JPH05259427A - Infrared ray detector and production thereof - Google Patents

Infrared ray detector and production thereof

Info

Publication number
JPH05259427A
JPH05259427A JP4052032A JP5203292A JPH05259427A JP H05259427 A JPH05259427 A JP H05259427A JP 4052032 A JP4052032 A JP 4052032A JP 5203292 A JP5203292 A JP 5203292A JP H05259427 A JPH05259427 A JP H05259427A
Authority
JP
Japan
Prior art keywords
layer
doped
groove
contact
doped semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4052032A
Other languages
Japanese (ja)
Inventor
Soichiro Hikita
聡一郎 匹田
Hiroshi Daiku
博 大工
Yoshihiro Miyamoto
義博 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4052032A priority Critical patent/JPH05259427A/en
Publication of JPH05259427A publication Critical patent/JPH05259427A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To realize an infrared ray detector with an improved light absorbing efficiency by forming a quadrangular pyramid-shaped groove of light absorbing layer along a tilting face. CONSTITUTION:A boron-doped Si layer 32 is piled up on a non-doped layer 31 to form a semiconductor substrate 41, which is subjected to anisotropic etching in order to form a groove 9 reaching the layer 32 at a desired position on a thin non-doped Si layer 21. Then a light receiving element 22 consisting of a first contact layer 3, a light absorbing layer 1, a blocking layer 2 and a second contact layer 4 is formed inside the groove 9, that is, the layer 1 is formed along a tilting surface of quadrangular pyramid-shaped groove 9 that has been formed on the layer 21 through anisotropic etching. Therefore, in comparison with the layer 1 formed on a flat plate substrate, the layer 1 has 2<1/2>-time thickness, the apparent thickness of the layer 1 increases apparently, and the light absorbing efficiency for incident light becomes high, and the photoelectric conversion efficiency can thereby be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は外来型赤外線検知素子に
係り、特にBIB(Blocked Impurity Band)型赤外線検
知素子(以下BIB型赤外線検知素子と称する)に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external infrared detecting element, and more particularly to a BIB (Blocked Impurity Band) infrared detecting element (hereinafter referred to as BIB infrared detecting element).

【0002】シリコン(Si)等の半導体基板に砒素(As)を
添加して、不純物添加型のSiを形成し、これを光吸収層
として外来型赤外線検知素子を形成する場合、暗電流が
発生し易いので、この暗電流の流れるのを防止するため
にノンドープのSiをブロッキング層として設けたBIB
型赤外線検知素子が開発されている。
When arsenic (As) is added to a semiconductor substrate such as silicon (Si) to form impurity-added Si, which is used as a light absorption layer to form an external infrared detection element, a dark current is generated. BIB with non-doped Si as a blocking layer is provided to prevent the dark current from flowing.
Type infrared detectors have been developed.

【0003】そしてこのBIB型赤外線検知素子は波長
が20μm 帯の長波長に感度を有するために、天体に於け
る星より発する赤外線を検知するための天体観測用の赤
外線検知素子として用いられている。
Since this BIB type infrared detecting element has a sensitivity to a long wavelength of 20 μm band, it is used as an infrared detecting element for astronomical observation for detecting infrared rays emitted from a star in a celestial body. ..

【0004】[0004]

【従来の技術】従来のこのような赤外線検知素子を図5
(a)に示し、その動作状態を図5(b)に示す。
2. Description of the Related Art FIG.
It is shown in (a), and its operating state is shown in FIG. 5 (b).

【0005】図5(a)に示すようにAsを5 ×1016/cm3の不
純物濃度で添加し、厚さが20μm のSi層よりなる光吸収
層1上に、ノンドープで厚さが1μm のSi層より成るブ
ロッキング層2が、エピタキシャル成長法等を用いて形
成され、この光吸収層1の底部、およびブロッキング層
2の上部には金等の金属を蒸着して第1コンタクト層
3、および第2コンタクト層4がそれぞれ形成され、外
来型のBIB型赤外線検知素子が形成されている。
As shown in FIG. 5 (a), As is added at an impurity concentration of 5 × 10 16 / cm 3 and is undoped and has a thickness of 1 μm on the light absorption layer 1 made of a Si layer having a thickness of 20 μm. A blocking layer 2 made of a Si layer is formed by an epitaxial growth method or the like, and a metal such as gold is vapor-deposited on the bottom of the light absorption layer 1 and the top of the blocking layer 2 to form the first contact layer 3; The second contact layers 4 are respectively formed, and the exogenous BIB infrared detection element is formed.

【0006】図5(b)に示すように、このBIB型赤外線
検知素子にバイアス電圧を印加すると、添加された不純
物に起因した不純物エネルギーバンド5が曲がり、光入
射に依って光電変換されたキャリア6が励起されて電子
7と成って曲がった不純物エネルギーバンド5上の伝導
帯8上に到達し、この伝導帯8に沿って電子7が流れる
ために、光を検知することができる。また不純物濃度が
高い場合は、不純物エネルギーバンドでのホッピング伝
導により暗電流が発生し、この暗電流を防止するために
ブロッキング層2を設けている。
As shown in FIG. 5 (b), when a bias voltage is applied to this BIB type infrared detecting element, the impurity energy band 5 caused by the added impurities bends, and carriers photoelectrically converted by the incident light enter. Light 6 can be detected because the electrons 6 are excited to form electrons 7 and reach the conduction band 8 on the curved impurity energy band 5, and the electrons 7 flow along the conduction band 8. When the impurity concentration is high, dark current is generated by hopping conduction in the impurity energy band, and the blocking layer 2 is provided to prevent this dark current.

【0007】このようなBIB型赤外線検知素子は“NA
SA Technical Memorandum,102209,P117 〜123"の文献に
於いて、ブロッキング層2としてノンドープのゲルマニ
ウム層を用い、光吸収層1としてガリウムをドープした
ゲルマニウム層を用いて形成したことが記載されてい
る。
Such a BIB type infrared detecting element is "NA
SA Technical Memorandum, 102209, P117-123 "describes that a non-doped germanium layer is used as the blocking layer 2 and a gallium-doped germanium layer is used as the light absorption layer 1.

【0008】[0008]

【発明が解決しようとする課題】ところで前記したAsド
ープされた不純物添加型のSi層の光吸収層1は、不純物
原子を添加しないで、そのまま受光素子に使用できる真
性の水銀・カドミウム・テルル( HgCdTe) のような化合
物半導体に比較して一般に光吸収係数が小さく、そのた
め、光電変換効率が悪い。
By the way, the light absorption layer 1 of the above-mentioned As-doped impurity-added Si layer can be used as it is in a light-receiving element without adding an impurity atom. The light absorption coefficient is generally smaller than that of a compound semiconductor such as HgCdTe), and thus the photoelectric conversion efficiency is poor.

【0009】そのため、AsドープされたSi層の光吸収層
1の膜厚を厚くして光電変換効率を向上させようとした
が、BIB型赤外線検知素子に於いては、光電流を検知
するために伝導帯8を曲げる必要があり、この光吸収層
1の厚さを厚くするとバイアス電圧を上昇しても伝導帯
8を曲げることが困難となる。
Therefore, the film thickness of the light absorption layer 1 of the As-doped Si layer is increased to improve the photoelectric conversion efficiency. However, in the BIB type infrared detection element, the photocurrent is detected. It is necessary to bend the conduction band 8, and if the thickness of the light absorption layer 1 is increased, it becomes difficult to bend the conduction band 8 even if the bias voltage is increased.

【0010】また光吸収層1の厚さを厚くすると、キャ
リアの捕獲確率が上昇し、放射線に対する対抗性が低下
し、素子が劣化し易くなる問題がある。本発明は上記し
た問題点を解決し、光吸収層の厚さが見掛け上厚くなる
ように形成して、光吸収層の光電変換効率を大にした赤
外線検知装置の提供を目的とするものである。またこの
ようなBIB型赤外線検知素子と、該検知素子で得られ
た信号を処理する信号処理素子とが、容易に導電体層で
接続されて一体化される赤外線検知装置の提供を目的と
する。
Further, if the thickness of the light absorption layer 1 is increased, there is a problem that the probability of capturing carriers is increased, the resistance against radiation is lowered, and the device is apt to deteriorate. The present invention is intended to solve the above problems and to provide an infrared detection device in which the light absorption layer is formed to have an apparently large thickness, and the photoelectric conversion efficiency of the light absorption layer is increased. is there. It is another object of the present invention to provide an infrared detecting device in which such a BIB type infrared detecting element and a signal processing element for processing a signal obtained by the detecting element are easily connected and integrated by a conductor layer. ..

【0011】[0011]

【課題を解決するための手段】本発明の赤外線検知装置
は、不純物を添加したドープト半導体層上に不純物を添
加しないノンドープ半導体層を設けて形成された第1の
半導体基板の所定の位置に、前記ドープト半導体層に到
達する溝を設け、該溝内に不純物濃度の異なる半導体層
で形成された第1コンタクト層、ブロッキング層、光電
変換層および第2コンタクト層より成る受光素子を埋設
して形成するとともに、該溝の底部に貫通孔を設け、前
記受光素子の第2コンタクト層と、別個の第2の半導体
基板に設けた信号処理素子とを互いに導電体層で接続す
るとともに、前記第1の半導体基板上に設けた電極層
と、第1コンタクト層を接続したことを特徴とする。
An infrared detector according to the present invention comprises a first semiconductor substrate formed by providing a non-doped semiconductor layer containing no impurities on a doped semiconductor layer containing impurities. A groove reaching the doped semiconductor layer is provided, and a light receiving element including a first contact layer, a blocking layer, a photoelectric conversion layer, and a second contact layer formed of semiconductor layers having different impurity concentrations is embedded in the groove. In addition, a through hole is provided at the bottom of the groove, the second contact layer of the light receiving element and the signal processing element provided on a separate second semiconductor substrate are connected to each other by a conductor layer, and the first contact layer is formed. The electrode layer provided on the semiconductor substrate and the first contact layer are connected to each other.

【0012】また本発明の赤外線検知装置の製造方法は
請求項2に示すように、不純物を添加しないノンドープ
半導体層上に不純物を添加したドープト半導体層を積層
形成して第1の半導体基板を形成し、前記ノンドープ半
導体層を薄層に形成し、該薄層化されたノンドープ半導
体層上の所定位置にドープト半導体層に到る溝を形成す
る工程、前記溝内に第1コンタクト層、光電変換層、ブ
ロッキング層、第2コンタクト層よりなる受光素子を形
成する工程、前記ドープト半導体層を選択的にエッチン
グし、ノンドープ半導体層を薄層化するとともに該溝の
底部に貫通孔を形成する工程、前記薄層化され、溝内に
受光素子を有するノンドープ半導体層の溝の底部と、第
2の半導体基板に形成した信号処理素子を合致させて、
前記ノンドープ半導体層と第2の半導体基板を貼着する
工程、前記溝の底部の第2コンタクト層に接続するコン
タクト電極と、第1コンタクト層と接続するコンタクト
電極とを形成する工程を含むことを特徴とする。
According to a second aspect of the present invention, there is provided a method of manufacturing an infrared detecting device, wherein a doped semiconductor layer containing an impurity is laminated on a non-doped semiconductor layer containing no impurity to form a first semiconductor substrate. Forming a thin layer of the non-doped semiconductor layer, and forming a groove reaching the doped semiconductor layer at a predetermined position on the thinned non-doped semiconductor layer, a first contact layer in the groove, a photoelectric conversion A layer, a blocking layer, a step of forming a light receiving element composed of a second contact layer, a step of selectively etching the doped semiconductor layer to thin the non-doped semiconductor layer and form a through hole at the bottom of the groove, Aligning the bottom of the groove of the non-doped semiconductor layer having the light receiving element in the groove with the signal processing element formed on the second semiconductor substrate,
Bonding the non-doped semiconductor layer to a second semiconductor substrate, and forming a contact electrode connected to the second contact layer at the bottom of the groove and a contact electrode connected to the first contact layer. Characterize.

【0013】また請求項4に示すように、前記溝の形成
を異方性エッチング液を用いて形成することを特徴とす
るものである。
According to a fourth aspect of the present invention, the groove is formed by using an anisotropic etching solution.

【0014】[0014]

【作用】本発明の赤外線検知装置は、図1(a)、図1(b)お
よび図2 、図3 に示すように、不純物を添加しないノン
ドープSiウエハ31上に不純物を添加したボロンドープト
Si層32を積層形成した半導体基板41を形成し、前記ノン
ドープSiウエハ31を薄層に形成し、該薄層化して形成さ
れたノンドープSi層21上の所定位置にボロンドープトSi
層32に到る溝9を異方性エッチングを用いて形成する。
As shown in FIGS. 1 (a), 1 (b) and FIGS. 2 and 3, the infrared detector of the present invention is a boron-doped silicon wafer 31 on which impurities are not added.
A semiconductor substrate 41 is formed by laminating a Si layer 32, the non-doped Si wafer 31 is formed into a thin layer, and boron-doped Si is formed at a predetermined position on the non-doped Si layer 21 formed by the thinning.
The trench 9 down to the layer 32 is formed using anisotropic etching.

【0015】そしてこの溝9内に第1コンタクト層3、
光吸収層1、ブロッキング層2、第2コンタクト層4よ
りなる受光素子22を形成する。すると図4(a)に示すよう
に受光素子22を構成する光吸収層1は、ノンドープSi層
21に異方性エッチングにより形成された四角錐状の溝9
の傾斜面11に沿って形成されることになる。
In the groove 9, the first contact layer 3,
A light receiving element 22 including the light absorption layer 1, the blocking layer 2, and the second contact layer 4 is formed. Then, as shown in FIG. 4 (a), the light absorption layer 1 constituting the light receiving element 22 is a non-doped Si layer.
Square pyramidal groove 9 formed by anisotropic etching on 21
Will be formed along the inclined surface 11.

【0016】すると図4(a)に示すように、入射光は矢印
Aに示すように、ノンドープSi層21に垂直方向に入射さ
れるので、例えば四角錐状の溝9の傾斜面11の角度θが
45度の溝9である場合、この入射光が光吸収層1を通過
する長さはd2 となり、図4(b)に示すように、溝9を形
成せずに平面上に光吸収層1を設けた場合、この光吸収
層1内を矢印A方向に沿って光が通過する長さはd1とな
り、d2 =d1×(1/sin θ) の関係がある。
Then, as shown in FIG. 4 (a), since the incident light is incident on the non-doped Si layer 21 in the vertical direction as shown by the arrow A, for example, the angle of the inclined surface 11 of the quadrangular pyramid-shaped groove 9 is increased. θ is
In the case of the groove 9 of 45 degrees, the length of the incident light passing through the light absorption layer 1 is d 2 , and as shown in FIG. 4 (b), the groove 9 is not formed and the light absorption layer is formed on a flat surface. When 1 is provided, the length of light passing through the light absorption layer 1 along the direction of the arrow A is d 1 , and there is a relationship of d 2 = d 1 × (1 / sin θ).

【0017】つまり、図4(a)に示すように、異方性エッ
チング液で四角錐状の溝9を設け、その上に光吸収層1
を形成すると、溝9を設けない平板状の基板上に光吸収
層1を形成した場合に比較して、光吸収層1の厚さは2
1/2倍の厚さとなり、光吸収層1の厚さが見掛け上増加
した形となり、入射光に対して光吸収の効率が大とな
り、光電変換効率が向上する。
That is, as shown in FIG. 4 (a), a quadrangular pyramid-shaped groove 9 is provided with an anisotropic etching solution, and the light absorption layer 1 is formed thereon.
In comparison with the case where the light absorption layer 1 is formed on a flat plate-shaped substrate in which the groove 9 is not formed, the thickness of the light absorption layer 1 is 2
The thickness is 1/2 times the thickness, and the thickness of the light absorption layer 1 is apparently increased, the efficiency of light absorption with respect to incident light is increased, and the photoelectric conversion efficiency is improved.

【0018】[0018]

【実施例】以下、図面を用いて本発明の実施例につき詳
細に説明する。図1(a)は本発明の赤外線検知装置の平面
図、図1(b)は該赤外線検知装置の断面図である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 (a) is a plan view of an infrared detection device of the present invention, and FIG. 1 (b) is a sectional view of the infrared detection device.

【0019】図1(a)と図1(b)に示すように、本発明の赤
外線検知装置は、厚さが50μm で、表面が(110)面
のノンドープSi層21に四角錐状の溝9が異方性エッチン
グ液で形成され、この溝9内にはCVD法により、厚さ
が0.2 μm でAs原子を2×10 19/cm3でドープした第1コ
ンタクト層3が形成され、その上には厚さが15μm でAs
原子を5 ×1016/cm3でドープした光吸収層1が形成さ
れ、その上には厚さが1μm でノンドープのSi層よりな
るブロッキング層2が形成され、更に最上層には、厚さ
が0.2 μm でAs原子を2 ×1019/cm3でドープした第2コ
ンタクト層4が形成されている。
As shown in FIGS. 1 (a) and 1 (b), the red of the present invention
The outside line detector has a thickness of 50 μm and the surface is (110) plane.
The non-doped Si layer 21 has a rectangular pyramid-shaped groove 9 anisotropically etched.
Formed by a CVD solution, and the thickness of the groove 9 is increased by the CVD method.
Is 0.2 μm and As atoms are 2 × 10 19/cm3First doped with
The contact layer 3 is formed on the contact layer 3 with a thickness of 15 μm.
5 x 10 atoms16/cm3The light absorption layer 1 doped with
On top of that, a layer of 1 μm thick and composed of an undoped Si layer
Blocking layer 2 is formed, and the top layer has a thickness of
Is 0.2 μm and As atoms are 2 × 1019/cm3The second one doped with
The contact layer 4 is formed.

【0020】そして、この第1コンタクト層3、光吸収
層1、ブロッキング層2および第2コンタクト層4によ
り受光素子22を形成している。このノンドープSi層21
は、図2(a)に示すようにノンドープSiウエハ31上にボロ
ンドープトSi層32を300 μm の厚さにエピタキシャル成
長で形成後、選択エッチング液でこのノンドープSiウエ
ハ31を20μm の厚さに薄層化して、ノンドープSi層21と
し、更に図2(b)に示すように、異方性エッチング液でボ
ロンドープトSi層32に到達する溝9を形成する。
The first contact layer 3, the light absorption layer 1, the blocking layer 2 and the second contact layer 4 form a light receiving element 22. This undoped Si layer 21
As shown in Fig. 2 (a), a boron-doped Si layer 32 is formed on the non-doped Si wafer 31 by epitaxial growth to a thickness of 300 μm, and this non-doped Si wafer 31 is thinned to a thickness of 20 μm with a selective etching solution. As a result, the non-doped Si layer 21 is formed, and as shown in FIG. 2B, a groove 9 reaching the boron-doped Si layer 32 is formed by an anisotropic etching solution.

【0021】そし溝9内に受光素子22を形成した後、ボ
ロンドープトSi層32を選択エッチングし、受光素子22の
底部に開口部23を形成する。そしてこの開口部23と、他
のSi基板24に形成した信号処理素子25とを対向して前記
受光素子22を形成したノンドープSi層21と、Si基板24と
を接着剤26を用いて接着する。
After the light receiving element 22 is formed in the groove 9, the boron-doped Si layer 32 is selectively etched to form the opening 23 at the bottom of the light receiving element 22. Then, the opening 23 and the signal processing element 25 formed on another Si substrate 24 are opposed to each other, and the non-doped Si layer 21 on which the light receiving element 22 is formed and the Si substrate 24 are bonded using an adhesive 26. ..

【0022】そしてこの開口部23に信号処理素子25と、
受光素子22の第1コンタクト層3とを、接続するための
コンタト電極27を形成し、また第2コンタクト層4上に
も紙面に垂直方向にノンドープSi層21上に沿ってコンタ
クト電極28を設ける。
A signal processing element 25 is provided in the opening 23,
A contact electrode 27 for connecting the first contact layer 3 of the light receiving element 22 to each other is formed, and a contact electrode 28 is also provided on the second contact layer 4 along the non-doped Si layer 21 in a direction perpendicular to the paper surface. ..

【0023】このような本発明の赤外線検知装置による
と、光吸収層1が異方性エッチングで形成された四角錐
状の溝9で、角度が45度の傾斜面11に沿って形成されて
いるので、その光吸収層1の見掛け上の厚さが、平板上
の基板上に形成した光吸収層1の場合に比較して21/2
の厚さになり、光吸収効率の向上した赤外線検知装置が
得られる。
According to the infrared detecting device of the present invention as described above, the light absorption layer 1 is formed by the quadrangular pyramidal groove 9 formed by anisotropic etching along the inclined surface 11 having an angle of 45 degrees. Therefore, the apparent thickness of the light absorption layer 1 is 2 1/2 times as thick as that of the light absorption layer 1 formed on the flat plate substrate, and the light absorption efficiency is improved. Infrared detector is obtained.

【0024】また受光素子22の底部に開口部23を設け、
その開口部23を他のSi基板24上に形成された信号処理素
子25と合致させて、導電体層でコンタクト電極27として
接続することで、従来のように赤外線検知素子と信号処
理素子を金属バンプで接続した場合と異なり、この赤外
線検知装置の動作時の液体窒素温度より室温の保管温度
に到る温度変動によって、金属バンプが位置ずれするよ
うなことが無くなり、高信頼度の赤外線検知装置が得ら
れる。
Further, an opening 23 is provided at the bottom of the light receiving element 22,
By matching the opening 23 with the signal processing element 25 formed on the other Si substrate 24 and connecting the contact processing electrode 27 with the conductor layer, the infrared detecting element and the signal processing element are formed by metal as in the conventional case. Unlike the case where the infrared detector is connected by bump, the metal bump is not displaced due to the temperature change from the liquid nitrogen temperature during operation to the storage temperature of room temperature, which is a highly reliable infrared detector. Is obtained.

【0025】このような本発明の赤外線検知装置の製造
方法について述べる。図2(a)に示すように、表面が(1
10)面のノンドープSiウエハ31上に、厚さが300 μm
で、ボロン(B) 原子を1016/cm3の濃度にドープしたボロ
ンドープトSi層32をエピタキシャル成長によって形成す
る。
A method of manufacturing such an infrared detecting device of the present invention will be described. As shown in Fig. 2 (a), the surface is (1
10) The thickness is 300 μm on the non-doped Si wafer 31.
Then, a boron-doped Si layer 32 doped with boron (B) atoms at a concentration of 10 16 / cm 3 is formed by epitaxial growth.

【0026】前記したノンドープSiウエハ31を研磨、或
いはエッチングを用いて50μm の厚さに加工し、図2(b)
に示すように厚さが50μm のノンドープSi層21に薄層化
する。
The above-mentioned non-doped Si wafer 31 is processed into a thickness of 50 μm by polishing or etching, and FIG.
As shown in, the thickness is reduced to a non-doped Si layer 21 having a thickness of 50 μm.

【0027】次いでレジスト膜( 図示せず) を所定のパ
ターンにノンドープSi層21上に形成し、このレジスト膜
をマスクてとしてエチレンジアミンとピロカテコールの
混合液の異方性エッチング液を用いて四角錐状の溝9
を、エッチングにより形成する。
Next, a resist film (not shown) is formed in a predetermined pattern on the non-doped Si layer 21, and using this resist film as a mask, an anisotropic etching solution of a mixed solution of ethylenediamine and pyrocatechol is used to form a quadrangular pyramid. Groove 9
Are formed by etching.

【0028】このエチレンジアミンとピロカテコールの
混合液の異方性エッチング液は(110)面を有するノ
ンドープSi層21に対して傾斜面11が(111)面となる
四角錐状の溝9をボロンドープトSi層32に到達するまで
形成する。
This anisotropic etching solution of a mixed solution of ethylenediamine and pyrocatechol is used to form a quadrangular pyramid-shaped groove 9 in which the inclined surface 11 is the (111) plane with respect to the non-doped Si layer 21 having the (110) plane. Form until layer 32 is reached.

【0029】次いで図2(c)に示すように、この溝9内に
CVD法を用いて厚さが0.2 μm でAs原子を2 ×1019/c
m3でドープした第1コンタクト3を形成し、その上に厚
さが15μm でAs原子を5 ×1016/cm3でドープした光吸収
層1を形成し、更にその上に厚さが1 μm でノンドープ
のSi層よりなるブロッキング層2を形成し、更に最上層
に、厚さが0.2 μm でAs原子を2×1019/cm3でドープし
た第2コンタクト層4を形成する。
Then, as shown in FIG. 2 (c), a CVD method is used to form As atoms of 2 × 10 19 / c with a thickness of 0.2 μm.
A first contact 3 doped with m 3 is formed, and a light absorption layer 1 with a thickness of 15 μm and 5 × 10 16 / cm 3 of As atoms is formed on the first contact 3. A blocking layer 2 made of a non-doped Si layer having a thickness of μm is formed, and a second contact layer 4 having a thickness of 0.2 μm and doped with As atoms of 2 × 10 19 / cm 3 is further formed on the uppermost layer.

【0030】そして、この第1コンタクト層3、光吸収
層1、ブロッキング層2および第2コンタクト層4によ
り受光素子22を形成している。次いで図2(d)に示すよう
に、前記したボロンドープトSi層32を苛性カリ(KOH)の
エッチング液でエッチングし、更にノンドープSi層21を
もエッチングして薄層化する。そして溝9内に形成した
受光素子22の底部をエッチングし、この受光素子22の底
部に開口部23を形成する。
The first contact layer 3, the light absorption layer 1, the blocking layer 2 and the second contact layer 4 form a light receiving element 22. Next, as shown in FIG. 2 (d), the boron-doped Si layer 32 is etched with an etching solution of caustic potassium (KOH), and the non-doped Si layer 21 is also etched to be a thin layer. Then, the bottom of the light receiving element 22 formed in the groove 9 is etched to form an opening 23 in the bottom of the light receiving element 22.

【0031】次いで図3(a)に示すように、この受光素子
22を有する赤外線検知素子で検知した検知信号を信号処
理する信号処理素子25を形成した他のSi基板24を準備す
る。そしてこのSi基板24の前記信号処理素子25と、前記
受光素子22の底部に設けた開口部23とを合致させ、前記
ノンドープSi層21と、Si基板24とを接着剤26を用いて接
着する。
Next, as shown in FIG. 3A, this light receiving element
Another Si substrate 24 having a signal processing element 25 for signal processing a detection signal detected by the infrared detection element having 22 is prepared. Then, the signal processing element 25 of the Si substrate 24 and the opening portion 23 provided in the bottom portion of the light receiving element 22 are aligned with each other, and the non-doped Si layer 21 and the Si substrate 24 are bonded using an adhesive 26. ..

【0032】次いで図3(b)に示すように、この受光素子
22の底部に形成した開口部23に、前記第2コンタクト層
4に接着するようにコンタクト電極27をアルミニウム(A
l)の導電体層を用いて形成する。
Next, as shown in FIG. 3 (b), this light receiving element
A contact electrode 27 is formed on the opening 23 formed in the bottom of the aluminum electrode 22 so as to adhere to the second contact layer 4 by aluminum (A
It is formed using the conductor layer of l).

【0033】また受光素子22の第1コンタクト層3に接
続するコンタクト電極28をアルミニウム(Al)の導電体層
を蒸着法等を用いて、紙面に垂直方向に延びるように形
成して赤外線検知装置を形成する。
Further, the contact electrode 28 connected to the first contact layer 3 of the light receiving element 22 is formed by forming a conductive layer of aluminum (Al) so as to extend in the direction perpendicular to the paper surface by an evaporation method or the like, and an infrared detecting device. To form.

【0034】[0034]

【発明の効果】以上述べたように、本発明の赤外線検知
装置、およびその製造方法によると、光吸収層の光電変
換効率が向上して、かつ製造が容易で温度変動によって
素子間が位置ずれしない高信頼度のBIB型の赤外線検
知装置が得られる効果がある。
As described above, according to the infrared detecting device and the manufacturing method thereof of the present invention, the photoelectric conversion efficiency of the light absorption layer is improved, the manufacturing is easy, and the positional deviation between the elements due to temperature fluctuation. There is an effect that a highly reliable BIB type infrared detection device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の装置の平面図と断面図である。FIG. 1 is a plan view and a cross-sectional view of the device of the present invention.

【図2】 本発明の装置の製造方法の工程を示す断面図
である。
FIG. 2 is a cross-sectional view showing steps of a method for manufacturing a device of the present invention.

【図3】 本発明の装置の製造方法の工程を示す断面図
である。
FIG. 3 is a cross-sectional view showing steps of a method for manufacturing a device of the present invention.

【図4】 本発明の装置の原理の説明図である。FIG. 4 is an explanatory diagram of the principle of the device of the present invention.

【図5】 従来の装置の説明図とその動作の説明図であ
る。
FIG. 5 is an explanatory diagram of a conventional device and an explanatory diagram of its operation.

【符号の説明】[Explanation of symbols]

1 光吸収層 2 ブロッキング層 3 第1コンタクト層 4 第2コンタクト層 9 溝 11 傾斜面 21 ノンドープSi層 22 受光素子 23 開口部 24 Si基板 25 信号処理素子 26 接着剤 27,28 コンタクト電極 31 ノンドープSiウエハ 32 ボロンドープトSi層 41 半導体基板 1 Light absorption layer 2 Blocking layer 3 First contact layer 4 Second contact layer 9 Groove 11 Inclined surface 21 Non-doped Si layer 22 Light receiving element 23 Opening 24 Si substrate 25 Signal processing element 26 Adhesive 27,28 Contact electrode 31 Non-doped Si Wafer 32 Boron-doped Si layer 41 Semiconductor substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 不純物を添加したドープト半導体層(32)
上に不純物を添加しないノンドープ半導体層(21)を設け
て形成された半導体基板(41)の所定の位置に、前記ノン
ドープ半導体層(21)よりドープト半導体層(32)に到達す
る溝(9) を設け、 該溝(9) 内に不純物濃度の異なる半導体層で形成された
第1コンタクト層(3)、ブロッキング層(2) 、光吸収層
(1) および第2コンタクト層(4) より成る受光素子(22)
を埋設して設けるとともに、該溝(9) の底部を貫通する
開口部(23)を設け、前記受光素子(22)の第2コンタクト
層(4) と、別個の半導体基板(24)に設けた信号処理素子
(25)とを互いにコンタクト電極(27)で接続するととも
に、前記受光素子(22)の第1コンタクト層(3) と、前記
半導体基板(41)のノンドープ半導体層(21)上に設けたコ
ンタクト電極(28)とを接続したことを特徴とする赤外線
検知装置。
1. A doped semiconductor layer (32) doped with impurities
A groove (9) reaching the doped semiconductor layer (32) from the non-doped semiconductor layer (21) at a predetermined position of the semiconductor substrate (41) formed by providing the non-doped semiconductor layer (21) on which impurities are not added. Provided in the groove (9), a first contact layer (3) formed of a semiconductor layer having different impurity concentrations, a blocking layer (2), and a light absorption layer
Photodetector (22) consisting of (1) and second contact layer (4)
And a second contact layer (4) of the light receiving element (22) and a semiconductor substrate (24) separate from the second contact layer (4) of the light receiving element (22). Signal processing element
(25) is connected to each other by a contact electrode (27), and a contact is provided on the first contact layer (3) of the light receiving element (22) and the non-doped semiconductor layer (21) of the semiconductor substrate (41). An infrared detector characterized in that it is connected to an electrode (28).
【請求項2】 不純物を添加しないノンドープ半導体ウ
エハ(31)上に不純物を添加したドープト半導体層(32)を
設けて半導体基板(41)を形成し、 前記ノンドープ半導体ウエハ(31)を薄層化してノンドー
プ半導体層(21)を形成し、該薄層化されたノンドープ半
導体層(21)上の所定位置にドープト半導体層(32)に到る
溝(9) を形成する工程、 前記溝(9) 内に第1コンタクト層(3) 、光吸収層(1) 、
ブロッキング層(2) 、第2コンタクト層(4) よりなる受
光素子(22)を形成する工程、 前記ドープト半導体層(32)を選択的にエッチングして除
去し、次いでノンドープ半導体層(21)を薄層化するとと
もに該受光素子(22)を形成した溝(9) の底部に該底部を
貫通する開口部(23)を形成する工程、 前記薄層化され、溝(9) 内に受光素子(22)を有するノン
ドープ半導体層(21)の溝(9) の底部と、他の半導体基板
(24)に形成した信号処理素子(25)とを合致させて、前記
ノンドープ半導体層(21)と他の半導体基板(24)を貼着す
る工程、 前記溝(9) の底部の第2コンタクト層(4) と前記信号処
理素子(25)とを接続するコンタクト電極(27)を形成する
工程、 前記第1コンタクト層(3) と接続するコンタクト電極(2
8)をノンドープ半導体層(21)上に形成する工程を含むこ
とを特徴とする赤外線検知装置の製造方法。
2. A semiconductor substrate (41) is formed by providing a doped semiconductor layer (32) doped with impurities on a non-doped semiconductor wafer (31) not doped with impurities to thin the non-doped semiconductor wafer (31). A non-doped semiconductor layer (21) to form a groove (9) reaching the doped semiconductor layer (32) at a predetermined position on the thinned non-doped semiconductor layer (21), the groove (9 ) Inside the first contact layer (3), the light absorption layer (1),
A step of forming a light receiving element (22) comprising a blocking layer (2) and a second contact layer (4), the doped semiconductor layer (32) is selectively etched and removed, and then the non-doped semiconductor layer (21) is removed. Forming a thin layer and forming an opening (23) at the bottom of the groove (9) in which the light receiving element (22) is formed, the light receiving element in the groove (9) being thinned The bottom of the groove (9) of the non-doped semiconductor layer (21) having (22) and another semiconductor substrate
A step of attaching the non-doped semiconductor layer (21) to another semiconductor substrate (24) while matching the signal processing element (25) formed in (24), the second contact at the bottom of the groove (9) A step of forming a contact electrode (27) connecting the layer (4) and the signal processing element (25), and a contact electrode (2 connecting the first contact layer (3)
8. A method for manufacturing an infrared detection device, comprising the step of forming 8) on a non-doped semiconductor layer (21).
【請求項3】 請求項1、或いは2に記載の溝(9) の形
成を異方性エッチング液を用いて形成することを特徴と
する赤外線検知装置の製造方法。
3. A method for manufacturing an infrared detection device, characterized in that the groove (9) according to claim 1 or 2 is formed by using an anisotropic etching solution.
JP4052032A 1992-03-11 1992-03-11 Infrared ray detector and production thereof Withdrawn JPH05259427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4052032A JPH05259427A (en) 1992-03-11 1992-03-11 Infrared ray detector and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4052032A JPH05259427A (en) 1992-03-11 1992-03-11 Infrared ray detector and production thereof

Publications (1)

Publication Number Publication Date
JPH05259427A true JPH05259427A (en) 1993-10-08

Family

ID=12903475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052032A Withdrawn JPH05259427A (en) 1992-03-11 1992-03-11 Infrared ray detector and production thereof

Country Status (1)

Country Link
JP (1) JPH05259427A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534186A (en) * 2002-07-26 2005-11-10 レイセオン・カンパニー Radiation-cured visible PIN type detector
JP2010045313A (en) * 2008-08-18 2010-02-25 Univ Of Tokyo Method of manufacturing detection element, and method of manufacturing far-infrared detector
US7928389B1 (en) * 2009-08-20 2011-04-19 Hrl Laboratories, Llc Wide bandwidth infrared detector and imager
US7977637B1 (en) * 2009-08-20 2011-07-12 Hrl Laboratories, Llc Honeycomb infrared detector
CN102384790A (en) * 2010-08-30 2012-03-21 中国科学院微电子研究所 Thermopile infrared sensor and manufacture method thereof
US8946839B1 (en) 2009-08-20 2015-02-03 Hrl Laboratories, Llc Reduced volume infrared detector
US9490292B1 (en) 2013-03-15 2016-11-08 Hrl Laboratories, Llc Dual-band detector array
US10020331B1 (en) 2016-07-21 2018-07-10 Hrl Laboratories, Llc Dual-band lateral-effect position sensor
CN109873045A (en) * 2017-12-01 2019-06-11 财团法人工业技术研究院 Infrared sensing element and its manufacturing method
US10903261B1 (en) 2013-03-15 2021-01-26 Hrl Laboratories, Llc Triple output, dual-band detector

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005534186A (en) * 2002-07-26 2005-11-10 レイセオン・カンパニー Radiation-cured visible PIN type detector
JP2010045313A (en) * 2008-08-18 2010-02-25 Univ Of Tokyo Method of manufacturing detection element, and method of manufacturing far-infrared detector
US8969986B1 (en) 2009-08-20 2015-03-03 Hrl Laboratories, Llc Infrared detector
US7977637B1 (en) * 2009-08-20 2011-07-12 Hrl Laboratories, Llc Honeycomb infrared detector
US8946839B1 (en) 2009-08-20 2015-02-03 Hrl Laboratories, Llc Reduced volume infrared detector
US7928389B1 (en) * 2009-08-20 2011-04-19 Hrl Laboratories, Llc Wide bandwidth infrared detector and imager
US9520525B1 (en) 2009-08-20 2016-12-13 Hrl Laboratories, Llc Method of making an optical detector
CN102384790A (en) * 2010-08-30 2012-03-21 中国科学院微电子研究所 Thermopile infrared sensor and manufacture method thereof
US9490292B1 (en) 2013-03-15 2016-11-08 Hrl Laboratories, Llc Dual-band detector array
US10903261B1 (en) 2013-03-15 2021-01-26 Hrl Laboratories, Llc Triple output, dual-band detector
US10020331B1 (en) 2016-07-21 2018-07-10 Hrl Laboratories, Llc Dual-band lateral-effect position sensor
CN109873045A (en) * 2017-12-01 2019-06-11 财团法人工业技术研究院 Infrared sensing element and its manufacturing method
CN109873045B (en) * 2017-12-01 2020-12-22 财团法人工业技术研究院 Infrared sensing element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5024953A (en) Method for producing opto-electric transducing element
US7566875B2 (en) Single-chip monolithic dual-band visible- or solar-blind photodetector
US6147349A (en) Method for fabricating a self-focusing detector pixel and an array fabricated in accordance with the method
EP0616373A2 (en) Photoelectric conversion semiconductor device and method of manufacturing the same
JP4478012B2 (en) Back-illuminated photodiode array and manufacturing method thereof
US4745451A (en) Photodetector array and a method of making same
TWI809124B (en) Back-illuminated sensor and a method of manufacturing a sensor
JP3441101B2 (en) Electron tube
JPH05259427A (en) Infrared ray detector and production thereof
CN100446261C (en) Back illuminated photodiode array, manufacturing method and semiconductor device thereof
US3371213A (en) Epitaxially immersed lens and photodetectors and methods of making same
EP0664052B1 (en) Photoconductive impedance-matched infrared detector with heterojunction blocking contacts
JP6732039B2 (en) Direct read pixel alignment
WO2021254102A1 (en) Detection substrate and manufacturing method therefor, and ray detection apparatus
US20240063248A1 (en) Back-Illuminated Sensor And A Method Of Manufacturing A Sensor Using A Silicon On Insulator Wafer
EP1741143B1 (en) Backside thinning of image array devices
JPH0536966A (en) Semiconductor device
US5846850A (en) Double sided interdiffusion process and structure for a double layer heterojunction focal plane array
EP3738147B1 (en) Short-wave infrared detector and its integration with cmos compatible substrates
JP4824948B2 (en) Energy beam detector
JPS63200577A (en) Schottky barrier type infrared ray sensor
JPH0637291A (en) Infrared detector and manufacture thereof
JPH06204449A (en) Photodetector and manufacture thereof
JP2988540B2 (en) Semiconductor photodetector
JPH02502326A (en) Infrared radiation detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518