JPH05275293A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH05275293A
JPH05275293A JP10064492A JP10064492A JPH05275293A JP H05275293 A JPH05275293 A JP H05275293A JP 10064492 A JP10064492 A JP 10064492A JP 10064492 A JP10064492 A JP 10064492A JP H05275293 A JPH05275293 A JP H05275293A
Authority
JP
Japan
Prior art keywords
sintered body
metal powder
electrolytic capacitor
solid electrolytic
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10064492A
Other languages
Japanese (ja)
Inventor
Kosuke Nakamura
浩介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP10064492A priority Critical patent/JPH05275293A/en
Publication of JPH05275293A publication Critical patent/JPH05275293A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the capacitance per volume of a capacitor by using a sintered body having pores whose size is a given multiple of the particle size of the electrochemical valve metal powder used. CONSTITUTION:Electrochemical valve metal powder having an average particle size of 0.1-5 microns is sintered into a predetermined shape. The sintered body has pores that 0.05-5 times as large as the metal particles, so that it can be sufficiently impregnated with electrolyte for effective use of surfaces of the metal powder. After an anode lead is embedded in it, the sintered body is immersed in dilute phosphoric acid for anodization. After a manganese dioxide layer, a carbon layer and a silver paste layer are formed, anode and cathode electrodes are connected to complete a solid electrolytic capacitor. This capacitor has large capacitance and improved tandelta.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor.

【0002】[0002]

【従来の技術】固体電解コンデンサは次の通りに製造す
る。すなわち、先ず、タンタル等の弁作用金属の球状粒
子や仮焼団粒、鱗片状粒子等の1種又は2種以上を混合
したものを所定の形状に圧縮成形し、焼成して多孔質の
焼結体を形成する。この焼結体からは、予め圧縮成形時
に設けた陽極リード線を引き出している。次に、この焼
結体を陽極酸化して酸化皮膜を形成する。酸化皮膜を形
成後、二酸化マンガンや酸化鉛等の無機固体電解質、ポ
リピロール等の有機固体電解質、テトラシアノキノジメ
タン等の有機導電体の層を形成する。その後、例えばカ
ーボン層、導電性銀ペースト層を形成する。そして陰極
端子及び陽極端子を接続する。各端子を接続後、外装を
形成する。
2. Description of the Related Art A solid electrolytic capacitor is manufactured as follows. That is, first, a mixture of one type or two or more types of spherical particles of valve-acting metal such as tantalum, calcined aggregate particles, and scale-like particles is compression-molded into a predetermined shape and fired to form a porous fired body. Form a union. From this sintered body, an anode lead wire previously provided at the time of compression molding is drawn out. Next, this sintered body is anodized to form an oxide film. After forming the oxide film, a layer of an inorganic solid electrolyte such as manganese dioxide or lead oxide, an organic solid electrolyte such as polypyrrole, or an organic conductor such as tetracyanoquinodimethane is formed. After that, for example, a carbon layer and a conductive silver paste layer are formed. Then, the cathode terminal and the anode terminal are connected. After connecting the terminals, the exterior is formed.

【0003】[0003]

【発明が解決しようとする課題】単位体積当りの容量
は、単位体積当りの表面積が大きいほど、大きくなる。
表面積を大きくする手段として弁作用金属の粒子の径を
小さくすることが考えられる。しかし、この方法では、
焼結体の空孔の径が小さくなり、陽極酸化用の電解液や
固体電解質溶液等が含浸し難くなり、単位体積当りの容
量は逆に小さくなる。また、弁作用金属の粒子の径を大
きくすると、焼結体の空孔の径は大きくなり、電解液等
を含浸し易くなるが、単位体積当りの表面積が小さくな
り、容量も小さくなる。
The capacity per unit volume increases as the surface area per unit volume increases.
As a means for increasing the surface area, it is conceivable to reduce the diameter of the valve metal particles. But with this method,
The pore diameter of the sintered body becomes small, it becomes difficult to impregnate the electrolytic solution for anodic oxidation, the solid electrolyte solution, and the like, and the capacity per unit volume becomes small. Further, when the diameter of the valve action metal particles is increased, the diameter of the pores of the sintered body is increased and it becomes easy to impregnate with the electrolytic solution and the like, but the surface area per unit volume is reduced and the capacity is also reduced.

【0004】本発明は、以上の欠点を改良し、単位体積
当りのコンデンサの容量を大きくできる固体電解コンデ
ンサの製造方法を提供するものである。
The present invention provides a method for manufacturing a solid electrolytic capacitor which is capable of improving the above drawbacks and increasing the capacity of the capacitor per unit volume.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、上記
の目的を達成するために、弁作用金属粉末を所定形状に
成形し焼成して得た焼結体に酸化皮膜を形成した固体電
解コンデンサの製造方法において、酸化皮膜を形成する
前の焼結体の空孔の大きさを弁作用金属粉末の大きさの
0.05〜5倍にすることを特徴とする固体電解コンデ
ンサの製造方法を提供するものである。
In order to achieve the above-mentioned object, the invention of claim 1 is a solid in which an oxide film is formed on a sintered body obtained by molding valve-acting metal powder into a predetermined shape and firing it. In the method of manufacturing an electrolytic capacitor, the size of the pores of the sintered body before forming the oxide film is 0.05 to 5 times the size of the valve action metal powder, and the manufacturing method of the solid electrolytic capacitor. It provides a method.

【0006】また、請求項2の発明は、請求項1におい
て、弁作用金属粉末の平均径が0.1〜5μmであるこ
とを特徴とする固体電解コンデンサの製造方法を提供す
るものである。
A second aspect of the present invention provides the method for producing a solid electrolytic capacitor according to the first aspect, wherein the valve action metal powder has an average diameter of 0.1 to 5 μm.

【0007】[0007]

【作用】焼結体の空孔の大きさを、弁作用金属粉末の大
きさの0.05〜5倍にすると、陽極酸化用の電解液や
固体電解質溶液等が含浸し易く、粉末の表面を有効に活
用でき、また弁作用金属粉末の大きさも大きすぎず適当
であり、単位体積当りの容量を増加できる。
When the size of the pores of the sintered body is 0.05 to 5 times the size of the valve metal powder, the electrolytic solution for anodic oxidation or the solid electrolyte solution is easily impregnated and the powder surface Can be effectively utilized, the size of the valve action metal powder is not too large, and the volume per unit volume can be increased.

【0008】また、弁作用金属粉末の平均径を0.1μ
m未満にすると、空孔径が小さすぎ、固体電解質溶液等
を含浸し難くなる。そして平均径が5μmより大きくな
ると、単位体積当りの表面積が十分でない。すなわち、
平均径を0.1〜5μmにすることにより、より単位体
積当りの容量を増加できる。
The average diameter of the valve action metal powder is 0.1 μm.
When it is less than m, the pore diameter is too small, and it becomes difficult to impregnate the solid electrolyte solution and the like. When the average diameter is larger than 5 μm, the surface area per unit volume is insufficient. That is,
By setting the average diameter to 0.1 to 5 μm, the capacity per unit volume can be further increased.

【0009】[0009]

【実施例】以下、本発明を実施例に基づいて説明する。 実施例1:平均径が0.5μmのタンタル粉末をタンタ
ル製容器に入れ、温度1400℃の真空雰囲気中で1時
間加熱する。加熱処理したタンタル粉末は互いに結合し
ている。このタンタル粉末を容器から取り出して軽く破
砕し、篩分法や風簸法等によって所定の大きさの焼結造
粒粉にする。次に、破砕後のタンタル粉末を1×1×
0.7mmの大きさに圧縮成形し、真空中で焼成し、タン
タルの焼結体を作成する。なお、この焼結体には、圧縮
成形の際に、直径0.25mmのタンタル線からなる陽極
リード線を植込み、その先端を引き出しておく。そし
て、この焼結体をうすいリン酸液中に浸漬して陽極酸化
し、酸化皮膜を形成する。酸化皮膜を形成後、焼結体を
硝酸マンガン溶液中に浸漬し、この液を含浸する。含浸
後、温度200〜260℃で加熱する。これにより、硝
酸マンガンが熱分解して二酸化マンガンとなる。この含
浸、加熱の工程を数回繰り返して、所定の厚さの二酸化
マンガン層を形成する。二酸化マンガン層を形成後、カ
ーボン分散液を塗布して、カーボン層を形成する。カー
ボン層を形成後、導電性銀ペーストを塗布、加熱して、
銀ペースト層を形成する。銀ペースト層を形成後、これ
に陰極端子を半田付けするとともに、陽極リード線に陽
極端子を接続する。各端子を接続後、樹脂モールドして
外装を形成する。
EXAMPLES The present invention will be described below based on examples. Example 1: Tantalum powder having an average diameter of 0.5 μm is placed in a tantalum container and heated in a vacuum atmosphere at a temperature of 1400 ° C. for 1 hour. The heat-treated tantalum powder is bonded to each other. This tantalum powder is taken out of the container, lightly crushed, and made into a sintered granulated powder of a predetermined size by a sieving method, an elutriation method or the like. Next, 1 x 1 x tantalum powder after crushing
It is compression molded to a size of 0.7 mm and fired in a vacuum to prepare a tantalum sintered body. In addition, an anode lead wire made of a tantalum wire having a diameter of 0.25 mm is implanted into this sintered body at the time of compression molding, and the tip thereof is pulled out. Then, this sintered body is immersed in a thin phosphoric acid solution and anodized to form an oxide film. After forming the oxide film, the sintered body is immersed in a manganese nitrate solution and impregnated with this solution. After impregnation, heating is performed at a temperature of 200 to 260 ° C. As a result, manganese nitrate is thermally decomposed into manganese dioxide. The steps of impregnation and heating are repeated several times to form a manganese dioxide layer having a predetermined thickness. After forming the manganese dioxide layer, the carbon dispersion is applied to form the carbon layer. After forming the carbon layer, apply conductive silver paste and heat to
Form a silver paste layer. After forming the silver paste layer, the cathode terminal is soldered to this and the anode terminal is connected to the anode lead wire. After connecting the terminals, resin molding is performed to form an exterior.

【0010】次に、定格電圧10Vとした上記実施例及
び比較例について、タンタル粉末の平均径に対する焼結
体の空孔の大きさの比率を変え、静電容量及び、 tanδ
(120Hzのときの)を求めた。そして、その結果を
表1に示した。なお、各比較例は、実施例1において焼
結体の空孔の大きさの比率が異なる以外はこれと同一の
条件で製造する。
Next, regarding the above-mentioned Examples and Comparative Examples in which the rated voltage was 10 V, the capacitance and tan δ were changed by changing the ratio of the pore size of the sintered body to the average diameter of the tantalum powder.
(At 120 Hz) was determined. The results are shown in Table 1. In addition, each comparative example is manufactured under the same conditions as in Example 1 except that the ratio of the pore size of the sintered body is different.

【0011】[0011]

【表1】 [Table 1]

【0012】表1から、比率を0.05〜5にした実施
例1−1〜実施例1−5は、静電容量を大きく、 tanδ
を低くできることが明らかである。これに対し、比較例
1−1は静電容量を大きくできるが、 tanδは実施例1
−1等の約3.4〜5.1倍になる。また、比較例1−
2は tanδを低くできるが、静電容量が実施例1−1等
の約15〜25%になる。
From Table 1, Examples 1-1 to 1-5 in which the ratio is 0.05 to 5 have a large capacitance and tan δ
It is clear that can be lowered. On the other hand, in Comparative Example 1-1, the capacitance can be increased, but tan δ is in Example 1
It is about 3.4 to 5.1 times that of -1. Comparative Example 1-
No. 2 can reduce tan δ, but the electrostatic capacity becomes about 15 to 25% of that of Example 1-1.

【0013】実施例2:タンタル粉末の平均径を0.1
〜5μmとし、粒径がその約5倍の焼結造粒粉を造る以
外は実施例1と同じ条件で製造する。
Example 2: The tantalum powder has an average diameter of 0.1.
It is manufactured under the same conditions as in Example 1 except that a sintered granulated powder having a particle diameter of about 5 μm and a particle diameter of about 5 times that of the sintered granulated powder is prepared.

【0014】次に、定格電圧10Vとした実施例2と比
較例とについて、タンタル粉末の平均径を種々に変えた
場合の静電容量と tanδ(120Hzのときの)を求め
た。その結果を表2に示した。なお、比較例はタンタル
粉末の平均径が異なる以外は、実施例2と同一の方法で
製造する。
Next, the capacitance and tan δ (at 120 Hz) when the average diameter of the tantalum powder was variously changed were determined for Example 2 and Comparative Example in which the rated voltage was 10V. The results are shown in Table 2. The comparative example is manufactured by the same method as in Example 2 except that the average diameter of the tantalum powder is different.

【0015】[0015]

【表2】 [Table 2]

【0016】表2から明らかな通り、実施例2−1〜実
施例2−4によれば、静電容量を大きくでき、 tanδを
低くできる。そして、タンタル粉末の平均径が0.1μ
mより小さい比較例2−1は、静電容量を大きくできる
が、 tanδが実施例2−1等の約2.9〜4.3倍にな
る。また、平均径が5μmより大きい比較例2−2は、
tanδを改善できるが、静電容量が実施例2−1等の約
33〜47%になる。
As is clear from Table 2, according to Examples 2-1 to 2-4, the electrostatic capacity can be increased and the tan δ can be decreased. The average diameter of the tantalum powder is 0.1μ
In Comparative Example 2-1, which is smaller than m, the capacitance can be increased, but tan δ is about 2.9 to 4.3 times that of Example 2-1. In addition, Comparative Example 2-2 having an average diameter larger than 5 μm
Although tan δ can be improved, the capacitance becomes about 33 to 47% of that of Example 2-1 and the like.

【0017】[0017]

【発明の効果】以上の通り、請求項1の発明の製造方法
によれば、焼結体の空孔の大きさを弁作用金属粉末の大
きさの0.05〜5倍にしているため、単位体積当りの
コンデンサの容量を大きくできるとともに tanδを改良
できる固体電解コンデンサが得られる。また、請求項2
の発明の製造方法によれば、さらに弁作用金属粉末の平
均径を0.1〜5μmとしているため、より容量と tan
δとを改良できる固体電解コンデンサが得られる。
As described above, according to the manufacturing method of the first aspect of the present invention, the size of the pores of the sintered body is 0.05 to 5 times the size of the valve action metal powder. It is possible to obtain a solid electrolytic capacitor that can increase the capacity of the capacitor per unit volume and improve tan δ. In addition, claim 2
According to the manufacturing method of the present invention, since the average diameter of the valve action metal powder is 0.1 to 5 μm, the capacity and tan
A solid electrolytic capacitor capable of improving δ can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属粉末を所定形状に成形し焼成
して得た焼結体に酸化皮膜を形成した固体電解コンデン
サの製造方法において、酸化皮膜を形成する前の焼結体
の空孔の大きさを弁作用金属粉末の大きさの0.05〜
5倍にすることを特徴とする固体電解コンデンサの製造
方法。
1. A method for producing a solid electrolytic capacitor in which an oxide film is formed on a sintered body obtained by molding valve-action metal powder into a predetermined shape and firing the pores of the sintered body before forming the oxide film. The size of the valve action metal powder size of 0.05 ~
A method for producing a solid electrolytic capacitor, which is characterized by increasing the number by 5 times.
【請求項2】 請求項1において、弁作用金属粉末の平
均径が0.1〜5μmであることを特徴とする固体電解
コンデンサの製造方法。
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the valve action metal powder has an average diameter of 0.1 to 5 μm.
JP10064492A 1992-03-26 1992-03-26 Manufacture of solid electrolytic capacitor Pending JPH05275293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10064492A JPH05275293A (en) 1992-03-26 1992-03-26 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10064492A JPH05275293A (en) 1992-03-26 1992-03-26 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH05275293A true JPH05275293A (en) 1993-10-22

Family

ID=14279539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10064492A Pending JPH05275293A (en) 1992-03-26 1992-03-26 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH05275293A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162372A (en) * 1994-12-08 1996-06-21 Nec Corp Manufacture of electrolytic capacitor
WO2001091953A1 (en) * 2000-06-01 2001-12-06 Cabot Supermetals K.K. Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor
JP2002134368A (en) * 2000-10-26 2002-05-10 Showa Denko Kk Powder for capacitor, sintered body and capacitor using the sintered body
JP2006261438A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162372A (en) * 1994-12-08 1996-06-21 Nec Corp Manufacture of electrolytic capacitor
WO2001091953A1 (en) * 2000-06-01 2001-12-06 Cabot Supermetals K.K. Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor
US7204866B2 (en) 2000-06-01 2007-04-17 Cabot Supermetals K.K. Niobium or tantalum powder and method for production thereof, and solid electrolytic capacitor
JP2002134368A (en) * 2000-10-26 2002-05-10 Showa Denko Kk Powder for capacitor, sintered body and capacitor using the sintered body
JP2006261438A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP4610382B2 (en) * 2005-03-17 2011-01-12 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2009505413A (en) Solid capacitor and manufacturing method thereof
US4604260A (en) Method of producing electrolytic capacitor with Al-Ti anode body
US6835225B2 (en) Niobium sintered body, production method therefor, and capacitor using the same
US3627520A (en) Method of producing porous sintered tantalum
EP1445348A1 (en) Composite titanium oxide film and method for formation thereof and titanium electrolytic capacitor
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JPH05275293A (en) Manufacture of solid electrolytic capacitor
JP2000082639A (en) MANUFACTURE OF Nb CAPACITOR
JP4521849B2 (en) Niobium powder for capacitor, sintered body using the niobium powder, and capacitor using the sintered body
KR100812687B1 (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
US20070180950A1 (en) High capacitance capacitor anode
CN100468586C (en) Tantalum sintered body
JP2006253169A (en) Solid electrolytic capacitor and manufacturing method thereof
JP3195871B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63124511A (en) Aluminum solid electrolytic capacitor
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
JP4002634B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000286154A (en) Manufacture of solid-state electrolytic capacitor
JP4647744B2 (en) Niobium powder for capacitor, sintered body using the same, and capacitor using the same
JP2874423B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JPH07220982A (en) Manufacture of solid electrolytic capacitor
JP2002033247A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2730512B2 (en) Method for manufacturing anode body of solid electrolytic capacitor
JP2773499B2 (en) Solid electrolytic capacitor and method of manufacturing the same