JPH05222989A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPH05222989A
JPH05222989A JP4027796A JP2779692A JPH05222989A JP H05222989 A JPH05222989 A JP H05222989A JP 4027796 A JP4027796 A JP 4027796A JP 2779692 A JP2779692 A JP 2779692A JP H05222989 A JPH05222989 A JP H05222989A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
ion
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4027796A
Other languages
Japanese (ja)
Inventor
Kouzou Katougi
工三 加藤木
Toshio Ishii
俊夫 石井
Takashi Kouhira
高志 向平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4027796A priority Critical patent/JPH05222989A/en
Publication of JPH05222989A publication Critical patent/JPH05222989A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To carry out exhaust gas emission control and low fuel consumption by furnishing an ion sensor to measure ionic conductivity in a combustion chamber after ignition, seaking for an air-fuel ratio from an ion current and making the air fuel ration lean until a flameout state is judged from change of engine speed or output torque. CONSTITUTION:An ion sensor 7 is installed in the neighbourhood of an ignition plug, ion conductivity of a radical group of hydrocarbon at the time of explosion is measured by it and input to a control unit 1, ion is decreased as the air fuel ratio approaches the flameout limit as the ion conductivity becomes high and the air fuel ration becomes high near the control unit 1, no electric current flows when flamed out and accordingly, the air-fuel ratio is detected. While an engine is driven, at the control unit 1, air capacity per unit time is calculated from output of an intake air capacity meter 2, fuel injection amount is searched for so that the air fuel ratio becomes an air-fuel ratio corresponding to engine speed and load, and a driving period of an fuel injection valve 11 is calculated. Additionally, by judging flameout from change of the engine speed and the output torque, the fuel injection amount is corrected so that the air-fuel ratio may keep lean until misfire.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の希薄運転限界
制御に係り、特に失火限界まで空燃比制御を行ないなが
ら、良好な運転制御を行なう制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to lean operation limit control of an internal combustion engine, and more particularly to a control device for performing good operation control while performing air-fuel ratio control up to the misfire limit.

【0002】[0002]

【従来の技術】従来の空燃比制御ではO2 センサを使
い、排気ガス中に含まれる酸素濃度を測定していた。し
かし、O2 センサは活性温度に達するまでは測定値が安
定せず、空燃比制御ができない問題があり、実質的にオ
ープンループ制御となっていた。こうした、O2 センサ
をつかった例として、特開昭58−82040 号が知られてい
る。
2. Description of the Related Art In conventional air-fuel ratio control, an O 2 sensor is used to measure the oxygen concentration contained in exhaust gas. However, the measured value of the O 2 sensor is not stable until the activation temperature is reached, and there is a problem that the air-fuel ratio cannot be controlled. Japanese Patent Laid-Open No. 58-82040 is known as an example of using such an O 2 sensor.

【0003】[0003]

【発明が解決しようとする課題】本発明では内燃機関の
始動時から空燃比を制御して希薄燃焼を可能にすること
で、排気ガスの清浄化を図り、合わせて燃費を向上する
ことを課題とする。
SUMMARY OF THE INVENTION In the present invention, the air-fuel ratio is controlled from the start of the internal combustion engine to enable lean combustion, thereby purifying exhaust gas and improving fuel efficiency. And

【0004】即ち、O2 センサが不活性の間でも空燃比
を測定し、運転性を確保する。
That is, the operability is ensured by measuring the air-fuel ratio even while the O 2 sensor is inactive.

【0005】[0005]

【課題を解決するための手段】まず、O2 センサに代わ
る空燃比を測定する手段と測定結果によって吸入空気量
又は燃料量を制御する手段により空燃比を制御する。
First, the air-fuel ratio is controlled by means for measuring the air-fuel ratio instead of the O 2 sensor and means for controlling the intake air amount or the fuel amount according to the measurement result.

【0006】例えば温度によらない燃焼室内での空燃比
を測定する手段として、燃焼時に生じる炭化水素のラジ
カル基イオン伝導度を測定する。
For example, as a means for measuring the air-fuel ratio in the combustion chamber that does not depend on temperature, the radical radical ion conductivity of hydrocarbons generated during combustion is measured.

【0007】さらに、エンジンの回転数やトルク,出力
の変動を検出する手段により、運転性を確保するように
制御する。
Further, a means for detecting fluctuations in engine speed, torque, and output is controlled to ensure drivability.

【0008】[0008]

【作用】燃焼室内での空燃比を測定することで1点火毎
に燃焼を制御できるので、空燃比の応答性を高くするこ
とができる。
Since the combustion can be controlled for each ignition by measuring the air-fuel ratio in the combustion chamber, the responsiveness of the air-fuel ratio can be improved.

【0009】また、エンジンの回転数やトルクの変動を
検出することで空燃比を高くして失火限界まで希薄燃焼
を行うことができる。
Further, the lean combustion can be performed up to the misfire limit by increasing the air-fuel ratio by detecting fluctuations in the engine speed and torque.

【0010】[0010]

【実施例】本発明の一実施例を図1により説明する。内
燃機関への吸入空気は吸気量計2をへてインテークマニ
ホールドから吸入弁を通じて燃焼室に入る。吸気量計の
出力は制御ユニット1に入力され、単位時間あたりの空
気量を計算し、回転数と負荷に応じた空燃比になるよう
に燃料噴射量を求めて、インテークマニホールド内に先
端を突出した燃料噴射弁11の駆動時間を計算する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. The intake air to the internal combustion engine goes into the combustion chamber from the intake manifold through the intake valve through the intake valve. The output of the intake air meter is input to the control unit 1, the air amount per unit time is calculated, the fuel injection amount is calculated so that the air-fuel ratio corresponds to the rotation speed and the load, and the tip is projected into the intake manifold. The driving time of the fuel injection valve 11 is calculated.

【0011】内燃機関のクランク角度と気筒とを識別す
るためのポジションセンサ3とレファレンスセンサ4が
制御ユニットに入力され、回転数やピストンのクランク
位置を検出する。そして、一点火毎の回転数変動を計算
する。
A position sensor 3 and a reference sensor 4 for identifying a crank angle of an internal combustion engine and a cylinder are input to a control unit to detect a rotational speed and a crank position of a piston. Then, the rotation speed fluctuation for each ignition is calculated.

【0012】同時に点火時期を算出し、所定のクランク
角度の位置に達する数ms前から点火コイル12に通電
を開始し、通電停止時に点火プラグに火花が飛び燃焼室
内の混合気に着火して爆発する。爆発後排気ガスは排気
弁から排出され、エキゾーストマニホールドを経て大気
中に出る。エキゾーストマニホールド内には従来のO2
センサ5が取り付けられている。
At the same time, the ignition timing is calculated, and the energization of the ignition coil 12 is started a few ms before reaching the position of the predetermined crank angle, and when the energization is stopped, sparks fly to the ignition plug to ignite the mixture in the combustion chamber and explode. To do. After the explosion, the exhaust gas is exhausted from the exhaust valve and passes through the exhaust manifold to the atmosphere. The conventional O 2 inside the exhaust manifold
The sensor 5 is attached.

【0013】また、内燃機関の出力トルクを測定するた
めにトルクセンサ6を設けて一点火毎の燃焼状態の検出
を行う。
Further, a torque sensor 6 is provided to measure the output torque of the internal combustion engine to detect the combustion state for each ignition.

【0014】点火プラグの近傍にはイオンセンサ7が取
り付けられ、爆発時の炭化水素のラジカル基のイオン伝
導度を測定し、空燃比の補正手段として制御ユニットに
入力される。図2はイオンセンサの回路を示したもの
で、点火時の高電圧電流をコンデンサCにチャージして
直流電圧をつくり、点火プラグに印加する。イオン電流
は点火プラグ周辺のイオン伝導度に比例して流れるか
ら、電流を測ることで制御ユニットがイオン量を測るこ
とができる。
An ion sensor 7 is attached in the vicinity of the spark plug, and the ionic conductivity of radical radicals of hydrocarbons at the time of explosion is measured and input to the control unit as a means for correcting the air-fuel ratio. FIG. 2 shows a circuit of an ion sensor. A high voltage current at the time of ignition is charged in a capacitor C to create a DC voltage, which is applied to an ignition plug. Since the ionic current flows in proportion to the ionic conductivity around the spark plug, the control unit can measure the amount of ions by measuring the current.

【0015】図3は空燃比とイオン伝導度との関係図
で、空燃比が1近辺の時に炭化水素のラジカル基が最も
多くイオン化しているので伝導度が高く、空燃比が高く
なり失火限界に近づくにつれてイオンが減り、失火する
と電流は流れない。
FIG. 3 is a diagram showing the relationship between the air-fuel ratio and the ionic conductivity. When the air-fuel ratio is around 1, the most radical radicals of hydrocarbons are ionized, so that the conductivity is high and the air-fuel ratio is high and the misfire limit is high. As the number of ions decreases, the current does not flow when misfire occurs.

【0016】失火時には爆発が生じないため発生トルク
がなく回転数が低下する。図4に示すように失火がある
と回転数やトルクが低下しまた回復していく。
Since no explosion occurs at the time of misfire, there is no generated torque and the number of revolutions decreases. As shown in FIG. 4, if there is a misfire, the rotation speed and torque will decrease and will recover.

【0017】図5に制御ユニットの構成を示す。FIG. 5 shows the configuration of the control unit.

【0018】吸入空気量計の出力をAD変換して吸入空
気量を算出し、回転数と負荷に応じた空燃比になるよう
に燃料噴射量を計算する。
The output of the intake air amount meter is AD converted to calculate the intake air amount, and the fuel injection amount is calculated so that the air-fuel ratio corresponds to the rotation speed and the load.

【0019】レファレンス信号はCPUへの割り込み信
号となる。クランク角度を測るポジションカウンタは点
火時期を設定する点火時期レジスタとイオン電流を測定
するウィンドウレジスタと比較され、カウンタと各レジ
スタの値が一致すると一致割り込みが発生する。ポジシ
ョンカウンタはレファレンス信号の立ち上がりでクリア
される。
The reference signal serves as an interrupt signal to the CPU. The position counter for measuring the crank angle is compared with the ignition timing register for setting the ignition timing and the window register for measuring the ion current, and when the values of the counter and each register match, a coincidence interrupt is generated. The position counter is cleared at the rising edge of the reference signal.

【0020】ウィンドウレジスタとポジションカウンタ
とが一致した時にイオン電流を測定し、実際の空燃比を
計算する。この結果から、次回の燃料噴射量に対して、
補正を加える。
When the window register coincides with the position counter, the ion current is measured and the actual air-fuel ratio is calculated. From this result, for the next fuel injection amount,
Add a correction.

【0021】ポジションカウンタが爆発行程にある時に
トルクセンサの出力を測定しトルクを測る。
When the position counter is in the explosive stroke, the output of the torque sensor is measured to measure the torque.

【0022】また、一定の時間毎にポジション信号をカ
ウントし計数値から回転数を算出する。回転数の精度を
高めるため、レファレンス信号間の時間または、ポジシ
ョン信号の間隔の逆数から算出してもよい。
Further, the position signal is counted at regular intervals and the rotation speed is calculated from the count value. In order to improve the accuracy of the rotation speed, it may be calculated from the time between reference signals or the reciprocal of the interval of position signals.

【0023】もし、回転数やトルクが低下し失火を検出
した時は空燃比が1に近づくように希薄燃焼制御を変更
する。
If the engine speed or torque decreases and misfire is detected, the lean burn control is changed so that the air-fuel ratio approaches 1.

【0024】図6にに空燃比制御のタイミングチャート
を示す。
FIG. 6 shows a timing chart of the air-fuel ratio control.

【0025】まず、レファレンス信号の立ち上がりで点
火時期を設定し、ウィンドウレジスタをセットする。ウ
ィンドウレジスタとポジションカウンタが一致した時に
点火後の燃焼状態におけるイオン電流を測り、図3に示
した関係から空燃比を求める。
First, the ignition timing is set at the rising edge of the reference signal, and the window register is set. When the window register and the position counter match, the ion current in the combustion state after ignition is measured, and the air-fuel ratio is obtained from the relationship shown in FIG.

【0026】爆発行程にある時に回転数またはトルクを
測り、失火判定を行う。
During the explosion stroke, the number of revolutions or torque is measured to determine misfire.

【0027】図7にフローチャートを示す。FIG. 7 shows a flowchart.

【0028】レファレンス信号の立ち上がりの割り込み
で点火時期とウィンドウレジスタをセットする。
The ignition timing and the window register are set by the interruption at the rising edge of the reference signal.

【0029】ウィンドウ一致割り込みでイオン電流を測
り、空燃比を算出する。
The ion current is measured by the window coincidence interrupt to calculate the air-fuel ratio.

【0030】爆発行程で回転数またはトルクを測り、1
気筒前との差から失火判定を行う。そして、次の気筒の
ためにデータを保存する。失火判定は720℃A前の同
一気筒の回転数との差であっもよい。この場合、データ
は気筒数分保存される。
The number of revolutions or torque was measured during the explosion stroke, and 1
Misfire judgment is performed based on the difference from the front of the cylinder. Then save the data for the next cylinder. The misfire determination may be a difference from the rotation speed of the same cylinder before 720 ° C. In this case, the data is saved for the number of cylinders.

【0031】吸入空気量計の出力から空気量を算出し、
回転数と負荷から所定の空燃比になるように燃料噴射量
を計算する。イオン電流から求めた実際の空燃比とに差
があれば燃料噴射量を補正する。補正計数は所定の回転
数と負荷毎に平均化しておき、1になるように点火毎に
補正を修正する。
The air amount is calculated from the output of the intake air amount meter,
The fuel injection amount is calculated from the rotation speed and the load so that the air-fuel ratio becomes a predetermined value. If there is a difference from the actual air-fuel ratio calculated from the ion current, the fuel injection amount is corrected. The correction count is averaged for each predetermined rotation speed and load, and the correction is corrected for each ignition so that it becomes 1.

【0032】もし、失火が検出された時は空燃比が1に
近づくように燃料噴射量を増やす。イオンセンサが故障
し、伝導度の測定値が常時リッチまたはリーンになった
時はイオン電流による空燃比制御を停止し、従来のO2
センサを使って空燃比を制御する。
If a misfire is detected, the fuel injection amount is increased so that the air-fuel ratio approaches 1. When the ion sensor fails and the measured conductivity value is always rich or lean, the air-fuel ratio control by the ion current is stopped and the conventional O 2
A sensor is used to control the air-fuel ratio.

【0033】[0033]

【発明の効果】本発明によれば、O2 センサが不活性の
始動時であっても希薄空燃比制御が可能になる。また、
2 センサを活性化するためのヒータを必要としないた
め、内燃機関の負荷を軽減できる効果がある。
According to the present invention, the lean air-fuel ratio control can be performed even at the time of starting when the O 2 sensor is inactive. Also,
Since the heater for activating the O 2 sensor is not required, there is an effect that the load on the internal combustion engine can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の主な構成を示す図である。FIG. 1 is a diagram showing a main configuration of the present invention.

【図2】イオンセンサ回路を示す図である。FIG. 2 is a diagram showing an ion sensor circuit.

【図3】イオン電流と空燃比の関係を示す図である。FIG. 3 is a diagram showing a relationship between an ion current and an air-fuel ratio.

【図4】失火時の回転数の変動を示す図である。FIG. 4 is a diagram showing fluctuations in rotation speed at the time of misfire.

【図5】制御ユニットの構成を示す図である。FIG. 5 is a diagram showing a configuration of a control unit.

【図6】タイミングチャートを示す図である。FIG. 6 is a diagram showing a timing chart.

【図7】フローチャートを示す図である。FIG. 7 is a diagram showing a flowchart.

【符号の説明】[Explanation of symbols]

1…制御ユニット、2…吸入空気量計、3…ポジション
センサ、4…レファレンスセンサ、5…O2 センサ、6
…トルクセンサ、7…イオンセンサ、11…燃料噴射
弁、12…点火コイル。
1 ... Control unit, 2 ... Intake air amount meter, 3 ... Position sensor, 4 ... Reference sensor, 5 ... O 2 sensor, 6
... torque sensor, 7 ... ion sensor, 11 ... fuel injection valve, 12 ... ignition coil.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】排気ガス中の酸素濃度によって燃料噴射量
を制御するエンジン制御装置において、点火後の燃焼室
内のイオン電導度を測定するイオンセンサを備え、燃焼
時の空燃比を求め、空燃比を制御する空燃比制御装置で
回転数または出力トルクの変動から失火を判定し、失火
するまで空燃比をリーンにすることを特徴とする空燃比
制御装置。
1. An engine control device for controlling a fuel injection amount according to an oxygen concentration in exhaust gas, comprising an ion sensor for measuring an ion conductivity in a combustion chamber after ignition, and obtaining an air-fuel ratio at the time of combustion to obtain an air-fuel ratio. The air-fuel ratio control device for controlling the air-fuel ratio control device, which determines misfire from fluctuations in the rotational speed or the output torque, and makes the air-fuel ratio lean until the misfire occurs.
JP4027796A 1992-02-14 1992-02-14 Air-fuel ratio control device Pending JPH05222989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4027796A JPH05222989A (en) 1992-02-14 1992-02-14 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4027796A JPH05222989A (en) 1992-02-14 1992-02-14 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JPH05222989A true JPH05222989A (en) 1993-08-31

Family

ID=12230941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4027796A Pending JPH05222989A (en) 1992-02-14 1992-02-14 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPH05222989A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113170A1 (en) * 1999-12-24 2001-07-04 Delphi Technologies, Inc. Procedure for the monitoring of the combustion while burning fossil fuel
JP2007205317A (en) * 2006-02-06 2007-08-16 Daihatsu Motor Co Ltd Method for operation control of internal combustion engine based on ion current
US20140081556A1 (en) * 2011-02-28 2014-03-20 Wayne State University Using ion current signal for soot and in-cylinder variable measuring techniques in internal combustion engines and method for doing the same
CN112524810A (en) * 2020-11-26 2021-03-19 深圳市合信达控制***有限公司 Wall-mounted furnace gas self-adaptive adjusting method and device and wall-mounted furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113170A1 (en) * 1999-12-24 2001-07-04 Delphi Technologies, Inc. Procedure for the monitoring of the combustion while burning fossil fuel
JP2007205317A (en) * 2006-02-06 2007-08-16 Daihatsu Motor Co Ltd Method for operation control of internal combustion engine based on ion current
US20140081556A1 (en) * 2011-02-28 2014-03-20 Wayne State University Using ion current signal for soot and in-cylinder variable measuring techniques in internal combustion engines and method for doing the same
US9388759B2 (en) * 2011-02-28 2016-07-12 Wayne State University Using ion current signal for soot and in-cylinder variable measuring techniques in internal combustion engines and method for doing the same
CN112524810A (en) * 2020-11-26 2021-03-19 深圳市合信达控制***有限公司 Wall-mounted furnace gas self-adaptive adjusting method and device and wall-mounted furnace

Similar Documents

Publication Publication Date Title
AU6663098A (en) Apparatus and method for controlling air/fuel ratio using ionization measurements
SE503900C2 (en) Method and system for monitoring internal combustion engines by detecting the actual air-fuel mixing ratio
JP2000002157A (en) Electronic engine control device
JPH05222989A (en) Air-fuel ratio control device
JP2007138802A (en) Combustion condition detection device for internal combustion engine
US4945879A (en) Fuel controller for an internal combustion engine
JPH06614Y2 (en) Fuel sensor abnormality diagnosis device
JPH10299563A (en) Misfire detector and controller for direct injection spark ignition engine
JP2627111B2 (en) Rotation direction detection device for two-cycle engine
WO2021095505A1 (en) Control device for internal combustion engine
JP6246488B2 (en) Air-fuel ratio control device for internal combustion engine using ion current
JPH05263679A (en) Air-fuel ratio control device
JPH0615843B2 (en) Control device for internal combustion engine
JPH09317618A (en) Driving state detection device of internal combustion engine
JP3364879B2 (en) Ignition control device for internal combustion engine
JP2873171B2 (en) Ignition system for sub-chamber gas engine
JPH1130143A (en) Fuel supplying amount controller of internal combustion engine
JPH07286547A (en) Fuel property detecting device of internal combustion engine
JP6246489B2 (en) Air-fuel ratio control device for internal combustion engine using ion current
JP2002180948A (en) Multiple-ignition device for internal combustion engine
JPH0281942A (en) Combustion control device for internal combustion engine
JPH05222994A (en) Fuel injection amount control device
JP2839404B2 (en) Internal combustion engine control device
JP2555563Y2 (en) Ignition timing control device for internal combustion engine
JPH0742592A (en) Fuel injection quantity control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees