JPH05263679A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPH05263679A
JPH05263679A JP5990492A JP5990492A JPH05263679A JP H05263679 A JPH05263679 A JP H05263679A JP 5990492 A JP5990492 A JP 5990492A JP 5990492 A JP5990492 A JP 5990492A JP H05263679 A JPH05263679 A JP H05263679A
Authority
JP
Japan
Prior art keywords
fuel
air
fuel ratio
control device
ratio control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5990492A
Other languages
Japanese (ja)
Inventor
Kouzou Katougi
工三 加藤木
Seiji Asano
誠二 浅野
Toshio Ishii
俊夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5990492A priority Critical patent/JPH05263679A/en
Publication of JPH05263679A publication Critical patent/JPH05263679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To reduce uncombusted portion of the fuel by calculating the engine revolving speed, the evaporation factor of fuel, and its residual rate, judging the combusting condition at each ignition, changing the evaporation factor or residual rate of the fuel in accordance With the combusting condition at each combustion, and correcting the fuel injection amount to cylinder. CONSTITUTION:A control unit 1 is fed with sensing signals from various sensors 10-15, which sense the engine operating condition, and with sensing signals given by a combustive light sensor 16 and ion sensor 17 which sense the air-fuel ratio around a spark plug 7. The unit corrects parameters in conformity to the sensing signals given by a suction air thermometer 18 and/or a fuel temp. meter 19 and also controls a fuel injection valve 6 and ignition coil 8. The unit 1 calculates the engine revolving speed, the evaporation factor of the fuel, and the fuel residual rate in combustion chamber, etc., and judges the combusting condition at each ignition. The evaporation factor of the fuel or its residual rate is changed in accordance with the combusting condition at each combustion, and the fuel supply amount to all cylinders or any particular cylinder is corrected through calculation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の空燃比制御に
かかり、特に始動時からの空燃比制御について好適なも
のに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control of an internal combustion engine, and more particularly to an air-fuel ratio control suitable from the start.

【0002】[0002]

【従来の技術】内燃機関がもっとも効率よく力を出すに
は空気と燃料の質量比が適正である必要がある。しかし
ながら、燃料が気化していない場合には気化する割合を
見越して燃料を多くしなければならない。
2. Description of the Related Art In order for an internal combustion engine to output power most efficiently, it is necessary that the mass ratio of air and fuel be appropriate. However, when the fuel is not vaporized, the amount of fuel must be increased in anticipation of the vaporization rate.

【0003】このため、燃焼室内での空燃比は通常より
濃く、燃焼が不安定になりやすい。そこで、従来は始動
後、徐々に空燃比を通常に戻していく制御がとられてい
た。こうした、始動時の空燃比制御の例として特開平3
−189344 号をあげることができる。
For this reason, the air-fuel ratio in the combustion chamber is higher than usual and combustion tends to become unstable. Therefore, conventionally, after the engine is started, the air-fuel ratio is gradually returned to normal. As an example of such air-fuel ratio control at the time of starting,
-189344 can be given.

【0004】[0004]

【発明が解決しようとする課題】従来の技術では始動時
の空燃比が濃いために未燃分が排出され、排気ガス中の
HCが多い問題がある。また、一度始動に失敗すると燃
焼室内には燃料がたまり次回の始動時にはその分だけ余
分な燃料となり始動性がさらに悪化する問題もある。
In the prior art, there is a problem that unburned components are discharged because the air-fuel ratio at the time of starting is high, and a large amount of HC exists in the exhaust gas. Further, there is a problem in that once the engine fails to start, fuel accumulates in the combustion chamber, and when the engine is started next time, the fuel becomes extra fuel and the startability is further deteriorated.

【0005】そこで本発明では始動時からの未燃分を低
減することを目的とし、同時に始動性を向上させる。
In view of this, the present invention aims to reduce the unburned component from the start, and at the same time improves the startability.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に次のような手段を用いる。
To solve the above problems, the following means are used.

【0007】まず、燃焼室に吸入される空気量と燃料量
の測定を計算する手段。
First, a means for calculating measurements of the amount of air and fuel drawn into the combustion chamber.

【0008】次に、点火プラグ周辺の空燃比を計算する
手段。
Next, means for calculating the air-fuel ratio around the spark plug.

【0009】また、排気ガス中の未燃成分を検出する手
段。
A means for detecting unburned components in the exhaust gas.

【0010】これらの手段をもちいて空燃比のフィード
バックを行うことにより、空燃比を制御する。
The air-fuel ratio is controlled by feeding back the air-fuel ratio using these means.

【0011】[0011]

【作用】まず燃焼室内に吸入される空気量と燃料量を測
定することにより、1回の燃焼毎の空燃比を制御でき
る。空気量はインテークマニホールドへの平均流量では
なく吸入弁を通過する空気量を計算するので、この空気
量に見合う燃料を混合すれば良い。
The air-fuel ratio for each combustion can be controlled by first measuring the amount of air and the amount of fuel taken into the combustion chamber. Since the amount of air is not the average flow rate to the intake manifold, but the amount of air passing through the intake valve is calculated, it suffices to mix fuel corresponding to this amount of air.

【0012】また、混合気が燃焼室内でどれだけ燃焼に
関与し、点火プラグ周辺での適正な空燃比を形成するか
を計算することにより、未燃分を予想できる。
Further, the unburned component can be predicted by calculating how much the air-fuel mixture participates in combustion in the combustion chamber and forms an appropriate air-fuel ratio around the spark plug.

【0013】さらに、排気ガス中の成分を検出すること
により、フィードバックを正確に行うことができるの
で、空燃比を適正に制御できる。
Further, since the feedback can be accurately performed by detecting the component in the exhaust gas, the air-fuel ratio can be properly controlled.

【0014】[0014]

【実施例】本発明の一実施例を図1を用いて説明する。EXAMPLE An example of the present invention will be described with reference to FIG.

【0015】エンジン制御ユニット1,シリンダ2,吸
気管3,排気管4,スロットル5,燃料噴射弁6,点火
プラグ7,点火コイル8,吸入空気流量計10,気筒判
別用レファレンスセンサ11,クランクの回転角をはか
るポジションセンサ12,スロットルの開度を測るスロ
ットルセンサ13,空燃比を測るO2センサ14(1)、
または、HC検出器14(2),水温センサ15、から
構成されている。
The engine control unit 1, the cylinder 2, the intake pipe 3, the exhaust pipe 4, the throttle 5, the fuel injection valve 6, the ignition plug 7, the ignition coil 8, the intake air flow meter 10, the cylinder discrimination reference sensor 11, and the crank. A position sensor 12 for measuring a rotation angle, a throttle sensor 13 for measuring a throttle opening, an O 2 sensor 14 (1) for measuring an air-fuel ratio,
Alternatively, it is composed of an HC detector 14 (2) and a water temperature sensor 15.

【0016】また、点火プラグ周辺の空燃比を検出する
手段として、燃焼光センサ16やイオン検出器17を備
える。さらに、吸入空気温度計18や燃料温度計19に
より、パラメータの補正を行う。
A combustion light sensor 16 and an ion detector 17 are provided as means for detecting the air-fuel ratio around the spark plug. Further, the parameters are corrected by the intake air thermometer 18 and the fuel thermometer 19.

【0017】エンジン制御ユニットは吸入空気量計,レ
ファレンスセンサ,ポジションセンサ,スロットルセン
サ,空燃比センサなどからエンジンの運転状態を検知す
るのに必要な信号を取り込み、所定の演算処理により各
種の駆動信号を計算して燃料噴射弁や点火コイルを動作
させてエンジンを制御する。
The engine control unit fetches signals necessary for detecting the operating state of the engine from an intake air amount meter, a reference sensor, a position sensor, a throttle sensor, an air-fuel ratio sensor, etc., and carries out various driving signals by predetermined arithmetic processing. Is calculated and the fuel injection valve and the ignition coil are operated to control the engine.

【0018】エンジン回転数は所定時間内のポジション
センサの信号をカウントして、回転数Nとする。同時に
ポジション信号の時間間隔を計り、逆数を求めても良
い。
The number of engine revolutions is the number of revolutions N by counting the signals from the position sensor within a predetermined time. At the same time, the time interval of the position signal may be measured to obtain the reciprocal.

【0019】吸入空気量は次のように求める。The intake air amount is obtained as follows.

【0020】インテークマニホールド内に滞留する空気
量を無視できない為に、インテークマニホールドの圧力
Pmをパラメータとして流入空気量Qaと吸気弁への流
量Qcを求める。Qa=F(Pm)。Qc=G(P
m)。
Since the amount of air staying in the intake manifold cannot be ignored, the inflow air amount Qa and the flow rate Qc to the intake valve are determined using the intake manifold pressure Pm as a parameter. Qa = F (Pm). Qc = G (P
m).

【0021】ここで、F(Pm)およびG(Pm)はそ
れぞれ大気圧とインテークマニホールド内の圧力差の関
数と、インテークマニホールド内の圧力と燃焼室の圧力
差を表す関数である。
Here, F (Pm) and G (Pm) are a function of atmospheric pressure and a pressure difference in the intake manifold, and a function representing a pressure difference in the intake manifold and a pressure in the combustion chamber, respectively.

【0022】こうして求められるQcを回転数Nで割
り、所定の係数Kを乗じて、燃料噴射量Tpを計算して
混合気を形成する。係数Kは始動時の水温とインテーク
マニホールド内に残存する燃料量の関数である。Tp=
Qc*K/N。
The Qc thus obtained is divided by the rotational speed N and multiplied by a predetermined coefficient K to calculate the fuel injection amount Tp to form the air-fuel mixture. The coefficient K is a function of the water temperature at start-up and the amount of fuel remaining in the intake manifold. Tp =
Qc * K / N.

【0023】すなわち、どのくらい燃料が気化して燃焼
に関与する蒸発率θに反比例し、残存する残存率ηにた
いして1−ηに比例する。K(1−η)/θ。このよう
にして、燃焼室内での空燃比が予想される。図2に吸入
空気量計算のモデルを示す。残存率ηや蒸発率θは燃料
温度やインテークマニホールドの壁温,シリンダージャ
ケットの温度,水温,吸入空気温度によって変わる。す
なわち、これらの温度が高ければ燃料の気化が促進され
るので残存率は減少し、蒸発率は増加する。また、吸入
空気量が増えれば流速が速いのでより多くの燃料が気筒
内に流れ、残存率は減少することになる。同じ流量でも
回転数が高いときは、気筒内の負圧が高まり燃料の気化
がさらに促進され蒸発率は増加する。
That is, how much the fuel is vaporized and is inversely proportional to the evaporation rate θ involved in combustion, and is proportional to 1-η with respect to the remaining rate η. K (1-η) / θ. In this way, the air-fuel ratio in the combustion chamber is predicted. FIG. 2 shows a model for calculating the intake air amount. The residual rate η and the evaporation rate θ change depending on the fuel temperature, the wall temperature of the intake manifold, the temperature of the cylinder jacket, the water temperature, and the intake air temperature. That is, if these temperatures are high, the vaporization of the fuel is promoted, so that the residual rate decreases and the evaporation rate increases. Further, as the intake air amount increases, the flow velocity is faster, so that more fuel flows into the cylinder, and the remaining rate decreases. Even when the flow rate is the same, when the rotation speed is high, the negative pressure in the cylinder is increased, the vaporization of fuel is further promoted, and the evaporation rate is increased.

【0024】これらの条件から、回転数とインテークマ
ニホールドの負圧,吸入空気量,水温,吸入空気温度等
により、残存率ηと蒸発率θの初期値を決定できる。
From these conditions, the initial values of the residual rate η and the evaporation rate θ can be determined by the rotational speed, the negative pressure of the intake manifold, the intake air amount, the water temperature, the intake air temperature, and the like.

【0025】さらに蒸発率θは前回の燃焼状態によって
も変化する。
Further, the evaporation rate θ also changes depending on the previous combustion state.

【0026】すなわち、前回の点火で不完全燃焼すれば
燃焼室内に未燃の燃料が残り、次回の燃料供給量を減ら
すことが必要で、蒸発率を減じなければならない。
That is, if incomplete combustion is caused by the previous ignition, unburned fuel remains in the combustion chamber, and it is necessary to reduce the fuel supply amount for the next time, and the evaporation rate must be reduced.

【0027】次に、燃焼室内での燃焼検出について説明
する。
Next, combustion detection in the combustion chamber will be described.

【0028】燃焼室内での燃焼が正常に行われれば、爆
発行程でのエンジン回転数は上昇し、排気行程で低下す
る。もし、失火すれば爆発行程での回転上昇がないため
他の気筒に比べて回転数が低下する。図3に示すように
回転変動の山が欠けることになる。
When combustion is normally performed in the combustion chamber, the engine speed increases in the explosion stroke and decreases in the exhaust stroke. If there is a misfire, there will be no increase in rotation during the explosion stroke, and the rotation speed will be lower than in other cylinders. As shown in FIG. 3, the peak of the fluctuation in rotation is missing.

【0029】回転変動は始動時のスタータの電流変化を
検知しても良い。回転が上昇すればモータの負荷が減り
電流が減少する。
The rotation fluctuation may detect a change in the current of the starter at the time of starting. As the rotation increases, the load on the motor decreases and the current decreases.

【0030】失火検出の他の方法として、燃焼光を検出
して燃焼温度を計る方法や燃焼時のイオン電流を検出す
る方法がある。図4に示すように燃焼光のスペクトル分
布から温度を推定できる。また、燃焼光の持続時間から
燃焼炎の広がりを推定できる。
As another method for detecting misfire, there are a method of measuring combustion temperature by detecting combustion light and a method of detecting ion current during combustion. As shown in FIG. 4, the temperature can be estimated from the spectral distribution of combustion light. Further, the spread of the combustion flame can be estimated from the duration of the combustion light.

【0031】また、点火後の燃焼ガスによるイオンの伝
導度をはかることに燃焼状態を検出できる。図5に示す
ように、点火プラグに逆電圧を引加して燃焼時の電流を
検出する。燃焼すればイオン電流による電圧が生じるが
失火した場合は電圧がないため容易に判定できる。
Further, the combustion state can be detected by measuring the ion conductivity of the combustion gas after ignition. As shown in FIG. 5, a reverse voltage is applied to the spark plug to detect the current during combustion. If it burns, a voltage is generated due to the ionic current, but if it misfires, there is no voltage and it can be easily determined.

【0032】正常燃焼すれば燃焼室内に残る混合気はな
くなるが、失火した場合は燃料噴射量Tpから燃焼室内
の残存量分を差し引けばよい。
If the combustion is normal, no air-fuel mixture remains in the combustion chamber, but if a misfire occurs, the remaining amount in the combustion chamber may be subtracted from the fuel injection amount Tp.

【0033】次に、排気ガス中のHC成分を測定する方
法を説明する。O2 センサが活性化していればO2 セン
サのリッチ信号により判定できるが、活性化していない
場合は排気ガスの一部をサンプリングし、点火すること
でイオン電流等の検出により未燃分を測定できる。
Next, a method for measuring the HC component in the exhaust gas will be described. If the O 2 sensor is activated, it can be judged by the rich signal of the O 2 sensor, but if it is not activated, part of the exhaust gas is sampled and ignited to measure the unburned content by detecting the ion current etc. it can.

【0034】もし、未燃分があれば燃焼室内出の空燃比
が濃いことになり、係数Kを減じるようにフィードバッ
クをする。フィードバックは図6に示すように、失火を
検出したときは残存率ηを減らす。
If there is an unburned portion, the air-fuel ratio of the gas coming out of the combustion chamber becomes rich, and feedback is given so as to reduce the coefficient K. As shown in FIG. 6, the feedback reduces the residual rate η when a misfire is detected.

【0035】正常燃焼した場合には回転数が上昇し負圧
が増すため燃料の気化が促進されるので次の気筒の蒸発
率θは増加する。そこで、前気筒の燃焼状態に応じて蒸
発率θを補正すればよい。
In the case of normal combustion, the number of revolutions increases and the negative pressure increases, so that the vaporization of fuel is promoted and the evaporation rate θ of the next cylinder increases. Therefore, the evaporation rate θ may be corrected according to the combustion state of the front cylinder.

【0036】また、通常燃料噴射は排気行程であらかじ
め噴射しているが、噴射中に回転数が上昇したときはT
pを計算したときの回転数に対する割合だけTpをふや
せば、燃焼室内での空燃比の変動を抑えることができ
る。
Further, although the normal fuel injection is performed in advance in the exhaust stroke, when the rotation speed increases during the injection, the T
If Tp is increased by the ratio to the number of revolutions when p is calculated, the fluctuation of the air-fuel ratio in the combustion chamber can be suppressed.

【0037】逆に回転数が低下したときは、Tpを減じ
る。しかし、すでに噴射幅が所定の減じた幅より長いと
きは、残存率を増やして次の噴射分に補正を加えれば良
い。このため、回転数及び蒸発率と残存率は気筒毎に計
数を持つのが望ましい。図7に計算のタイミングを示
す。
On the contrary, when the number of rotations decreases, Tp is reduced. However, when the injection width is already longer than the predetermined reduced width, the remaining rate may be increased and the correction for the next injection may be added. For this reason, it is desirable that the number of revolutions, the evaporation rate, and the remaining rate have a count for each cylinder. FIG. 7 shows the calculation timing.

【0038】ユニットが起動したときに水温をモニタす
る。
The water temperature is monitored when the unit is started.

【0039】レファレンス信号を所定回数数えたのちに
気筒判別を行い、該当気筒の回転数N(cyl),蒸発率
θ(cyl)と残存率η(cyl)を計算する。
After counting the reference signal a predetermined number of times, the cylinder is discriminated, and the rotational speed N (cyl), evaporation rate θ (cyl) and residual rate η (cyl) of the corresponding cylinder are calculated.

【0040】一爆発毎に該当気筒の失火判定を行う。The misfire determination of the corresponding cylinder is performed for each explosion.

【0041】さらに排気行程で排気ガス中のHC成分を
測定し、蒸発率と残存率を補正する。
Further, the HC component in the exhaust gas is measured in the exhaust stroke to correct the evaporation rate and the residual rate.

【0042】[0042]

【発明の効果】本発明によれば蒸発率と残存率を適正な
値にすることで始動時からの空燃比を制御することがで
き、エミッションの低下を図る効果がある。
According to the present invention, it is possible to control the air-fuel ratio from the start by setting the evaporation rate and the residual rate to appropriate values, and it is possible to reduce emissions.

【0043】また、計数をバックアップし、次の始動に
使うことで様々な燃料に対応することができる効果があ
る。
Further, there is an effect that various fuels can be dealt with by backing up the count and using it for the next start.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】吸入空気量計算の概念図である。FIG. 2 is a conceptual diagram of intake air amount calculation.

【図3】回転数変動による失火判定を示す図である。FIG. 3 is a diagram showing a misfire determination based on a rotation speed fluctuation.

【図4】燃焼光による失火判定を示す図である。FIG. 4 is a diagram showing misfire determination based on combustion light.

【図5】イオン電流による失火判定を示す図である。FIG. 5 is a diagram showing misfire determination based on ion current.

【図6】計数補正のフィードバックを示す図である。FIG. 6 is a diagram showing feedback of counting correction.

【図7】計数計算のタイミングチャートを示す図であ
る。
FIG. 7 is a diagram showing a timing chart of counting calculation.

【符号の説明】[Explanation of symbols]

1…エンジン制御ユニット、2…シリンダ、3…吸気
管、4…排気管、5…スロットル、6…燃料噴射弁、7
…点火プラグ、8…点火コイル、10…吸気流量計、1
1…気筒判別用レファレンスセンサ、12…クランクの
回転角をはかるポジションセンサ、13…スロットルの
開度を測るスロットルセンサ、14…空燃比を測るO2
センサ(1)、またはHC検出器(2)、15…水温セ
ンサ、16…燃焼光センサ、17…イオン電流検出器、
18…吸入空気温度計、19…燃料温度計。
1 ... Engine control unit, 2 ... Cylinder, 3 ... Intake pipe, 4 ... Exhaust pipe, 5 ... Throttle, 6 ... Fuel injection valve, 7
... spark plug, 8 ... ignition coil, 10 ... intake flow meter, 1
1 ... Cylinder discrimination reference sensor, 12 ... Position sensor for measuring crank rotation angle, 13 ... Throttle sensor for measuring throttle opening, 14 ... O 2 for measuring air-fuel ratio
Sensor (1) or HC detector (2), 15 ... Water temperature sensor, 16 ... Combustion light sensor, 17 ... Ion current detector,
18 ... Intake air thermometer, 19 ... Fuel thermometer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 364 K 7536−3G 368 Z 7536−3G F02P 17/00 H F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 45/00 364 K 7536-3G 368 Z 7536-3G F02P 17/00 H F

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の運転状態を検出して、燃料噴射
量を制御する空燃比制御装置において、エンジン回転数
と燃料の蒸発率,インテークマニホールド内または燃焼
室内の残存率を計算し、点火毎に燃焼状態の判定を行な
う手段を備え、爆発毎の燃焼状態に応じて蒸発率または
残存率を変化させて、全気筒または特定の気筒への燃料
供給量を補正演算することを特徴とする空燃比制御装
置。
Claim: What is claimed is: 1. An air-fuel ratio control device for detecting an operating state of an internal combustion engine to control a fuel injection amount, calculating an engine speed, a fuel evaporation rate, a remaining rate in an intake manifold or a combustion chamber, and igniting. It is characterized in that it comprises means for determining the combustion state for each, and changes the evaporation rate or the remaining rate according to the combustion state for each explosion, and corrects the fuel supply amount to all cylinders or a specific cylinder. Air-fuel ratio control device.
【請求項2】請求項1の空燃比制御装置において、機関
の始動時回転数の変化により失火を検出し、失火判定時
に蒸発率と残存率を補正演算することを特徴とする空燃
比制御装置。
2. The air-fuel ratio control device according to claim 1, wherein misfire is detected based on a change in the engine speed at engine start, and the evaporation rate and the residual rate are corrected and calculated when the misfire is determined. ..
【請求項3】請求項1の空燃比制御装置において、始動
時の燃焼室内の燃焼光の有無またはスペクトルの分布に
より失火判定を行い、失火判定時に蒸発率と残存率を補
正演算することを特徴とする空燃比制御装置。
3. The air-fuel ratio control device according to claim 1, wherein a misfire determination is made based on the presence or absence of combustion light or a spectrum distribution in the combustion chamber at the time of starting, and the evaporation rate and the residual rate are corrected and calculated when the misfire is determined. Air-fuel ratio control device.
【請求項4】請求項1の空燃比制御装置において、始動
時の点火プラグ周辺のイオン濃度を検出し、イオン濃度
に応じて失火判定を行い、失火判定時に蒸発率と残存率
を補正演算することを特徴とする空燃比制御装置。
4. The air-fuel ratio control device according to claim 1, wherein the ion concentration around the spark plug at the time of starting is detected, a misfire determination is made according to the ion concentration, and an evaporation rate and a residual rate are corrected and calculated when the misfire is determined. An air-fuel ratio control device characterized by the above.
【請求項5】請求項1から4のいずれか1項記載の空燃
比制御装置において、排気ガスを分析し、排気ガス中の
未燃分を検出し、検出結果に応じて蒸発率と残存率を補
正演算することを特徴とする空燃比制御装置。
5. The air-fuel ratio control device according to claim 1, wherein the exhaust gas is analyzed, unburned components in the exhaust gas are detected, and the evaporation rate and the residual rate are detected according to the detection result. An air-fuel ratio control device, characterized in that correction calculation is performed.
JP5990492A 1992-03-17 1992-03-17 Air-fuel ratio control device Pending JPH05263679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5990492A JPH05263679A (en) 1992-03-17 1992-03-17 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5990492A JPH05263679A (en) 1992-03-17 1992-03-17 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JPH05263679A true JPH05263679A (en) 1993-10-12

Family

ID=13126582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5990492A Pending JPH05263679A (en) 1992-03-17 1992-03-17 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPH05263679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037322A1 (en) * 1997-02-20 1998-08-27 Adrenaline Research Inc. Apparatus and method for controlling air/fuel ratio using ionization measurements
US20120303209A1 (en) * 2007-01-17 2012-11-29 Yamaha Hatsudoki Kabushiki Kaisha Engine failure diagnosis system and watercraft having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037322A1 (en) * 1997-02-20 1998-08-27 Adrenaline Research Inc. Apparatus and method for controlling air/fuel ratio using ionization measurements
US20120303209A1 (en) * 2007-01-17 2012-11-29 Yamaha Hatsudoki Kabushiki Kaisha Engine failure diagnosis system and watercraft having the same
US9702785B2 (en) * 2007-01-17 2017-07-11 Yamaha Hatsudoki Kabushiki Kaisha Engine failure diagnosis system and watercraft having the same

Similar Documents

Publication Publication Date Title
JPH0828338A (en) Crank angle position detecting device for internal combustion engine and control device
JPH0949452A (en) Control device for internal combustion engine
JPH1122512A (en) Control device for direct injection spark ignition internal combustion engine
JPH06235347A (en) Fuel property detecting device for internal combustion engine
JP3331107B2 (en) Ignition timing control device for internal combustion engine
JP4120276B2 (en) Misfire detection device for internal combustion engine
JP3643250B2 (en) Engine misfire detection device
JP3494516B2 (en) Fuel property detection device for internal combustion engine
JPH05263679A (en) Air-fuel ratio control device
JP2007138802A (en) Combustion condition detection device for internal combustion engine
JP3502206B2 (en) Indicated mean effective pressure detection device for internal combustion engine
JPH0347471A (en) Ignition control device for internal combustion engine
JPH05222989A (en) Air-fuel ratio control device
JP3397698B2 (en) Engine ignition control device
JP2000073927A (en) Burning condition detecting device for internal combustion engine
JP3401131B2 (en) Fuel property detection device for internal combustion engine
JPH01216040A (en) Electronic control fuel injection device for internal combustion engine
JPH09195844A (en) Apparatus for detecting inner pressure of cylinder of internal combustion engine
JP2627111B2 (en) Rotation direction detection device for two-cycle engine
JP3782873B2 (en) Crank angle detection device for internal combustion engine
JP3766226B2 (en) Crank angle detection device for internal combustion engine
JPH05222994A (en) Fuel injection amount control device
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0972809A (en) Combustion pressure detector for internal combustion engine
JP2002276455A (en) Cylinder internal pressure detecting device for internal combustion engine