 2004-01-08 Saginomiya Seisakusho Inc Throttle valve device and air conditioner
JP2003202167A (en) * 2001-10-29 2003-07-18 Mitsubishi Electric Corp Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
JP2003156269A (en) * 2001-11-20 2003-05-30 Fuji Koki Corp Solenoid valve
JP2004028488A (en) * 2002-06-27 2004-01-29 Denso Corp Valve gear used for refrigeration cycle device
JP2004132498A (en) * 2002-10-11 2004-04-30 Daikin Ind Ltd Shutoff valve and air conditioner
JP2004183950A (en) * 2002-12-02 2004-07-02 Daikin Ind Ltd Solenoid valve
JP2003232584A (en) * 2003-01-27 2003-08-22 Mitsubishi Electric Corp Air conditioner
JP2004360708A (en) * 2003-02-21 2004-12-24 Fuji Koki Corp Solenoid valve
JP2005226846A (en) * 2004-02-10 2005-08-25 Daikin Ind Ltd Expansion valve and refrigeration unit
WO2005075903A1 (en) * 2004-02-10 2005-08-18 Daikin Industries, Ltd. Expansion valve of refrigerating apparatus
AU2005210939B2 (en) * 2004-02-10 2008-08-14 Daikin Industries, Ltd. Expansion valve of refrigerating apparatus
JP2005351605A (en) * 2004-06-14 2005-12-22 Daikin Ind Ltd Expansion valve and refrigeration device
US7832653B2 (en) 2005-02-28 2010-11-16 Daikin Industries, Ltd. Expansion valve having a grooved valve member and refrigeration device including the same
JP2006275452A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Expansion valve
JP2006284088A (en) * 2005-03-31 2006-10-19 Daikin Ind Ltd Expansion valve and refrigerating device
JP2007016958A (en) * 2005-07-11 2007-01-25 Fuji Koki Corp Motor-operated valve
JP2007024384A (en) * 2005-07-15 2007-02-01 Fuji Koki Corp Motor operated valve
JP2007032980A (en) * 2005-07-28 2007-02-08 Mitsubishi Electric Corp Expansion valve
JP2007032979A (en) * 2005-07-28 2007-02-08 Mitsubishi Electric Corp Refrigerating cycle device
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
US7849705B2 (en) 2006-04-05 2010-12-14 Lg Electronics Inc. Noise reduction device and air conditioner having the same
JP2009014292A (en) * 2007-07-06 2009-01-22 Zhejiang Chunhui Intelligent Control Co Ltd Two throttle two-way expansion valve with filtering structure
CN102102923A (en) * 2009-12-22 2011-06-22 株式会社不二工机 Expansion valve
JP2011133139A (en) * 2009-12-22 2011-07-07 Fuji Koki Corp Expansion valve
CN102384311A (en) * 2010-08-25 2012-03-21 株式会社鹭宫制作所 Electrically-operated valve
JP2012047213A (en) * 2010-08-25 2012-03-08 Saginomiya Seisakusho Inc Motor-operated valve
CN102384611B (en) * 2010-08-26 2016-01-20 株式会社不二工机 Expansion valve
CN102384611A (en) * 2010-08-26 2012-03-21 株式会社不二工机 Expansion valve
US9599378B2 (en) * 2011-01-31 2017-03-21 Mitsubishi Electric Corporation Air-conditioning apparatus
US20130239602A1 (en) * 2011-01-31 2013-09-19 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2016113898A1 (en) * 2015-01-16 2016-07-21 三菱重工業株式会社 Pressure reducing device for cooling system and cooling system
JPWO2016113898A1 (en) * 2015-01-16 2017-09-07 三菱重工業株式会社 Pressure reducing device for cooling system and cooling system
EP3222936A4 (en) * 2015-01-16 2017-12-20 Mitsubishi Heavy Industries, Ltd. Pressure reducing device for cooling system and cooling system
JP2017032001A (en) * 2015-07-29 2017-02-09 東芝ライフスタイル株式会社 Fluid solenoid valve, fluid solenoid valve manufacturing method, and washing machine
WO2017018143A1 (en) * 2015-07-29 2017-02-02 東芝ライフスタイル株式会社 Solenoid valve for liquid, method for producing solenoid valve for liquid, and washing machine
CN107850236A (en) * 2015-07-29 2018-03-27 东芝生活电器株式会社 Liquid magnetic valve, the manufacture method of liquid magnetic valve and washing machine
CN107850236B (en) * 2015-07-29 2019-08-16 东芝生活电器株式会社 Liquid solenoid valve, the manufacturing method of liquid solenoid valve and washing machine
US10844973B2 (en) 2015-07-29 2020-11-24 Toshiba Lifestyle Products & Services Corporation Liquid electromagnetic valve, method of manufacturing liquid electromagnetic valve, and washing machine
WO2018230159A1 (en) * 2017-06-15 2018-12-20 株式会社鷺宮製作所 Electrically operated valve and refrigeration cycle system
CN110678682B (en) * 2017-06-15 2022-03-25 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
CN110678682A (en) * 2017-06-15 2020-01-10 株式会社鹭宫制作所 Electric valve and refrigeration cycle system
WO2019017388A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Air conditioner
JP2019020113A (en) * 2017-07-20 2019-02-07 ダイキン工業株式会社 air conditioner
CN111094876A (en) * 2017-08-29 2020-05-01 东芝开利株式会社 Multi-connected air conditioning system and indoor unit
JPWO2019044661A1 (en) * 2017-08-29 2020-05-28 東芝キヤリア株式会社 Multi-type air conditioning system and indoor unit
WO2019044661A1 (en) * 2017-08-29 2019-03-07 東芝キヤリア株式会社 Multi-type air conditioning system and indoor unit
JP2019105391A (en) * 2017-12-12 2019-06-27 三菱重工サーマルシステムズ株式会社 Sound absorption element for refrigeration cycle system, decompression unit including the same, and refrigeration cycle system
EP3499152A1 (en) 2017-12-12 2019-06-19 Mitsubishi Heavy Industries Thermal Systems, Ltd. Sound absorbing element for refrigeration cycle system, decompression unit including the same, and refrigeration cycle system
CN110173569A (en) * 2018-02-21 2019-08-27 株式会社鹭宫制作所 Flow control valve and refrigerating circulation system
CN114857666A (en) * 2022-05-31 2022-08-05 青岛海信日立空调***有限公司 Multi-connected air conditioner

Similar Documents

Publication Publication Date Title
JPH07146032A (en) Expansion valve
US6148631A (en) Silencer and air conditioner
EP1367341B1 (en) Throttle device
JP3041467B2 (en) Air conditioner
US5097866A (en) Refrigerant metering device
KR20080096838A (en) Expansion valve and air conditioner
JPH11325658A (en) Expansion valve
CN208845368U (en) Pulsation and vibration control apparatus
JPH0626738A (en) Air conditioning apparatus
WO2016002022A1 (en) Expansion valve and refrigeration cycle device
JP3380395B2 (en) Expansion valve
JP5535098B2 (en) Refrigeration cycle equipment
JP3435626B2 (en) Air conditioner
WO2020248932A1 (en) Valve silencer and electronic expansion valve thereof
US4381651A (en) Silencer in a refrigeration system
JPH10111046A (en) Air conditioner
KR100441058B1 (en) Two-way direction expansion valve with accumulated thin plate
JPS6277574A (en) Refrigeration cycle
JP3404817B2 (en) Air conditioner
EP1291593B1 (en) Silencer for air conditioner
JP3712355B2 (en) Refrigeration cycle equipment
JP3097380B2 (en) Connection structure of refrigerant piping for air conditioning
JP2555736Y2 (en) Multi type air conditioner
JPH1163733A (en) Refrigerating device
JPH08159610A (en) Refrigerating device