JP2002033247A - Solid electrolytic capacitor and method of manufacturing the same - Google Patents

Solid electrolytic capacitor and method of manufacturing the same

Info

Publication number
JP2002033247A
JP2002033247A JP2000215595A JP2000215595A JP2002033247A JP 2002033247 A JP2002033247 A JP 2002033247A JP 2000215595 A JP2000215595 A JP 2000215595A JP 2000215595 A JP2000215595 A JP 2000215595A JP 2002033247 A JP2002033247 A JP 2002033247A
Authority
JP
Japan
Prior art keywords
silver
layer
manganese dioxide
silver particles
dioxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000215595A
Other languages
Japanese (ja)
Inventor
Masaya Ishijima
正弥 石嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Toppan Circuit Solutions Toyama Inc
Original Assignee
NEC Toppan Circuit Solutions Toyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Toyama Inc filed Critical NEC Toppan Circuit Solutions Toyama Inc
Priority to JP2000215595A priority Critical patent/JP2002033247A/en
Publication of JP2002033247A publication Critical patent/JP2002033247A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the cathode-side series resistance of a solid electrolytic capacitor using a sintered compact obtained from the powder of a valve-action metal for an anode body and manganese dioxide as a solid electrolyte, with a small amount of silver powder having diameters of 1 μm or smaller by making a silver layer composed only of the silver powder directly formable on a manganese dioxide layer. SOLUTION: Sintered pellets 2, each of which is coated with a manganese dioxide layer 4, are dipped in suspension composed only of very fine silver powder having diameter in the range of 3-100 nm and a solvent, pulled from the suspension, and baked at a prescribed temperature. The suspension is prepared by pre-coating the fine silver powder with a dispersant composed of a saturated fatty acid, such as the myristic acid, stearic acid, or lauric acid and dispersing the silver powder in a solvent, for example, butyl acetate. Since the solvent and dispersant are decomposed and volatilized, when the pellets are baked at 200 deg.C for 60 minutes, the silver layer 6A composed only of the silver powder is formed directly on the manganese dioxide layer 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サ及びその製造方法に関し、特に、陽極体に弁作用金属
の粉末から得た焼結体を用い、固体電解質に二酸化マン
ガンを用いる固体電解コンデンサとその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method of manufacturing the same, and more particularly to a solid electrolytic capacitor using a sintered body obtained from a valve metal powder as an anode body and using manganese dioxide as a solid electrolyte. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】この種の固体電解コンデンサについて、
タンタル固体電解コンデンサを例にして説明する。従来
のタンタル固体電解コンデンサの素子の一例(従来例
1)の断面を模式的に示す図2を参照して、この図に示
すコンデンサ素子は、タンタル粉末を角柱或いは円柱に
プレス成形し焼結して得た微多孔質の焼結ペレット2
と、その焼結ペレットの内表面、外表面に形成された酸
化タンタル(Ta25 )の皮膜3と、酸化タンタル皮
膜上に形成された二酸化マンガン層4と、二酸化マンガ
ン層上のカーボン層5及びその上の銀層6とからなって
いる。焼結ペレット2は陽極体であり、酸化タンタル皮
膜3は誘電体であり、二酸化マンガン層4は固体電解質
である。この二酸化マンガン層4と、その上のカーボン
層5と、更にその上の銀層6の三つの層で陰極側の引出
し層をなしている。焼結ペレット2の長手方向の一端面
に紙面上向きに飛び出すように植立されているタンタル
ワイヤ1は、陽極側の引出し線(陽極リード)として機
能するものである。
2. Description of the Related Art A solid electrolytic capacitor of this type includes:
A description will be given taking a tantalum solid electrolytic capacitor as an example. Referring to FIG. 2, which schematically shows a cross section of an example of a conventional tantalum solid electrolytic capacitor element (conventional example 1), the capacitor element shown in this figure is formed by pressing and molding tantalum powder into a prism or a cylinder. Microporous sintered pellet 2
And a film 3 of tantalum oxide (Ta 2 O 5 ) formed on the inner and outer surfaces of the sintered pellet, a manganese dioxide layer 4 formed on the tantalum oxide film, and a carbon layer on the manganese dioxide layer 5 and a silver layer 6 thereon. The sintered pellet 2 is an anode, the tantalum oxide film 3 is a dielectric, and the manganese dioxide layer 4 is a solid electrolyte. The three layers of the manganese dioxide layer 4, the carbon layer 5 thereon, and the silver layer 6 thereon further form a cathode-side extraction layer. The tantalum wire 1 implanted on one end surface of the sintered pellet 2 in the longitudinal direction so as to protrude upward on the paper surface functions as a lead wire (anode lead) on the anode side.

【0003】上述のコンデンサ素子において、二酸化マ
ンガン層4、カーボン層5及び銀層6の三つの層は陰極
側の引出し層をなしているのであるが、この陰極側引出
し層の構造に着目すると、二酸化マンガン層4と銀層6
との間にカーボン層5を介在させている点に、従来例1
のコンデンサの構造上の特徴がある。このようにカーボ
ン層を介在させるのは、次の理由による。すなわち、固
体電解質の層である二酸化マンガン層4の表面は微細に
粗面化されていて、通常、数ミクロン程度のピッチの凹
凸をもっている。一方、銀層6を構成する銀粒子の粒径
は、その二酸化マンガン層4の表面の凹凸のピッチと同
程度か或いはそれより大きい。従って、上記の微細に粗
面化された二酸化マンガン層4上に直接銀層6を形成し
ようとすると、銀粒子は固体電解質4の内部にまで入り
込んで行かない。その結果、二酸化マンガン層4と銀層
6との間の接触面積が小さくなり接触抵抗が高くなっ
て、誘電体(この場合は、酸化タンタル皮膜3)に直列
に加わる抵抗が大きくなってしまう。そこで、銀粒子よ
り微粒の導電物質である微粉カーボン粒子を先に二酸化
マンガン層4に付着させ、二酸化マンガン層の粗面を埋
めておいてから銀層6を形成することで、上記陰極側の
直列抵抗を下げているのである。
In the above-mentioned capacitor element, the three layers of the manganese dioxide layer 4, the carbon layer 5, and the silver layer 6 form a cathode-side extraction layer. Focusing on the structure of the cathode-side extraction layer, Manganese dioxide layer 4 and silver layer 6
In that the carbon layer 5 is interposed between
There is a structural feature of the capacitor. The reason for interposing the carbon layer in this manner is as follows. That is, the surface of the manganese dioxide layer 4, which is a layer of the solid electrolyte, is finely roughened and usually has irregularities with a pitch of about several microns. On the other hand, the particle size of the silver particles constituting the silver layer 6 is equal to or larger than the pitch of the irregularities on the surface of the manganese dioxide layer 4. Therefore, if the silver layer 6 is to be formed directly on the finely roughened manganese dioxide layer 4, the silver particles do not penetrate into the solid electrolyte 4. As a result, the contact area between the manganese dioxide layer 4 and the silver layer 6 is reduced, the contact resistance is increased, and the resistance applied in series to the dielectric (in this case, the tantalum oxide film 3) is increased. Therefore, fine carbon particles, which are finer conductive materials than silver particles, are first adhered to the manganese dioxide layer 4 to fill the rough surface of the manganese dioxide layer, and then the silver layer 6 is formed. The series resistance has been lowered.

【0004】しかしながら、固体電解コンデンサの低直
列抵抗化に対する要望は強く、更なる改善策が望まれて
いる。そのような改善策の一つ(従来例2)が、特開平
5−144684号公報に開示されている。上記公報記
載の固体電解コンデンサの製造方法においては、カーボ
ン層を省いて銀層を直接二酸化マンガン層上に形成す
る。その際、それまでより粒径の小さい銀粉末を用い
て、微粉銀粒子が二酸化マンガン層の微細な凹凸内に進
入するようにしている。これにより、カーボン層を省き
ながらも微粉銀粒子と二酸化マンガン層との接触面積を
確保して、カーボン層の抵抗の分だけ、陰極側の直列抵
抗を下げている。
[0004] However, there is a strong demand for lowering the series resistance of the solid electrolytic capacitor, and further improvement measures are desired. One such improvement (conventional example 2) is disclosed in Japanese Patent Application Laid-Open No. 5-144684. In the method of manufacturing a solid electrolytic capacitor described in the above publication, the silver layer is formed directly on the manganese dioxide layer without the carbon layer. At that time, silver powder having a smaller particle size is used so that the fine silver particles enter the fine irregularities of the manganese dioxide layer. Thereby, the contact area between the fine silver particles and the manganese dioxide layer is secured while the carbon layer is omitted, and the series resistance on the cathode side is reduced by the resistance of the carbon layer.

【0005】すなわち、上記公報の実施例では、それま
で平均粒径が2.0μmの銀粉末を用いていたところ、
これを平均粒径0.7μmの微粉銀粒子に変える。そし
て、二酸化マンガン層の形成迄が済んだ焼結ペレット
を、上記の微粉銀粒子を35wt%含む縣濁液中に浸漬
させ、引き上げ、温度:150℃、時間:1時間の条件
で焼き付けることで、二酸化マンガン層上に直接銀層を
形成している。この銀層の形成に用いる微粉銀粒子の縣
濁液は、上記平均粒径0.7μmの微粉銀粒子を例えば
エポキシ樹脂と混練し、これを酢酸ブチルなどの溶媒に
分散させることによって得ている。
That is, in the examples of the above publication, silver powder having an average particle size of 2.0 μm was used until then.
This is changed to fine silver particles having an average particle size of 0.7 μm. Then, the sintered pellets in which the formation of the manganese dioxide layer has been completed are immersed in a suspension containing 35% by weight of the above fine silver particles, pulled up, and baked under the conditions of temperature: 150 ° C., time: 1 hour. The silver layer is formed directly on the manganese dioxide layer. The suspension of the fine silver particles used for forming the silver layer is obtained by kneading the fine silver particles having an average particle diameter of 0.7 μm with, for example, an epoxy resin and dispersing the kneaded particles in a solvent such as butyl acetate. .

【0006】[0006]

【発明が解決しようとする課題】上述した従来例2の固
体電解コンデンサの製造方法によれば、銀層を構成する
銀粒子の粒径をそれまでのものより小さくし、そのよう
な微粒化した銀粉末と樹脂とを混練したものを予め溶媒
に分散させ、これに焼結ペレットを浸漬させることで、
微粉銀粒子が二酸化マンガン層表面の凹凸内に進入でき
るようにすることができる。これにより、それまで必要
であったカーボン層を省き、銀層を二酸化マンガン層上
に直接形成しながらも接触面積を確保して、カーボン層
の分だけコンデンサの陰極側の直列抵抗を小さくするこ
とができる。
According to the method for manufacturing the solid electrolytic capacitor of the above-mentioned prior art example 2, the silver particles constituting the silver layer are made smaller than those of the prior art, and such silver particles are made finer. By kneading a mixture of silver powder and resin in a solvent in advance, and immersing the sintered pellets in this,
Fine silver particles can be allowed to enter the irregularities on the surface of the manganese dioxide layer. This eliminates the carbon layer, which was necessary until then, and secures the contact area while forming the silver layer directly on the manganese dioxide layer, thereby reducing the series resistance on the cathode side of the capacitor by the carbon layer. Can be.

【0007】しかしながら、二酸化マンガン層上に直接
付着させる銀粒子は粒径が小さいほど二酸化マンガン層
の凹凸内に進入し易いと考えられるにも拘らず、従来例
2のような縣濁液の形成方法、すなわち微粉銀粒子と例
えばエポキシのような樹脂とを混練し、これを溶媒に分
散させる方法で均一に分散させ得る微粉銀粒子の最小粒
径は、0.1μm程度が限度と推測される。また、従来
例2の方法で得られた銀層は、エポキシ樹脂中に銀粒子
が分散した状態になっている。この微粉銀粒子と混練す
る樹脂は、微粉銀粒子の分散性をよくするためと形成さ
れた銀層における耐湿性のような耐環境性を高めるため
のものと考えれられるが、樹脂自体は電気絶縁性である
ので、コンデンサにおける低直列抵抗化の観点からは、
銀層は銀粒子以外の樹脂を含まない方がより効果的であ
ろうと考えられる。
[0007] However, the silver particles deposited directly on the manganese dioxide layer are thought to be easier to enter into the irregularities of the manganese dioxide layer as the particle size is smaller. The minimum particle size of the fine silver particles that can be uniformly dispersed by the method, that is, kneading the fine silver particles and a resin such as epoxy, for example, and dispersing the same in a solvent is estimated to be about 0.1 μm as a limit. . Further, the silver layer obtained by the method of Conventional Example 2 is in a state where silver particles are dispersed in the epoxy resin. The resin kneaded with the fine silver particles is considered to improve the dispersibility of the fine silver particles and to enhance environmental resistance such as moisture resistance in the formed silver layer, but the resin itself is electrically insulating. Therefore, from the viewpoint of reducing the series resistance of the capacitor,
It is thought that it would be more effective for the silver layer not to contain a resin other than silver particles.

【0008】従って本発明は、陽極体に弁作用金属の粉
末から得た焼結体を用い、固体電解質に二酸化マンガン
を用いる固体電解コンデンサにおいて、粒径が0.1μ
mより小なる銀粒子を用いて、銀粒子のみからなる銀層
を直接二酸化マンガン層上に形成できるようにすること
を目的とするものである。
Accordingly, the present invention provides a solid electrolytic capacitor in which a sintered body obtained from a valve metal powder is used for an anode body and manganese dioxide is used as a solid electrolyte.
It is an object of the present invention to form a silver layer composed of only silver particles directly on a manganese dioxide layer using silver particles smaller than m.

【0009】[0009]

【課題を解決するための手段】本発明の固体電解コンデ
ンサの製造方法は、弁作用金属の粉末を成形し焼結して
焼結体を得る工程と、前記焼結体の表面に誘電体皮膜を
形成する工程と、前記誘電体皮膜上に二酸化マンガン層
を形成する工程と、前記二酸化マンガン層上に銀粒子の
みからなる銀層を直接形成する工程とを含んでいる。
A method for manufacturing a solid electrolytic capacitor according to the present invention comprises the steps of molding and sintering a valve metal powder to obtain a sintered body, and forming a dielectric film on the surface of the sintered body. Forming a manganese dioxide layer on the dielectric film, and directly forming a silver layer composed of only silver particles on the manganese dioxide layer.

【0010】そして、上記の銀層を形成するに際し、前
記二酸化マンガン層形成済みの焼結体を、溶媒と予め分
散剤で被覆した銀粒子とのみからなる銀粒子の縣濁液に
浸漬させ、引き上げ、所定の温度で焼き付けることによ
り前記銀粒子のみからなる銀層を直接二酸化マンガン層
上に形成することを特徴とし、前記分散剤に飽和脂肪酸
を用いることを特徴とする。分散剤としての飽和脂肪酸
には、ミリスチン酸、ステアリン酸及びラウリン酸のい
ずれか一つを用いることができる。
In forming the silver layer, the sintered body on which the manganese dioxide layer has been formed is immersed in a suspension of silver particles consisting only of a solvent and silver particles previously coated with a dispersant, The silver layer composed of only the silver particles is directly formed on the manganese dioxide layer by pulling and baking at a predetermined temperature, and a saturated fatty acid is used as the dispersant. Any one of myristic acid, stearic acid and lauric acid can be used as a saturated fatty acid as a dispersant.

【0011】本発明者は、微粉銀粒子の表面を飽和脂肪
酸の一つであるミリスチン酸で予め被覆すると、粒径
0.1μm未満に微粒化した場合でも銀粒子が凝集する
ことなく、銀粉末が単分散金属微粒子の状態で溶媒に均
一に分散すること、そのような微粒銀粉末と溶媒とのみ
からなる縣濁液にコンデンサの焼結ペレットを浸漬させ
ることで、二酸化マンガン層上に飽和脂肪酸で被覆され
た粒径3nm以上、100nm未満の微粉銀粒子からな
る銀層を被着させることができること及び、その後20
0℃程度の温度で焼き付けることで飽和脂肪酸を分解、
揮散させて、微粉銀粒子のみからなる銀層を形成できる
ことを見出した。微粉銀粒子は通常、銀の無機塩を熱分
解して製造するが、その際に飽和脂肪酸(R−COO
H。Rは、アルキル基)を添加しておくと、金属表面に
飽和脂肪酸の−OH基が反応して銀粒子表面に飽和脂肪
酸が付着したような状態になり、銀粒子どうしの凝集を
妨げるものと考えられる。
The present inventors have proposed that when the surface of fine silver particles is coated in advance with myristic acid, which is one of saturated fatty acids, the silver particles will not aggregate even if the particle size is reduced to less than 0.1 μm, and the silver powder will not be agglomerated. Is uniformly dispersed in a solvent in the state of monodispersed metal fine particles, and by immersing the sintered pellet of the capacitor in a suspension consisting only of such fine silver powder and solvent, the saturated fatty acid is placed on the manganese dioxide layer. A silver layer composed of finely divided silver particles having a particle size of 3 nm or more and less than 100 nm coated with
Decompose saturated fatty acids by baking at a temperature of about 0 ° C,
It has been found that a silver layer consisting of only fine silver particles can be formed by volatilization. Finely divided silver particles are usually produced by thermally decomposing an inorganic salt of silver, in which case saturated fatty acids (R-COO
H. R is an alkyl group), the -OH group of the saturated fatty acid reacts on the metal surface to form a state in which the saturated fatty acid adheres to the silver particle surface, which prevents aggregation of silver particles. Conceivable.

【0012】[0012]

【発明の実施の形態】次に、本発明の実施の形態につい
て説明する。本発明の一実施の形態に係るタンタル固体
電解コンデンサの断面図を模式的に示す図1を参照し
て、本実施の形態においては、タンタル粉末からの焼結
ペレット2の作製、その焼結ペレットの表面への酸化タ
ンタル皮膜3及び二酸化マンガン層4の形成までを、従
来公知の方法で順次行った。すなわち、先ず、タンタル
の粉末にバインダを混合したものを、直方体にプレス成
形する。このプレスでの成形の際に、別途用意しておい
たタンタルワイヤ1を、直方体の長手方向の一端面に植
立する。このタンタルワイヤ1は、完成したコンデンサ
素子で陽極リードとなるべきものである。次に、上記の
プレス成形体を真空中で1400℃に加熱し、焼結し
て、微多孔質の焼結ペレット2を得る。その後、この焼
結ペレットをリン酸水溶液からなる化成溶液中に浸漬さ
せ、焼結ペレット2にプラス、化成溶液にマイナスの電
位を与えて陽極化成して、焼結ペレットの外表面及び内
部の微細孔の表面に誘電体層としての酸化タンタル皮膜
3を形成する。更に、上記酸化タンタル皮膜3上に、固
体電解質層としての二酸化マンガン層4を形成する。二
酸化マンガン層4は、焼結ペレット2を硝酸マンガン水
溶液中に浸漬させ、焼結ペレットに硝酸マンガン水溶液
を含浸させて引き上げ、熱分解させる操作を繰り返して
行うことで形成する。繰返しの途中で、熱分解による酸
化タンタル皮膜の損傷を修復する目的で、再化成を行
う。
Next, an embodiment of the present invention will be described. Referring to FIG. 1 schematically showing a cross-sectional view of a tantalum solid electrolytic capacitor according to one embodiment of the present invention, in this embodiment, production of sintered pellet 2 from tantalum powder, The steps up to the formation of the tantalum oxide film 3 and the manganese dioxide layer 4 on the surface were sequentially performed by a conventionally known method. That is, first, a mixture of tantalum powder and a binder is press-formed into a rectangular parallelepiped. At the time of molding by this press, a separately prepared tantalum wire 1 is implanted on one end surface in the longitudinal direction of the rectangular parallelepiped. This tantalum wire 1 is to be an anode lead in the completed capacitor element. Next, the above-mentioned press-formed body is heated to 1400 ° C. in a vacuum and sintered to obtain a microporous sintered pellet 2. Thereafter, the sintered pellets are immersed in a chemical conversion solution composed of a phosphoric acid aqueous solution, and anodized by applying a positive potential to the sintered pellets 2 and a negative potential to the chemical conversion solution to form fine particles on the outer surface and inside of the sintered pellets. A tantalum oxide film 3 as a dielectric layer is formed on the surface of the hole. Further, a manganese dioxide layer 4 as a solid electrolyte layer is formed on the tantalum oxide film 3. The manganese dioxide layer 4 is formed by immersing the sintered pellets 2 in an aqueous solution of manganese nitrate, impregnating the sintered pellets with the aqueous solution of manganese nitrate, pulling up, and thermally decomposing the pellets repeatedly. In the middle of the repetition, re-chemical conversion is performed in order to repair the damage of the tantalum oxide film due to thermal decomposition.

【0013】上述のようにして、従来公知の方法で二酸
化マンガン層4までを形成した後、その二酸化マンガン
層4上に、本実施の形態の方法により、粒径が3nm以
上、100nm未満の微粉銀粒子のみからなる銀層6A
を直接形成した。すなわち、粒径が上記範囲内で表面が
予めミリスチン酸で被覆されている微粉銀粒子を溶媒で
ある酢酸ブチルに分散させて、微粉銀粒子の縣濁液を準
備しておき、二酸化マンガン層4の形成までを済ませた
焼結ペレットを上記微粉銀粒子の縣濁液に浸漬させ、引
き上げ、温度:200℃、時間:60分の条件で焼き付
けて、ミリスチン酸を分解、揮散させた。縣濁液中の微
粉銀粒子の濃度は、5wt%である。ミリスチン酸で被
覆された粒径3nm以上、100nm未満の微粉銀粒子
には、大研化学工業(株)製の銀粉末(商品名:DTA
−2A。平均粒径:5nm)を用いた。
After forming up to the manganese dioxide layer 4 by a conventionally known method as described above, the fine powder having a particle size of 3 nm or more and less than 100 nm is formed on the manganese dioxide layer 4 by the method of the present embodiment. Silver layer 6A consisting only of silver particles
Was formed directly. That is, fine silver particles whose particle diameter is within the above range and whose surface is previously coated with myristic acid are dispersed in butyl acetate as a solvent to prepare a suspension of fine silver particles, and the manganese dioxide layer 4 is prepared. The sintered pellets having been subjected to the formation of the particles were immersed in the suspension of the fine silver particles, pulled up, and baked at a temperature of 200 ° C. for a time of 60 minutes to decompose and volatilize myristic acid. The concentration of fine silver particles in the suspension is 5 wt%. Fine powder silver particles having a particle size of 3 nm or more and less than 100 nm coated with myristic acid include silver powder (trade name: DTA) manufactured by Daiken Chemical Industry Co., Ltd.
-2A. Average particle size: 5 nm).

【0014】以後、従来公知の方法により、陽極リード
1に図示しない外部陽極端子を溶接し、銀層6Aには同
じく図示しない外部陰極端子を導電性接着剤で取り付
け、エポキシ樹脂を用いたトランスファーモールド工法
で外装を施した後、陽、陰両外部端子の外装樹脂から出
た部分を外装樹脂に沿って折り曲げ、整形して、本実施
の形態に係るチップ型タンタル固体電解コンデンサを完
成させた。
Thereafter, an external anode terminal (not shown) is welded to the anode lead 1 by a conventionally known method, an external cathode terminal (not shown) is attached to the silver layer 6A with a conductive adhesive, and transfer molding using an epoxy resin is performed. After the exterior was provided by the construction method, the portions of the positive and negative external terminals protruding from the exterior resin were bent and shaped along the exterior resin to complete the chip-type tantalum solid electrolytic capacitor according to the present embodiment.

【0015】次に、本発明者は、以下に述べるようにし
て比較例のチップ型タンタルコンデンサを作製した。す
なわち、実施の形態と同一の製造工程、条件で二酸化マ
ンガン層4形成済みの焼結ペレットを作製した後、従来
公知の方法で、二酸化マンガン層上にカーボン層5(図
2参照)を形成し、更にそのカーボン層5上に銀層6
(同)を形成して、図2に示す従来例1の構造のコンデ
ンサ素子を得た。
Next, the present inventor manufactured a chip type tantalum capacitor of a comparative example as described below. That is, after producing a sintered pellet having the manganese dioxide layer 4 formed thereon under the same manufacturing process and conditions as those of the embodiment, a carbon layer 5 (see FIG. 2) is formed on the manganese dioxide layer by a conventionally known method. And a silver layer 6 on the carbon layer 5.
Was formed to obtain a capacitor element having the structure of Conventional Example 1 shown in FIG.

【0016】カーボン層5は、粒径1〜5μmの粉末カ
ーボン粒子を純水に分散させた縣濁液中に二酸化マンガ
ン層形成済みの焼結ペレットを浸漬させ、引き上げ、温
度:150℃、時間:30分の条件で焼き付けることに
よって形成した。銀層6は、粒径5〜20μmの銀粉末
とエポキシ樹脂とを混練し、これを酢酸ブチルで稀釈し
たものの中にカーボン層4形成済みの焼結ペレットを浸
漬させ、引き上げ、温度:200℃、時間:60分の条
件で焼き付けることによって形成した。
The carbon layer 5 is prepared by immersing a sintered pellet having a manganese dioxide layer formed therein in a suspension in which powdered carbon particles having a particle size of 1 to 5 μm are dispersed in pure water, and pulling up the same. : Formed by baking under conditions of 30 minutes. The silver layer 6 is obtained by kneading a silver powder having a particle size of 5 to 20 μm and an epoxy resin, diluting the mixture with butyl acetate, immersing the sintered pellets on which the carbon layer 4 has been formed, and pulling up the same. , Time: formed by baking under conditions of 60 minutes.

【0017】上記銀層6の形成後、実施の形態と同一の
製造工程、条件で陽、陰両外部端子を取り付け、外装を
施し、両外部端子の整形を行って比較例のチップ型タン
タル固体電解コンデンサを完成させた。
After the formation of the silver layer 6, both the external and positive external terminals are attached and packaged under the same manufacturing process and conditions as in the embodiment, and the external terminals are shaped. The electrolytic capacitor was completed.

【0018】上述の実施の形態の方法及び比較例の方法
によって定格容量:10μF、定格電圧:6.3Vのチ
ップ型タンタル固体電解コンデンサを100個ずつ作製
し、100kHzでのインピーダンスの絶対値|Z|を
測定したところ、実施の形態に係るコンデンサでは|Z
|の平均値=0.6Ωであり、比較例のコンデンサでは
|Z|の平均値=0.8Ωであった。このことから、実
施の形態に係るコンデンサの方が、比較例のコンデンサ
に比べ陰極側の直列抵抗が小いことが分かる。又、イン
ピーダンスの改善度合は、従来例2(特開平5−144
684号公報)の実施例中の容量10μFのチップ型固
体電解コンデンサにおける改善度合と同程度であること
が分かる。更に、同程度のインピーダンス改善効果を得
るための縣濁液中の微粉銀粒子の濃度は、実施の形態で
は5wt%であるのに対し従来例2では35wt%であ
って、実施の形態の方が従来例2に比べて低い濃度で済
むことが分かった。
According to the method of the above-described embodiment and the method of the comparative example, 100 chip-type tantalum solid electrolytic capacitors having a rated capacity of 10 μF and a rated voltage of 6.3 V are manufactured, and the absolute value of impedance at 100 kHz | Z When | was measured, | Z was found for the capacitor according to the embodiment.
The average value of | Z = 0.6Ω, and the average value of | Z | = 0.8Ω in the capacitor of the comparative example. This indicates that the capacitor according to the embodiment has a smaller series resistance on the cathode side than the capacitor of the comparative example. Further, the degree of improvement in impedance can be determined by the conventional example 2 (JP-A-5-144).
684) is about the same as the improvement in the chip-type solid electrolytic capacitor having a capacitance of 10 μF in the embodiment. Further, the concentration of the fine silver particles in the suspension for obtaining the same impedance improvement effect is 5 wt% in the embodiment, whereas it is 35 wt% in the conventional example 2, and is higher in the embodiment. However, it was found that a lower concentration was required as compared with Conventional Example 2.

【0019】ここで、実施の形態において、粒径0.1
μm未満の微粉銀粒子が単分散金属粒子となって溶媒に
均一に分散するのは、銀の無機塩を分解して銀粒子を得
る際に、銀粒子の表面に飽和脂肪酸であるミリスチン酸
の−OH基が反応し、銀粒子表面にミリスチン酸が付着
した状態になって、銀粒子の凝集が妨げられるからであ
ると考えられる。従って、微粉銀粒子の表面をミリスチ
ン酸以外の他の飽和脂肪酸で被覆しても、それら飽和脂
肪酸は銀粒子の凝集を妨げる分散剤としての作用をする
であろう。また、飽和脂肪酸に限らず、−OH基をもち
一般にR−OHで表されるアルコールで銀粒子を被覆し
ても、同様の効果を得ることができるものと推定され
る。しかしながら、本発明は固体電解コンデンサの製造
に関わるものであり、実施の形態で銀層6Aの焼付けに
用いた200℃という温度は、固体電解コンデンサの製
造で用いられる各種温度の中でも比較的高い部類に属す
ることを考慮すると、ミリスチン酸の他には、沸点がミ
リスチン酸に近く200℃程度の温度で分解させことが
できるステアリン酸、ラウリン酸が固体電解コンデンサ
製造用の分散剤として適当であろう。
Here, in the embodiment, a particle size of 0.1
The reason that the finely divided silver particles having a particle diameter of less than μm are monodispersed metal particles and are uniformly dispersed in the solvent is that when the inorganic salt of silver is decomposed to obtain silver particles, the surface of the silver particles is formed of a saturated fatty acid myristic acid. This is presumably because the —OH group reacts and myristic acid adheres to the surface of the silver particles, preventing aggregation of the silver particles. Thus, even if the surface of the fine silver particles is coated with a saturated fatty acid other than myristic acid, those saturated fatty acids will act as a dispersant to prevent aggregation of the silver particles. It is also presumed that the same effect can be obtained by coating silver particles with an alcohol having an -OH group and generally represented by R-OH, not limited to saturated fatty acids. However, the present invention relates to the manufacture of a solid electrolytic capacitor, and the temperature of 200 ° C. used for baking silver layer 6A in the embodiment is a relatively high temperature among various temperatures used in the manufacture of a solid electrolytic capacitor. In addition to myristic acid, stearic acid and lauric acid, which have a boiling point close to that of myristic acid and can be decomposed at a temperature of about 200 ° C., will be suitable as dispersants for the production of solid electrolytic capacitors. .

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
陽極体に弁作用金属の粉末から得た焼結体を用い、固体
電解質に二酸化マンガンを用いる固体電解コンデンサを
製造するに当って、粒径が0.1μmより小なる銀粒子
を用いて、二酸化マンガン層上に銀粒子のみからなる銀
層を直接形成できる。これにより、固体電解コンデンサ
の陰極側の直列抵抗を、より少ない銀粉量で、小さくす
ることができる。
As described above, according to the present invention,
Using a sintered body obtained from a valve metal powder for the anode body, and manufacturing a solid electrolytic capacitor using manganese dioxide as the solid electrolyte, using silver particles having a particle size smaller than 0.1 μm, A silver layer consisting of only silver particles can be formed directly on the manganese layer. Thereby, the series resistance on the cathode side of the solid electrolytic capacitor can be reduced with a smaller amount of silver powder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係るタンタル固体電解
コンデンサにおける、コンデンサ素子の断面を模式的に
示す図である。
FIG. 1 is a diagram schematically showing a cross section of a capacitor element in a tantalum solid electrolytic capacitor according to one embodiment of the present invention.

【図2】従来例1のタンタル固体電解コンデンサにおけ
る、コンデンサ素子の断面を模式的に示す図である。
FIG. 2 is a diagram schematically showing a cross section of a capacitor element in a tantalum solid electrolytic capacitor of Conventional Example 1.

【符号の説明】[Explanation of symbols]

1 タンタルワイヤ 2 焼結ペレット 3 酸化タンタル皮膜 4 二酸化マンガン層 5 カーボン層 6、6A 銀層 DESCRIPTION OF SYMBOLS 1 Tantalum wire 2 Sintered pellet 3 Tantalum oxide film 4 Manganese dioxide layer 5 Carbon layer 6, 6A Silver layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属の粉末を成形し焼結してなる
焼結体と、 前記焼結体の表面に形成された誘電体皮膜と、 前記誘電体皮膜上に形成された二酸化マンガン層と、 前記二酸化マンガン層上に直接形成された、銀粒子のみ
からなる銀層とを含む固体電解コンデンサ。
1. A sintered body obtained by molding and sintering a powder of a valve metal, a dielectric film formed on a surface of the sintered body, and a manganese dioxide layer formed on the dielectric film. And a silver layer directly formed on the manganese dioxide layer and comprising only silver particles.
【請求項2】 上記銀層が、粒径3nm以上、100n
m未満の銀粒子を用いて形成されたものであることを特
徴とする固体電解コンデンサ。
2. The method according to claim 1, wherein the silver layer has a particle size of 3 nm or more and 100 n.
A solid electrolytic capacitor formed using silver particles of less than m.
【請求項3】 前記焼結体がTa粉末の焼結体であるこ
とを特徴とする、請求項1又は請求項2に記載の固体電
解コンデンサ。
3. The solid electrolytic capacitor according to claim 1, wherein said sintered body is a sintered body of Ta powder.
【請求項4】 弁作用金属の粉末を成形し焼結して焼結
体を得る工程と、 前記焼結体の表面に誘電体皮膜を形成する工程と、 前記誘電体皮膜上に二酸化マンガン層を形成する工程
と、 前記二酸化マンガン層上に銀粒子のみからなる銀層を直
接形成する工程とを含む固体電解コンデンサの製造方
法。
4. A step of forming and sintering a valve metal powder to obtain a sintered body, a step of forming a dielectric film on the surface of the sintered body, and a manganese dioxide layer on the dielectric film. And a step of directly forming a silver layer comprising only silver particles on the manganese dioxide layer.
【請求項5】 前記銀層の形成に際し、前記二酸化マン
ガン層形成済みの焼結体を、溶媒と予め分散剤で被覆し
た銀粒子とのみからなる銀粒子の縣濁液に浸漬させ、引
き上げ、所定の温度で焼き付けることにより前記銀粒子
のみからなる銀層を直接二酸化マンガン層上に形成する
ことを特徴とする、請求項4に記載の固体電解コンデン
サの製造方法。
5. When forming the silver layer, the sintered body on which the manganese dioxide layer has been formed is immersed in a suspension of silver particles consisting solely of a solvent and silver particles previously coated with a dispersant, and pulled up. The method for manufacturing a solid electrolytic capacitor according to claim 4, wherein the silver layer composed of only the silver particles is directly formed on the manganese dioxide layer by baking at a predetermined temperature.
【請求項6】 前記銀層の原料の銀粒子に、粒径3nm
以上、100nm未満の銀粒子を用いることを特徴とす
る、請求項4又は請求項5に記載の固体電解コンデンサ
の製造方法。
6. The method according to claim 6, wherein silver particles as a raw material of the silver layer have a particle diameter of 3 nm.
The method for manufacturing a solid electrolytic capacitor according to claim 4 or 5, wherein silver particles having a size of less than 100 nm are used.
【請求項7】 前記分散剤に飽和脂肪酸を用いることを
特徴とする、請求項5又は請求項6に記載の固体電解コ
ンデンサの製造方法。
7. The method for producing a solid electrolytic capacitor according to claim 5, wherein a saturated fatty acid is used as the dispersant.
【請求項8】 前記飽和脂肪酸にミリスチン酸、ステア
リン酸及びラウリン酸のいずれか一つを用いることを特
徴とする、請求項7に記載の固体電解コンデンサの製造
方法。
8. The method according to claim 7, wherein any one of myristic acid, stearic acid and lauric acid is used as the saturated fatty acid.
【請求項9】 前記焼結体の原料にTa粉末を用いるこ
とを特徴とする、請求項4乃至8のいずれか一つに記載
の固体電解コンデンサの製造方法。
9. The method for manufacturing a solid electrolytic capacitor according to claim 4, wherein Ta powder is used as a raw material of said sintered body.
JP2000215595A 2000-07-17 2000-07-17 Solid electrolytic capacitor and method of manufacturing the same Pending JP2002033247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215595A JP2002033247A (en) 2000-07-17 2000-07-17 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215595A JP2002033247A (en) 2000-07-17 2000-07-17 Solid electrolytic capacitor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002033247A true JP2002033247A (en) 2002-01-31

Family

ID=18710994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215595A Pending JP2002033247A (en) 2000-07-17 2000-07-17 Solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002033247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253169A (en) * 2005-03-08 2006-09-21 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method thereof
JP2009252881A (en) * 2008-04-03 2009-10-29 Nichicon Corp Solid-state electrolytic capacitor and its manufacturing method
KR20130058428A (en) * 2011-11-25 2013-06-04 삼성전기주식회사 Solid electrolyte capacitor and fabrication method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121270A (en) * 1978-03-14 1979-09-20 Fukuda Metal Foil Powder Production of finely divided silver powder
JPH09205042A (en) * 1996-01-26 1997-08-05 Hitachi Aic Inc Production of tantalum capacitor
JPH1088206A (en) * 1996-09-12 1998-04-07 Dowa Mining Co Ltd Silver powder and manufacture of silver powder
JPH11135377A (en) * 1997-10-29 1999-05-21 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54121270A (en) * 1978-03-14 1979-09-20 Fukuda Metal Foil Powder Production of finely divided silver powder
JPH09205042A (en) * 1996-01-26 1997-08-05 Hitachi Aic Inc Production of tantalum capacitor
JPH1088206A (en) * 1996-09-12 1998-04-07 Dowa Mining Co Ltd Silver powder and manufacture of silver powder
JPH11135377A (en) * 1997-10-29 1999-05-21 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253169A (en) * 2005-03-08 2006-09-21 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method thereof
JP4670402B2 (en) * 2005-03-08 2011-04-13 パナソニック株式会社 Manufacturing method of solid electrolytic capacitor
JP2009252881A (en) * 2008-04-03 2009-10-29 Nichicon Corp Solid-state electrolytic capacitor and its manufacturing method
KR20130058428A (en) * 2011-11-25 2013-06-04 삼성전기주식회사 Solid electrolyte capacitor and fabrication method thereof
KR102016481B1 (en) * 2011-11-25 2019-09-02 삼성전기주식회사 Solid Electrolyte Capacitor and fabrication method thereof

Similar Documents

Publication Publication Date Title
US6775127B2 (en) Anode member for a solid electrolytic capacitor, method of producing the same and solid electrolytic capacitor using the same
JP2009505413A (en) Solid capacitor and manufacturing method thereof
CN110814348A (en) Preparation method of sintered aluminum foil with high specific volume
EP1344750A1 (en) Method of forming titanium oxide film and titanium electrolytic capacitor
JP5289669B2 (en) Method for producing fine powder of Nb compound, method for producing solid electrolytic capacitor using fine powder of Nb compound
JP4670402B2 (en) Manufacturing method of solid electrolytic capacitor
JP2002033247A (en) Solid electrolytic capacitor and method of manufacturing the same
US20070180950A1 (en) High capacitance capacitor anode
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JP2008010719A (en) Solid electrolytic capacitor, and its manufacturing method
JP2005079333A (en) Valve action metal powder for dispersion, and solid electrolytic capacitor using the same
JP3070443B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11135377A (en) Solid electrolytic capacitor and its manufacture
JP5041483B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000068160A (en) Ta SOLID ELECTROLYTIC CAPACITOR AND ITS MANUFACTURE
JPH05275293A (en) Manufacture of solid electrolytic capacitor
JP2000286154A (en) Manufacture of solid-state electrolytic capacitor
JPS63124511A (en) Aluminum solid electrolytic capacitor
JP3536951B2 (en) Tantalum solid electrolytic capacitor
JPH11224833A (en) Manufacture of porous anode of solid electrolytic capacitor
JP2006013031A (en) Solid-state electrolytic capacitor and its manufacturing method
JP2008205190A (en) Solid electrolytic capacitor and its manufacturing method
JPH08162372A (en) Manufacture of electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100526