JP4478012B2 - Back-illuminated photodiode array and manufacturing method thereof - Google Patents

Back-illuminated photodiode array and manufacturing method thereof Download PDF

Info

Publication number
JP4478012B2
JP4478012B2 JP2004504299A JP2004504299A JP4478012B2 JP 4478012 B2 JP4478012 B2 JP 4478012B2 JP 2004504299 A JP2004504299 A JP 2004504299A JP 2004504299 A JP2004504299 A JP 2004504299A JP 4478012 B2 JP4478012 B2 JP 4478012B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
surface side
photodiode array
concentration impurity
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004504299A
Other languages
Japanese (ja)
Other versions
JPWO2003096427A1 (en
Inventor
義磨郎 藤井
浩二 岡本
坂本  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Publication of JPWO2003096427A1 publication Critical patent/JPWO2003096427A1/en
Application granted granted Critical
Publication of JP4478012B2 publication Critical patent/JP4478012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、裏面照射型ホトダイオードアレイ及びその製造方法に関する。   The present invention relates to a back illuminated photodiode array and a method for manufacturing the same.

三次元実装技術が多くの分野で研究されている。従来、三次元実装においては、基板上下面を貫通する孔を形成し、この孔を介して一方面側の電極を他方面側に引き出すことが行われている。   Three-dimensional mounting technology has been studied in many fields. Conventionally, in three-dimensional mounting, a hole penetrating the upper and lower surfaces of a substrate is formed, and an electrode on one surface side is drawn out to the other surface side through the hole.

ところが、このような三次元実装における貫通孔形成工程では、通常ICPプラズマエッチングを用いるが、ウエハの厚さは300μm〜400μm程度と厚いため、貫通孔を形成するためには多大な時間を要する。また、ICPプラズマエッチング装置によるエッチング処理はウエハ1枚/1回であるので、複数枚のウエハを同時に処理することができないため、結果として1枚のウエハ当たりに貫通孔を形成するのに多大な時間を要する。したがってこのようなエッチング技術を用いていたのでは、一度のエッチングで少量の製品しか形成できない製品、すなわち、大面積ホトダイオードアレイは工業的な量産ができない。例えば、孔の形成に1ウエハ当たり数時間も要して数個の大面積ホトダイオードアレイを形成しても工業的には成立しない。   However, in such a through-hole forming process in three-dimensional mounting, ICP plasma etching is usually used. However, since the thickness of the wafer is as thick as about 300 μm to 400 μm, it takes a lot of time to form the through-hole. Further, since the etching process by the ICP plasma etching apparatus is one wafer / one time, it is impossible to process a plurality of wafers at the same time. As a result, a large amount of holes are formed per one wafer. It takes time. Therefore, if such an etching technique is used, a product that can form only a small amount of product by one etching, that is, a large-area photodiode array cannot be industrially mass-produced. For example, it takes several hours per wafer to form the holes, and even if several large area photodiode arrays are formed, it is not industrially established.

本発明は、このような課題に鑑みてなされたものであり、量産が可能な裏面照射型ホトダイオードアレイ及びその製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a back-illuminated photodiode array that can be mass-produced and a manufacturing method thereof.

上述の課題を解決するため、本発明に係る裏面照射型ホトダイオードアレイの製造方法は、(a)第一導電型の半導体基板の光入射面である一方面側に第一導電型の高濃度不純物領域を形成する工程と、(b)工程(a)の後に、前記半導体基板の前記一方面側に支持基板を貼り合わせる工程と、(c)前記工程(b)の後に、前記半導体基板の他方面側を研磨して前記半導体基板を薄膜化する工程と、(d)前記工程(c)の後に、前記半導体基板の前記他方面側に第一導電型の高濃度不純物領域及び複数のホトダイオードを形成し、各ホトダイオードは第一導電型の前記半導体基板とこれに形成された第二導電型の不純物領域からなり、各導電型の一方をカソードとし他方をアノードとする工程と、(e)前記工程(d)の後に、前記半導体基板の前記他方面側の前記高濃度不純物領域から前記一方面側の前記高濃度不純物領域に到達する孔を形成する工程と、(f)前記工程(e)の後に、前記一方面側と前記他方面側の前記高濃度不純物領域を、前記孔に第一導電型の不純物添加領域及び金属電極膜を形成することで、電気的に接続する工程と、(g)前記工程(f)の後に、前記支持基板を除去する工程と、を備え、(h)前記工程(g)の後に、前記他方面側の高濃度不純物領域及び前記第二導電型の不純物領域を、バンプを介して回路基板に電気的に接続する工程と、備えていることを特徴とする。ホトダイオードのアノード及びカソードの一方は、半導体基板の一方面側及び他方面側のいずれか一方に位置し、他方は残りの面側に位置する。
In order to solve the above-described problems, a method of manufacturing a back-illuminated photodiode array according to the present invention includes (a) a first conductivity type high concentration impurity on one surface side which is a light incident surface of a first conductivity type semiconductor substrate. A step of forming a region; (b) a step of attaching a support substrate to the one surface side of the semiconductor substrate after the step (a); and (c) another step of the semiconductor substrate after the step (b). Polishing the surface side to thin the semiconductor substrate; and (d) after the step (c), a high-concentration impurity region of a first conductivity type and a plurality of photodiodes are formed on the other surface side of the semiconductor substrate. Each photodiode comprises a first conductive type semiconductor substrate and a second conductive type impurity region formed on the semiconductor substrate, wherein one of the conductive types is a cathode and the other is an anode; After step (d) Forming a hole reaching the high concentration impurity region on the one surface side from the high concentration impurity region on the other surface side of the body substrate; (f) after the step (e), Electrically connecting the high-concentration impurity region on the other surface side by forming a first conductivity type impurity-added region and a metal electrode film in the hole; and (g) the step (f) And (h) after the step (g), the high-concentration impurity region on the other surface side and the impurity region of the second conductivity type are connected via bumps. And a step of electrically connecting to the substrate. One of the anode and the cathode of the photodiode is located on one side and the other side of the semiconductor substrate, and the other is located on the remaining side.

この製造方法によれば、研磨工程によってホトダイオードアレイが薄膜化されるので、孔の形成時間が短縮され、且つ、この孔を介して半導体基板の両面側に形成された高濃度不純物領域を接続するので、ホトダイオードのアノード及びカソードを半導体基板の同一面(他方面)側に電気的に導くことができる。薄膜化による基板強度の低下、更にはウエハ破損に係る問題は、ウエハ製造中に、半導体基板の一方面側には支持基板が設けられるので、これを補強することができる。かかる発明によって、複数のホトダイオードを備えたホトダイオードアレイが工業的に初めて量産可能となる。更に、このホトダイオードアレイは裏面照射型であるため、信号雑音比が高く、高精度の光検出装置に用いることができることとなる。   According to this manufacturing method, since the photodiode array is thinned by the polishing process, the formation time of the holes is shortened, and the high-concentration impurity regions formed on both sides of the semiconductor substrate are connected through the holes. Therefore, the anode and cathode of the photodiode can be electrically guided to the same surface (other surface) side of the semiconductor substrate. The problem related to the decrease in the substrate strength due to the thin film and the damage to the wafer can be reinforced by providing the support substrate on one side of the semiconductor substrate during the wafer manufacture. With this invention, a photodiode array having a plurality of photodiodes can be mass-produced for the first time industrially. Furthermore, since this photodiode array is a back-illuminated type, it has a high signal-to-noise ratio and can be used for a highly accurate photodetector.

また、前記半導体基板及び前記高濃度不純物領域は第一導電型(例えばn型)であって、前記複数のホトダイオードは複数の第二導電型(例えばp型)不純物領域と半導体基板とで構成され、いずれかの前記ホトダイオードの前記一方面側に位置するアノード又はカソードは前記他方面側に電気的に導かれている構成とすることができる。   The semiconductor substrate and the high-concentration impurity region are of a first conductivity type (for example, n-type), and the plurality of photodiodes are composed of a plurality of second conductivity type (for example, p-type) impurity regions and a semiconductor substrate. The anode or the cathode located on the one surface side of any one of the photodiodes may be electrically guided to the other surface side.

また、前記工程(a)と工程(b)の間において、前記半導体基板の一方面側の全面に前記高濃度不純物領域より浅い第一導電型の全面不純物半導体層を形成する工程を備えると、この全面不純物半導体層はアキュムレーション層として機能する。 Further, between the step (a) and the step (b), a step of forming a first-conductivity-type full-surface impurity semiconductor layer shallower than the high-concentration impurity region on the entire surface on one side of the semiconductor substrate, This entire surface impurity semiconductor layer functions as an accumulation layer.

また、前記工程(a)と工程(b)の間において、前記半導体基板の一方面側に酸化膜を形成する工程を備える場合には、これを保護膜として機能させることができる。 Further, when a step of forming an oxide film on one surface side of the semiconductor substrate is provided between the step (a) and the step (b) , this can function as a protective film.

また、本発明の裏面照射型ホトダイオードアレイの製造方法は、前記工程(f)と工程(g)の間において、前記孔内に樹脂を埋め込む工程を更に備えることを特徴とする。孔内に樹脂を埋め込むことによって、半導体基板の強度を向上させることができる。 The backside illuminated photodiode array manufacturing method of the present invention further includes a step of embedding a resin in the hole between the step (f) and the step (g) . By embedding resin in the hole, the strength of the semiconductor substrate can be improved.

また、前記工程(f)と工程(g)の間において、前記孔内に埋め込む樹脂は感光性を有し、この樹脂となるフォトレジストを前記半導体基板の他方面側の全面に塗布する工程と、前記半導体基板の他方面側の電極形成予定領域のフォトレジストのみ除去する工程と、フォトレジストが除去された領域に電極を形成する工程と、を更に備え、前記電極形成予定領域は、前記孔の位置に形成される電極、及び、前記他方面側の前記高濃度不純物領域上に形成される電極が形成される予定の領域であることが好ましい。この場合には、フォトレジストを用いた通常のフォトリソグラフィプロセスにより樹脂を埋設できるとともに、当該フォトレジストによって電極の露出を行うことができる。 Further, between the step (f) and the step (g), the resin embedded in the hole has photosensitivity, and a step of applying a photoresist serving as the resin to the entire other surface of the semiconductor substrate; the removing only the photoresist in the other side of the electrode formation region of the semiconductor substrate, further comprising forming an electrode in a region where the photoresist is removed, and the electrode forming region, said hole And an electrode formed on the high-concentration impurity region on the other surface side are preferably formed. In this case, the resin can be embedded by a normal photolithography process using a photoresist, and the electrode can be exposed by the photoresist.

更に、三次元実装という観点から、上述の裏面照射型ホトダイオードアレイの製造方法は、前記ホトダイオードのアノード及びカソードが回路基板に電気的に接続されるよう、前記半導体基板の前記他方面側をバンプを介して前記回路基板に取り付ける工程を更に備えることが好ましい。この場合、バンプによって回路基板に電気的に接続されるホトダイオードのアノード及びカソードの接続配線は回路基板方向、すなわち、半導体基板厚み方向に延びることができるので、実装面積を小さくすることができる。すなわち、平面方向にデッドスペースが小さくなるため半導体基板横方向(二次元的に)に複数の裏面照射型ホトダイオードアレイを配列することができるようになり、全体として、更に大面積の撮像装置を提供することができる。   Further, from the viewpoint of three-dimensional mounting, the above-described backside illuminated photodiode array manufacturing method includes bumping the other side of the semiconductor substrate so that the anode and cathode of the photodiode are electrically connected to the circuit board. It is preferable that the method further includes a step of attaching to the circuit board. In this case, since the anode and cathode connection wiring of the photodiode electrically connected to the circuit board by the bumps can extend in the circuit board direction, that is, in the semiconductor substrate thickness direction, the mounting area can be reduced. In other words, since the dead space is reduced in the planar direction, a plurality of back-illuminated photodiode arrays can be arranged in the lateral direction (two-dimensionally) of the semiconductor substrate, and as a whole, an imaging device having a larger area is provided. can do.

なお、このような大面積の裏面照射型ホトダイオードアレイは、X線、γ線を可視光に変換するシンチレータと組み合わせることで、コンピュータ断層撮影(CT)装置や陽電子放射断層撮影(PET)装置に適用することができる。   Such a large area back-illuminated photodiode array is applied to a computed tomography (CT) device or a positron emission tomography (PET) device by combining with a scintillator that converts X-rays and γ-rays into visible light. can do.

また、本発明の裏面照射型ホトダイオードアレイは上述の方法によって作製することができ、第一導電型の半導体基板の光入射面である一方面側及び他方面側に第一導電型の高濃度不純物領域が形成され、前記高濃度不純物領域同士は前記半導体基板を厚み方向に貫通する孔に設けられた第一導電型の不純物添加領域及び金属電極膜を介して電気的に接続され、前記他方面側には、複数の第二導電型の不純物領域が設けられて、第一導電型の前記半導体基板と共に複数のホトダイオードを構成している裏面照射型ホトダイオードアレイにおいて、前記孔内には樹脂が充填されており、前記他方面側の前記高濃度不純物領域及び前記第二導電型の不純物領域は、バンプを介して回路基板に電気的に接続されることを特徴とする。 Further, the back illuminated photodiode array of the present invention can be produced by the above-described method, and the first conductivity type high-concentration impurity is formed on one surface side and the other surface side which are light incident surfaces of the first conductivity type semiconductor substrate. A region is formed, and the high-concentration impurity regions are electrically connected to each other through a first-conductivity-type impurity-added region and a metal electrode film provided in a hole penetrating the semiconductor substrate in the thickness direction. On the side, a plurality of second conductivity type impurity regions are provided, and in the back-illuminated photodiode array that constitutes a plurality of photodiodes together with the first conductivity type semiconductor substrate, the hole is filled with resin. The high concentration impurity region and the second conductivity type impurity region on the other surface side are electrically connected to a circuit board through bumps.

この裏面照射型ホトダイオードアレイは三次元実装上の及び製造方法上の利点を有すると共に、孔内の樹脂が裏面照射型ホトダイオードの基板強度低下を抑制することができる。   This back-illuminated photodiode array has advantages in terms of three-dimensional mounting and a manufacturing method, and the resin in the hole can suppress a reduction in substrate strength of the back-illuminated photodiode.

また、前記半導体基板の一方面側の全面に前記高濃度不純物領域より浅い第一導電型の全面不純物半導体層を備えることが好ましい。 Further , it is preferable that a first conductivity type full-surface impurity semiconductor layer shallower than the high-concentration impurity region is provided on the entire surface on one side of the semiconductor substrate.

この場合、全面不純物半導体層をアキュムレーション層として機能させることができ、高性能の検出を行うことができるようになる。   In this case, the whole surface impurity semiconductor layer can function as an accumulation layer, and high-performance detection can be performed.

本発明によれば、量産が可能な裏面照射型ホトダイオードアレイ及びその製造方法を提供することができる。  According to the present invention, it is possible to provide a backside illuminated photodiode array capable of mass production and a method for manufacturing the same.

施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。Is an explanatory view for explaining a method of manufacturing a back illuminated photodiode array according to the embodiment of the implementation shows a longitudinal sectional structure of a back illuminated photodiode array. 1Jに示した裏面照射型ホトダイオードアレイPDAを回路基板C上に複数備えてなる撮像装置の説明図である。 1B is an explanatory diagram of an imaging apparatus including a plurality of back-illuminated photodiode arrays PDA shown in FIG. 1J on a circuit board C. FIG.

以下、実施の形態に係る裏面照射型ホトダイオードアレイについて説明する。なお、同一要素には同一符号を用い、重複する説明は省略する。   Hereinafter, the backside illuminated photodiode array according to the embodiment will be described. In addition, the same code | symbol is used for the same element and the overlapping description is abbreviate | omitted.

図1A〜図1Jは実施の形態に係る裏面照射型ホトダイオードアレイの製造方法を説明するための説明図であり、裏面照射型ホトダイオードアレイの縦断面構成を示す。以下、詳説する。   1A to 1J are explanatory views for explaining a method of manufacturing a back-illuminated photodiode array according to the embodiment, and show a longitudinal sectional configuration of the back-illuminated photodiode array. The details will be described below.

この製造方法では、以下の工程(1)〜(10)を順次実行する。   In this manufacturing method, the following steps (1) to (10) are sequentially performed.

工程(1)   Process (1)

まず、Siからなる半導体基板(ウエハ)1を用意する。半導体基板1の伝導型はn型であり、比抵抗は1kΩ・cm程度である。半導体基板1の比抵抗は低容量、低ノイズ、高速応答のバランスを考慮して設定される。次に、半導体基板1の裏面側(一方面側)に所定間隔離隔した厚さ数μmのn型高濃度不純物領域1nを複数形成する(図1A)。ここで、「裏面」とは、最終的に製造される裏面照射型ホトダイオードにおける光入射面のことであって、説明の便宜上用いる規定であり、図面の下側の面ではないことに留意されたい。また、高濃度不純物領域1nはn型であり、燐の拡散によって形成され、高濃度とは、少なくとも1×1017cm-3以上のキャリア濃度を有する領域を意味するものとする。 First, a semiconductor substrate (wafer) 1 made of Si is prepared. The conductivity type of the semiconductor substrate 1 is n-type, and the specific resistance is about 1 kΩ · cm. The specific resistance of the semiconductor substrate 1 is set in consideration of the balance of low capacitance, low noise, and high-speed response. Next, a plurality of n-type high-concentration impurity regions 1n having a thickness of several μm are formed on the back surface side (one surface side) of the semiconductor substrate 1 at a predetermined interval (FIG. 1A). Here, it should be noted that the “back surface” is a light incident surface in a finally manufactured back-illuminated photodiode, and is a rule used for convenience of explanation, and is not a lower surface of the drawing. . The high-concentration impurity region 1n is n-type and formed by phosphorus diffusion, and the high concentration means a region having a carrier concentration of at least 1 × 10 17 cm −3 or more.

工程(2)   Step (2)

次に、半導体基板1の同じ裏面側の全面に薄い不純物半導体1ncを形成する(図1B)。不純物半導体層1ncの伝導型はn型であって不純物濃度は高濃度である。なお、この形成工程に用いられる不純物は砒素であり、イオン注入の飛程が燐の拡散深さよりも小さく設定されているため、その深さが浅くなる(0.1μm以下)。この層の形成方法はイオン注入法であり、例えば、注入エネルギーは80kev、ドーズ量は2×1015cm-2とする。この層の深さは浅いため、光検出器の性能としては高感度となる。 Next, a thin impurity semiconductor 1nc is formed on the entire back surface of the semiconductor substrate 1 (FIG. 1B). The conductivity type of the impurity semiconductor layer 1nc is n-type, and the impurity concentration is high. The impurity used in this formation step is arsenic, and the ion implantation range is set smaller than the diffusion depth of phosphorus, so that the depth becomes shallow (0.1 μm or less). The formation method of this layer is an ion implantation method. For example, the implantation energy is 80 kev and the dose amount is 2 × 10 15 cm −2 . Since the depth of this layer is shallow, the sensitivity of the photodetector is high.

工程(3)   Process (3)

次に、半導体基板1の裏面側に酸化膜2を熱酸化により形成する(図1C)。   Next, an oxide film 2 is formed on the back side of the semiconductor substrate 1 by thermal oxidation (FIG. 1C).

工程(4)   Process (4)

更に、半導体基板1の裏面側に支持基板3を貼り合わせる(図1D)。この支持基板3の材料は、後述のように後工程で除去するため、特別な材料である必要はなく、例えば一般的に入手し易い数10Ω・cm程度のp型のシリコンを用いる。貼り合わせ工程では、酸化膜2を介して支持基板3を半導体基板1に押し付け、1000℃以下の熱を加えて貼り合せる。   Further, the support substrate 3 is bonded to the back side of the semiconductor substrate 1 (FIG. 1D). Since the material of the support substrate 3 is removed in a later step as described later, it is not necessary to be a special material. For example, p-type silicon of about several tens of Ω · cm that is generally available is used. In the bonding step, the support substrate 3 is pressed against the semiconductor substrate 1 through the oxide film 2 and bonded by applying heat of 1000 ° C. or lower.

工程(5)   Step (5)

しかる後、支持基板3を表面側(裏面とは逆の面:他方面)から研磨し、半導体基板1を所定の厚さまで薄膜化する(図1E)。この鏡面研磨工程後の半導体基板1の厚みは、例えば数10μm〜150μmであり、好適には50μm〜100μm程度である。   Thereafter, the support substrate 3 is polished from the front surface side (surface opposite to the back surface: the other surface), and the semiconductor substrate 1 is thinned to a predetermined thickness (FIG. 1E). The thickness of the semiconductor substrate 1 after the mirror polishing step is, for example, several tens of μm to 150 μm, and preferably about 50 μm to 100 μm.

工程(6)   Step (6)

次に、半導体基板1の表面側に所定間隔離隔した複数のn型高濃度不純物領域1n’及び複数のp型不純物領域1pを形成し、更に、半導体基板1の表面側に熱酸化によって酸化膜(SiO2)4を形成する(図1F)。n型高濃度不純物領域1n’は燐を拡散することによって形成される。また、p型不純物領域1pはホウ素を基板内に拡散又はイオン注入することによって形成される。かかるp型不純物領域1pはn型の半導体基板1とPN接合を構成することにより、ホトダイオードが構成される。このホトダイオードは半導体基板1の表面側に位置することとなる。また、このホトダイオードはアバランシェホトダイオードやPINホトダイオードとすることもできる。 Next, a plurality of n-type high-concentration impurity regions 1n ′ and a plurality of p-type impurity regions 1p that are spaced apart by a predetermined distance are formed on the surface side of the semiconductor substrate 1, and an oxide film is formed on the surface side of the semiconductor substrate 1 by thermal oxidation. (SiO 2 ) 4 is formed (FIG. 1F). The n-type high concentration impurity region 1n ′ is formed by diffusing phosphorus. The p-type impurity region 1p is formed by diffusing or ion-implanting boron into the substrate. The p-type impurity region 1p forms a photodiode by forming a PN junction with the n-type semiconductor substrate 1. This photodiode is located on the surface side of the semiconductor substrate 1. The photodiode can also be an avalanche photodiode or a PIN photodiode.

工程(7)   Step (7)

次に、半導体基板1の表面側から裏面側に到達する孔Hを形成する(図1G)。この孔Hは半導体基板1の表面側の酸化膜4を利用して、高濃度不純物領域1n’上に開口を有するマスクを形成し、かかるマスクを介して半導体基板1の表面をエッチングすることによって行う。エッチングの際には酸化膜4をマスクとするように、当該酸化膜4をホトリソグラフィによってパターニングすることもできる。このエッチングには等方性のウエットエッチングを用いることができるし、常圧プラズマエッチング(ADP)等の等方性のドライエッチングを用いることもできる。ウエットエッチングの際のエッチング液としては、HF/HNO3等を用いることができる。 Next, a hole H reaching from the front surface side to the back surface side of the semiconductor substrate 1 is formed (FIG. 1G). This hole H is formed by forming a mask having an opening on the high-concentration impurity region 1n ′ using the oxide film 4 on the surface side of the semiconductor substrate 1 and etching the surface of the semiconductor substrate 1 through the mask. Do. In the etching, the oxide film 4 can be patterned by photolithography so that the oxide film 4 is used as a mask. For this etching, isotropic wet etching can be used, and isotropic dry etching such as atmospheric pressure plasma etching (ADP) can also be used. As an etchant for wet etching, HF / HNO 3 or the like can be used.

このようなエッチング方法を用いれば、比較的生産性の高いエッチングが可能となるばかりでなく、孔Hの形状はすり鉢状、すなわち、テーパー状となるため、後段の電極形成におけるステップカバレージが向上する。孔Hは半導体基板1の表面側の高濃度不純物領域1n’の露出側面と裏面側の高濃度不純物領域1nの露出側面と半導体基板1のエッチングされた側面とが孔Hの内面を構成することとなる。   By using such an etching method, not only etching with relatively high productivity is possible, but also the shape of the hole H becomes a mortar shape, that is, a tapered shape, so that the step coverage in the subsequent electrode formation is improved. . In the hole H, the exposed side surface of the high concentration impurity region 1 n ′ on the front surface side of the semiconductor substrate 1, the exposed side surface of the high concentration impurity region 1 n on the back surface side, and the etched side surface of the semiconductor substrate 1 constitute the inner surface of the hole H. It becomes.

工程(8)   Step (8)

更に、孔Hの側面から半導体基板1内にn型不純物を添加し、表面側のn型高濃度不純物領域1n’と裏面側のn型高濃度不純物領域1nとを電気的に接続する(図1H)。この不純物添加領域を符号h1で示す。この不純物添加工程は、上記マスクを残したままで或いは酸化膜4をマスクとして、n型不純物のイオン注入又は拡散を半導体基板1の表面側から行うことにより実行することができる。   Further, an n-type impurity is added into the semiconductor substrate 1 from the side surface of the hole H to electrically connect the n-type high concentration impurity region 1n ′ on the front surface side and the n-type high concentration impurity region 1n on the back surface side (FIG. 1H). This impurity added region is denoted by reference numeral h1. This impurity addition step can be performed by performing ion implantation or diffusion of n-type impurities from the surface side of the semiconductor substrate 1 with the mask remaining or using the oxide film 4 as a mask.

工程(9)   Step (9)

次に、直列抵抗を低減するため、孔Hの内面上にアルミニウムからなる金属電極膜h2を形成する。これはカソード共通電極を形成し、半導体基板1の表面まで延びている。金属電極膜h2の形成前に、半導体基板1のp型不純物領域1pの表面が露出するように酸化膜4をパターニングしておけば、金属電極膜h2と同時にp型不純物領域1pのコンタクトを形成することができる。しかる後、孔Hの内面を埋めるように感光性樹脂:(ポリイミド等のフォトレジスト)Rを半導体基板1の表面上に塗布し、ホトリソグラフィー工程によりアルミニウムからなる金属電極を露出させる。更に、この露出した金属電極部にNi、Auを順次メッキすることにより、ホトダイオードアレイに電極OMを形成する。また、孔Hの電極OM上に感光性樹脂Rが形成される。 Next, in order to reduce the series resistance, a metal electrode film h2 made of aluminum is formed on the inner surface of the hole H. This forms a cathode common electrode and extends to the surface of the semiconductor substrate 1. If the oxide film 4 is patterned so that the surface of the p-type impurity region 1p of the semiconductor substrate 1 is exposed before the formation of the metal electrode film h2, a contact of the p-type impurity region 1p is formed simultaneously with the metal electrode film h2. can do. Thereafter, a photosensitive resin (photoresist such as polyimide) R is applied on the surface of the semiconductor substrate 1 so as to fill the inner surface of the hole H, and a metal electrode made of aluminum is exposed by a photolithography process. Further, Ni and Au are sequentially plated on the exposed metal electrode portion to form an electrode OM on the photodiode array. Further, the photosensitive resin R is formed on the electrode OM in the hole H.

最後に支持基板3をグラインド及びドライエッチングにより完全に除去し、光入射面となる酸化膜2を露出させる。   Finally, the support substrate 3 is completely removed by grinding and dry etching to expose the oxide film 2 serving as a light incident surface.

次にダイシングにより所定のチップサイズに切り出すことにより、半導体基板の一方の表面側(他方面側)にのみ電極を有する裏面照射型ホトダイオードアレイが完成する(図1I)。   Next, by cutting into a predetermined chip size by dicing, a back-illuminated photodiode array having electrodes only on one surface side (the other surface side) of the semiconductor substrate is completed (FIG. 1I).

工程(10)   Step (10)

このホトダイオードアレイチップは、上下を逆転させて、すなわち、半導体基板1の表面側が回路基板C側に位置し、光入射面が裏面となるように配置する。すなわち、半導体基板1をAu又は半田等からなるバンプBを介して回路基板C上に配置し、かかるバンプBによって上記ホトダイオードの電極OMを回路基板C上の配線に電気的に接続する(図1J)。ホトダイオードのカソード、すなわち、n型半導体基板1及びn型高濃度不純物領域1nは、金属電極膜h2及び不純物添加領域h1を介して半導体基板1の表面側に位置する電極OMに接続されている。また、ホトダイオードのアノード、すなわち、p型不純物領域1pは金属電極膜h2及び電極OMに接続されている。これらの電極は、それぞれバンプBを介して回路基板Cのカソード用配線及びアノード用配線に接続される。   The photodiode array chip is arranged upside down, that is, so that the front surface side of the semiconductor substrate 1 is located on the circuit board C side and the light incident surface is the back surface. That is, the semiconductor substrate 1 is disposed on the circuit board C via bumps B made of Au, solder, or the like, and the electrodes OM of the photodiodes are electrically connected to the wiring on the circuit board C by the bumps B (FIG. 1J ). The cathode of the photodiode, that is, the n-type semiconductor substrate 1 and the n-type high-concentration impurity region 1n are connected to the electrode OM located on the surface side of the semiconductor substrate 1 through the metal electrode film h2 and the impurity addition region h1. The anode of the photodiode, that is, the p-type impurity region 1p is connected to the metal electrode film h2 and the electrode OM. These electrodes are connected to the cathode wiring and the anode wiring of the circuit board C through the bumps B, respectively.

以上、説明したように、上述の裏面照射型ホトダイオードアレイの製造方法は、(a)半導体基板1の一方面(裏面)側に高濃度不純物領域1nを形成する工程と、(b)半導体基板1の裏面側に支持基板3を貼り合わせる工程と、(c)半導体基板1の他方面(表面)側を研磨して半導体基板1を薄膜化する工程と、(d)半導体基板1の表面側に高濃度不純物領域1n’及び複数のホトダイオードを形成する工程と、(e)半導体基板1の表面側の高濃度不純物領域1n’から裏面側の高濃度不純物領域1nに到達する孔Hを形成する工程と、(f)裏面側と表面側の高濃度不純物領域1n,1n’を孔Hを介して電気的に接続する工程と、(g)前記工程(f)の後に支持基板3を除去する工程とを備える。ホトダイオードのアノード及びカソードの一方は、半導体基板の一方面側及び他方面側のいずれか一方に位置し、他方は残りの面側に位置する。   As described above, the manufacturing method of the backside illuminated photodiode array described above includes (a) a step of forming a high concentration impurity region 1n on one side (backside) of the semiconductor substrate 1, and (b) the semiconductor substrate 1. Attaching the support substrate 3 to the back surface side of the semiconductor substrate 1, (c) polishing the other surface (front surface) side of the semiconductor substrate 1 to thin the semiconductor substrate 1, and (d) forming the semiconductor substrate 1 on the front surface side. A step of forming a high concentration impurity region 1n ′ and a plurality of photodiodes; and (e) a step of forming a hole H reaching from the high concentration impurity region 1n ′ on the front surface side of the semiconductor substrate 1 to the high concentration impurity region 1n on the back surface side. And (f) a step of electrically connecting the high-concentration impurity regions 1n and 1n ′ on the back surface side and the front surface side through the hole H, and (g) a step of removing the support substrate 3 after the step (f). With. One of the anode and the cathode of the photodiode is located on one side and the other side of the semiconductor substrate, and the other is located on the remaining side.

この製造方法によれば、研磨工程によってホトダイオードアレイ、すなわち、半導体基板1が所定の厚さに薄膜化されるので、孔Hの形成時間が短縮され、且つ、この孔Hを介して半導体基板1の両面側に形成された高濃度不純物領域1n,1n’を接続するので、ホトダイオードのアノード及びカソードを半導体基板1の同一面(表面)側に電気的に導くことができる。薄膜化によって基板強度は低下するが、半導体基板1の裏面側には支持基板が設けられるので、前処理(プロセス)工程の間は、これを補強することができ、かかる構成によって、複数のホトダイオードを備えたホトダイオードアレイが工業的に初めて量産可能となる。更に、このホトダイオードアレイは裏面照射型であるため、信号雑音比が高く、高精度の検出装置に用いることができることとなる。   According to this manufacturing method, since the photodiode array, that is, the semiconductor substrate 1 is thinned to a predetermined thickness by the polishing process, the formation time of the hole H is shortened, and the semiconductor substrate 1 is passed through the hole H. Since the high-concentration impurity regions 1n and 1n ′ formed on the both surface sides of the semiconductor substrate 1 are connected, the anode and cathode of the photodiode can be electrically guided to the same surface (front surface) side of the semiconductor substrate 1. Although the substrate strength is reduced by thinning, a support substrate is provided on the back surface side of the semiconductor substrate 1, so that it can be reinforced during the preprocessing (process) step. This is the first industrially available mass-produced photodiode array. Furthermore, since this photodiode array is a back-illuminated type, it has a high signal-to-noise ratio and can be used for a highly accurate detection apparatus.

また、上述の裏面照射型ホトダイオードアレイの製造方法は、孔H内に樹脂Rを埋め込む工程を更に備えており、孔H内に樹脂を埋め込むことによって、半導体基板1の強度を向上させることができる。   Further, the above-described method for manufacturing the backside illuminated photodiode array further includes a step of embedding the resin R in the hole H, and by embedding the resin in the hole H, the strength of the semiconductor substrate 1 can be improved. .

また、この孔H内に埋め込む樹脂は感光性を有し、上述の製造方法は、この樹脂となるフォトレジストを半導体基板1の他方面(表面)側の全面に塗布する工程と、半導体基板1の他方面側の電極(h2、OM)形成予定領域のフォトレジストのみ除去する工程と、フォトレジストが除去された領域に電極h2を形成する工程とを更に備えているので、フォトレジストを用いた通常のフォトリソグラフィプロセスにより樹脂Rを埋設できるとともに、電極形成前にフォトレジストでパターニングされた酸化膜によってコンタクトを形成した電極の露出を行うことができる。   The resin embedded in the hole H has photosensitivity, and the above-described manufacturing method includes a step of applying a photoresist serving as the resin to the entire surface on the other surface (front surface) side of the semiconductor substrate 1, and the semiconductor substrate 1. The method further includes the step of removing only the photoresist in the region where the electrode (h2, OM) is to be formed on the other side of the electrode and the step of forming the electrode h2 in the region from which the photoresist has been removed. The resin R can be embedded by a normal photolithography process, and the electrode in which the contact is formed can be exposed by the oxide film patterned with the photoresist before the electrode is formed.

また、半導体基板1及び高濃度不純物領域1n,1n’は第一導電型(上記ではn型)であって、複数のホトダイオードは複数の第二導電型(上記ではp型)不純物領域1pと半導体基板1とで構成され、いずれかのホトダイオードの一方面(裏面)側に位置するアノード又はカソードは他方面(表面)側に電気的に導かれている。   The semiconductor substrate 1 and the high-concentration impurity regions 1n and 1n ′ are of the first conductivity type (n-type in the above), and the plurality of photodiodes are composed of the plurality of second conductivity type (p-type in the above) impurity regions 1p and the semiconductor. The anode or the cathode, which is composed of the substrate 1 and is located on one side (back side) side of one of the photodiodes, is electrically led to the other side (front side) side.

また、上述の製造方法では、半導体基板1の一方面側の全面に高濃度不純物領域より浅い第一導電型(上記ではn型)の全面不純物半導体層1ncを形成する工程を備えているので、この全面不純物半導体層1ncはアキュムレーション層として機能させることができる。   In addition, the above-described manufacturing method includes a step of forming a first conductivity type (in the above, n-type) whole surface impurity semiconductor layer 1nc shallower than the high concentration impurity region on the entire surface on one side of the semiconductor substrate 1. This whole surface impurity semiconductor layer 1nc can function as an accumulation layer.

また、上述の製造方法では、半導体基板1の一方面側(裏面)に酸化膜2を形成する工程を備えているので、これを保護膜として機能させることができる。   Moreover, since the manufacturing method described above includes the step of forming the oxide film 2 on the one surface side (back surface) of the semiconductor substrate 1, it can function as a protective film.

更に、三次元実装という観点から、上述の裏面照射型ホトダイオードアレイの製造方法は、ホトダイオードのアノード及びカソードが回路基板Cに電気的に接続されるよう、半導体基板1の表面側をバンプBを介して回路基板Cに取り付ける工程を備えている。この場合、バンプBによって回路基板Cに電気的に接続されるホトダイオードのアノード及びカソードの接続配線は回路基板方向、すなわち、半導体基板1の厚み方向に延びることができるので、実装面積を小さくすることができる。   Furthermore, from the viewpoint of three-dimensional mounting, the method of manufacturing the back illuminated photodiode array described above is such that the front side of the semiconductor substrate 1 is connected to the circuit board C via the bumps B so that the anode and cathode of the photodiode are electrically connected to the circuit board C. Attaching to the circuit board C. In this case, since the anode and cathode connection wiring of the photodiode electrically connected to the circuit board C by the bumps B can extend in the circuit board direction, that is, in the thickness direction of the semiconductor substrate 1, the mounting area can be reduced. Can do.

また、上述の裏面照射型ホトダイオードアレイは、半導体基板1の裏面側及び表面側に高濃度不純物領域1n,1n’が形成され、それぞれが半導体基板1の表面側にPN接合が形成されたホトダイオードのアノード及びカソードに選択的に接続された裏面照射型ホトダイオードアレイにおいて、高濃度不純物領域1n,1n’同士は半導体基板1を厚み方向に貫通する孔Hを介して電気的に接続されており、孔H内には樹脂Rが充填されている(図1J参照)In addition, the above-described back-illuminated photodiode array is a photodiode in which high-concentration impurity regions 1n and 1n ′ are formed on the back surface side and the front surface side of the semiconductor substrate 1 and PN junctions are formed on the front surface side of the semiconductor substrate 1, respectively. In the back illuminated photodiode array selectively connected to the anode and the cathode, the high-concentration impurity regions 1n and 1n ′ are electrically connected to each other through a hole H penetrating the semiconductor substrate 1 in the thickness direction. The resin R is filled in H (see FIG. 1J) .

この裏面照射型ホトダイオードアレイは三次元実装上の及び製造方法上の利点を有すると共に、孔内の樹脂が裏面照射型ホトダイオードの基板強度低下を抑制することができる。   This back-illuminated photodiode array has advantages in terms of three-dimensional mounting and a manufacturing method, and the resin in the hole can suppress a reduction in substrate strength of the back-illuminated photodiode.

また、上記裏面照射型ホトダイオードアレイの構造によれば、半導体基板1及び高濃度不純物領域1n,1n’は第一導電型(上記ではn型)であって、半導体基板1の他方面側に形成されたホトダイオードは第二導電型(上記ではp型)不純物領域1pと半導体基板1とで構成され、半導体基板1の一方面側の全面に高濃度不純物領域1nより浅い第一導電型の全面不純物半導体層1ncがあるので、全面不純物半導体層1ncをアキュムレーション層として機能させることができ、高性能の検出を行うことができるようになる。   Further, according to the structure of the back-illuminated photodiode array, the semiconductor substrate 1 and the high-concentration impurity regions 1n and 1n ′ are of the first conductivity type (n-type in the above) and are formed on the other surface side of the semiconductor substrate 1. The formed photodiode is composed of a second conductivity type (p-type in the above) impurity region 1p and the semiconductor substrate 1, and the first conductivity type whole surface impurity shallower than the high concentration impurity region 1n on the entire surface on one side of the semiconductor substrate 1. Since there is the semiconductor layer 1nc, the entire surface impurity semiconductor layer 1nc can function as an accumulation layer, and high-performance detection can be performed.

図2は図1Jに示した裏面照射型ホトダイオードアレイPDAを回路基板C上に複数備えてなる撮像装置の説明図である。上述の構成によれば、三次元実装が可能となるので、複数の平面方向にデッドスペースの少ない裏面照射型ホトダイオードアレイPDAを隙間なく二次元的に配列することができる。すなわち、全体として、更に大面積の撮像装置を提供することができる。   FIG. 2 is an explanatory diagram of an imaging apparatus provided with a plurality of backside illuminated photodiode arrays PDA shown in FIG. 1J on a circuit board C. According to the above-described configuration, three-dimensional mounting is possible, so that the back-illuminated photodiode array PDA with a small dead space can be two-dimensionally arranged in a plurality of plane directions without a gap. That is, as a whole, an imaging device having a larger area can be provided.

なお、このような大面積の裏面照射型ホトダイオードアレイは、X線コンピュータ断層撮影(CT)装置、具体的にはパネル状のマルチX線CT装置や陽電子放射断層撮影(PET)装置に適用することができる。このような装置の場合には、光入射面上に二次元的に分割されたシンチレータ(BGO、CSO、CWO等)を設ける。   Note that such a large area back-illuminated photodiode array is applied to an X-ray computed tomography (CT) apparatus, specifically, a panel-shaped multi-X-ray CT apparatus or a positron emission tomography (PET) apparatus. Can do. In the case of such an apparatus, a two-dimensionally divided scintillator (BGO, CSO, CWO, etc.) is provided on the light incident surface.

なお、上述の研磨工程においては、機械研磨の他、化学研磨を用いることができ、半導体基板1の露出面は鏡面加工することができる。また、裏面側の全面不純物半導体層1ncはアキュムレーション層として機能する。アキュムレーション層はグランド電位とすることもできるが、逆バイアスが印加されるように、正電位を与えることもできる。   In the above polishing process, chemical polishing can be used in addition to mechanical polishing, and the exposed surface of the semiconductor substrate 1 can be mirror-finished. Further, the entire impurity semiconductor layer 1nc on the back side functions as an accumulation layer. The accumulation layer can be at a ground potential, but a positive potential can also be applied so that a reverse bias is applied.

また、上述の裏面照射型ホトダイオードアレイは、アキュムレーション層となる全面不純物半導体層を薄く形成することができるため、紫外感度を向上させることができる。   Further, the above-described back-illuminated photodiode array can improve the ultraviolet sensitivity because the entire surface of the impurity semiconductor layer serving as an accumulation layer can be formed thin.

また、支持基板3の除去前の工程において、電極OM形成や共通電極取り出し穴埋めを行った後に、半導体基板1にダイシングテープを貼り付け、ダイシング(完全にチップを分離するダイシングでなくとも、半導体基板1がチップとして分離される位置(酸化膜4まで達する位置)までダイシングブレードを入れる)を行った後、貼り合わせた支持基板3を機械研磨及びドライエッチングによって除去することもできる。この場合には通常のブレードダイシングの他にもレーザ等のほかの方式も採用できる。   Further, in the step before the removal of the support substrate 3, after forming the electrode OM and filling the common electrode take-out hole, a dicing tape is attached to the semiconductor substrate 1 and dicing (the semiconductor substrate is not necessarily separated by dicing). After performing a position where the 1 is separated as a chip (a position where the dicing blade reaches the oxide film 4), the bonded support substrate 3 may be removed by mechanical polishing and dry etching. In this case, in addition to normal blade dicing, other methods such as a laser can be employed.

この製造方法では、ダイシング終了までのすべての工程が厚いウエハのままで行われるため、プロセスの生産性は高く、歩留を向上させることが可能な画期的な片面電極ホトダイオード生産方式となる。しかも、バンプBを介してバイアスが印加でき、単なるゼロバイアスのホトダイオードのみならず、高速、低ノイズセンサー(PINホトダイオード、アバランシェホトダイオード)も実現できる。   In this manufacturing method, all steps up to the end of dicing are carried out with a thick wafer, so that the productivity of the process is high and an innovative single-sided electrode photodiode production method capable of improving the yield is obtained. In addition, a bias can be applied via the bump B, and not only a simple zero-biased photodiode but also a high-speed, low-noise sensor (PIN photodiode, avalanche photodiode) can be realized.

本発明の裏面照射型ホトダイオードアレイ及びその製造方法によれば、量産が可能となる。   According to the back illuminated photodiode array and the manufacturing method thereof of the present invention, mass production becomes possible.

本発明は、裏面照射型ホトダイオードアレイ及びその製造方法に利用することができる。   The present invention can be used in a backside illuminated photodiode array and a method for manufacturing the same.

1・・・半導体基板、1n・・・高濃度不純物領域、3・・・支持基板、1n’・・・高濃度不純物領域、H・・・孔。DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 1n ... High concentration impurity region, 3 ... Support substrate, 1n '... High concentration impurity region, H ... Hole.

Claims (7)

裏面照射型ホトダイオードアレイの製造方法において、
(a)第一導電型の半導体基板の光入射面である一方面側に第一導電型の高濃度不純物領域を形成する工程と、
(b)前記工程(a)の後に、前記半導体基板の前記一方面側に支持基板を貼り合わせる工程と、
(c)前記工程(b)の後に、前記半導体基板の他方面側を研磨して前記半導体基板を薄膜化する工程と、
(d)前記工程(c)の後に、前記半導体基板の前記他方面側に第一導電型の高濃度不純物領域及び複数のホトダイオードを形成し、各ホトダイオードは第一導電型の前記半導体基板とこれに形成された第二導電型の不純物領域からなり、各導電型の一方をカソードとし他方をアノードとする工程と、
(e)前記工程(d)の後に、前記半導体基板の前記他方面側の前記高濃度不純物領域から前記一方面側の前記高濃度不純物領域に到達する孔を形成する工程と、
(f)前記工程(e)の後に、前記一方面側と前記他方面側の前記高濃度不純物領域を、前記孔に第一導電型の不純物添加領域及び金属電極膜を形成することで、電気的に接続する工程と、
(g)前記工程(f)の後に、前記支持基板を除去する工程と、
を備え、
(h)前記工程(g)の後に、前記他方面側の高濃度不純物領域及び前記第二導電型の不純物領域を、バンプを介して回路基板に電気的に接続する工程と、
備えていることを特徴とする裏面照射型ホトダイオードアレイの製造方法。
In the manufacturing method of the back illuminated photodiode array,
(A) forming a first-conductivity-type high-concentration impurity region on one side of the light-incident surface of the first-conductivity-type semiconductor substrate;
(B) After the step (a), a step of attaching a support substrate to the one surface side of the semiconductor substrate;
(C) after the step (b), polishing the other surface side of the semiconductor substrate to thin the semiconductor substrate;
(D) After the step (c), a first conductivity type high-concentration impurity region and a plurality of photodiodes are formed on the other surface side of the semiconductor substrate, and each photodiode includes the first conductivity type semiconductor substrate and the semiconductor substrate. A step of forming an impurity region of a second conductivity type formed on the substrate, wherein one of each conductivity type is a cathode and the other is an anode;
(E) after the step (d), forming a hole reaching the high concentration impurity region on the one surface side from the high concentration impurity region on the other surface side of the semiconductor substrate;
(F) After the step (e), the high-concentration impurity regions on the one surface side and the other surface side are formed in the holes, and a first conductivity type impurity-added region and a metal electrode film are formed in the holes. Connecting to each other,
(G) after the step (f), removing the support substrate;
With
(H) After the step (g), electrically connecting the high-concentration impurity region on the other surface side and the impurity region of the second conductivity type to a circuit board through bumps;
A method for manufacturing a back illuminated photodiode array, comprising:
前記工程(a)と工程(b)の間において、前記半導体基板の一方面側の全面に前記高濃度不純物領域より浅い第一導電型の全面不純物半導体層を形成する工程を備えることを特徴とする請求項1に記載の裏面照射型ホトダイオードアレイの製造方法。  Between the step (a) and the step (b), the method includes a step of forming a first impurity type full surface impurity semiconductor layer shallower than the high concentration impurity region on the entire surface on one side of the semiconductor substrate. A method for manufacturing a backside illuminated photodiode array according to claim 1. 前記工程(a)と工程(b)の間において、前記半導体基板の一方面側に酸化膜を形成する工程を備えることを特徴とする請求項1に記載の裏面照射型ホトダイオードアレイの製造方法。  2. The method of manufacturing a backside illuminated photodiode array according to claim 1, further comprising a step of forming an oxide film on one side of the semiconductor substrate between the step (a) and the step (b). 前記工程(f)と工程(g)の間において、前記孔内に樹脂を埋め込む工程を更に備えることを特徴とする請求項1に記載の裏面照射型ホトダイオードアレイの製造方法。  2. The method of manufacturing a back illuminated photodiode array according to claim 1, further comprising a step of embedding a resin in the hole between the step (f) and the step (g). 前記工程(f)と工程(g)の間において、前記孔内に埋め込む樹脂は感光性を有し、この樹脂となるフォトレジストを前記半導体基板の他方面側の全面に塗布する工程と、前記半導体基板の他方面側の電極形成予定領域のフォトレジストのみ除去する工程と、フォトレジストが除去された領域に電極を形成する工程と、を更に備え、
前記電極形成予定領域は、前記孔の位置に形成される電極、及び、前記他方面側の前記高濃度不純物領域上に形成される電極が形成される予定の領域である、
ことを特徴とする請求項4に記載の裏面照射型ホトダイオードアレイの製造方法。
Between the step (f) and the step (g), the resin embedded in the hole has photosensitivity, and a step of applying a photoresist to be the resin on the entire other surface side of the semiconductor substrate; A step of removing only the photoresist in the electrode formation scheduled region on the other surface side of the semiconductor substrate; and a step of forming an electrode in the region where the photoresist has been removed.
The electrode formation scheduled region is a region where an electrode formed at the position of the hole and an electrode formed on the high concentration impurity region on the other surface side are to be formed.
The method for producing a backside illuminated photodiode array according to claim 4.
第一導電型の半導体基板の光入射面である一方面側及び他方面側に第一導電型の高濃度不純物領域が形成され、前記高濃度不純物領域同士は前記半導体基板を厚み方向に貫通する孔に設けられた第一導電型の不純物添加領域及び金属電極膜を介して電気的に接続され、前記他方面側には、複数の第二導電型の不純物領域が設けられて、第一導電型の前記半導体基板と共に複数のホトダイオードを構成している裏面照射型ホトダイオードアレイにおいて、
前記孔内には樹脂が充填されており、
前記他方面側の前記高濃度不純物領域及び前記第二導電型の不純物領域は、バンプを介して回路基板に電気的に接続されることを特徴とする裏面照射型ホトダイオードアレイ。
High-concentration impurity regions of the first conductivity type are formed on the one surface side and the other surface side that are light incident surfaces of the first conductivity-type semiconductor substrate, and the high-concentration impurity regions penetrate the semiconductor substrate in the thickness direction. A first conductivity type impurity added region provided in the hole and a metal electrode film are electrically connected, and a plurality of second conductivity type impurity regions are provided on the other surface side to provide a first conductivity type. In a back-illuminated photodiode array that constitutes a plurality of photodiodes together with the semiconductor substrate of the type,
The hole is filled with resin,
The back illuminated photodiode array, wherein the high concentration impurity region and the second conductivity type impurity region on the other surface side are electrically connected to a circuit board via bumps.
前記半導体基板の一方面側の全面に前記高濃度不純物領域より浅い第一導電型の全面不純物半導体層を備えることを特徴とする請求項6に記載の裏面照射型ホトダイオードアレイ。  7. The back illuminated photodiode array according to claim 6, further comprising a first-conductivity-type full-surface impurity semiconductor layer shallower than the high-concentration impurity region on an entire surface on one side of the semiconductor substrate.
JP2004504299A 2002-05-10 2003-05-09 Back-illuminated photodiode array and manufacturing method thereof Expired - Fee Related JP4478012B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002136206 2002-05-10
JP2002136206 2002-05-10
PCT/JP2003/005852 WO2003096427A1 (en) 2002-05-10 2003-05-09 Rear surface irradiation photodiode array and method for producing the same

Publications (2)

Publication Number Publication Date
JPWO2003096427A1 JPWO2003096427A1 (en) 2005-09-15
JP4478012B2 true JP4478012B2 (en) 2010-06-09

Family

ID=29416780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004504299A Expired - Fee Related JP4478012B2 (en) 2002-05-10 2003-05-09 Back-illuminated photodiode array and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP4478012B2 (en)
CN (1) CN100388503C (en)
AU (1) AU2003235925A1 (en)
DE (1) DE10392637B4 (en)
WO (1) WO2003096427A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927383B2 (en) * 2002-07-26 2005-08-09 Raytheon Company Radiation hardened visible P-I-N detector
JP4331033B2 (en) * 2004-03-29 2009-09-16 浜松ホトニクス株式会社 Semiconductor light detecting element and manufacturing method thereof
JP2006073852A (en) * 2004-09-03 2006-03-16 Dainippon Printing Co Ltd Sensor package and its manufacturing method
JP4841834B2 (en) * 2004-12-24 2011-12-21 浜松ホトニクス株式会社 Photodiode array
KR100718878B1 (en) * 2005-06-28 2007-05-17 (주)실리콘화일 Separation type unit pixel of image sensor having 3 dimension structure and manufacture method thereof
US8049256B2 (en) * 2006-10-05 2011-11-01 Omnivision Technologies, Inc. Active pixel sensor having a sensor wafer connected to a support circuit wafer
JP5281252B2 (en) * 2007-03-05 2013-09-04 新光電気工業株式会社 Illuminance detection device
KR100872719B1 (en) * 2007-04-17 2008-12-05 동부일렉트로닉스 주식회사 Image Sensor and Method for Manufacturing thereof
JP4644696B2 (en) 2007-05-30 2011-03-02 富士フイルム株式会社 Back-illuminated image sensor and manufacturing method thereof
CN101688915B (en) * 2007-07-03 2012-11-21 浜松光子学株式会社 Back surface incident type distance measuring sensor and distance measuring device
JP4966897B2 (en) * 2008-03-25 2012-07-04 株式会社フジクラ Manufacturing method of semiconductor package
JP5185207B2 (en) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Photodiode array
JP5185206B2 (en) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Semiconductor photo detector
JP5185208B2 (en) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Photodiode and photodiode array
JP5185205B2 (en) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Semiconductor photo detector
JP2010283223A (en) * 2009-06-05 2010-12-16 Hamamatsu Photonics Kk Semiconductor optical detecting element and method of manufacturing semiconductor optical detecting element
JP5363222B2 (en) * 2009-07-13 2013-12-11 浜松ホトニクス株式会社 Semiconductor light detection element and method for manufacturing semiconductor light detection element
JP5261304B2 (en) * 2009-07-13 2013-08-14 浜松ホトニクス株式会社 Semiconductor light detection element and method for manufacturing semiconductor light detection element
JP2010199602A (en) * 2010-04-16 2010-09-09 Sony Corp Solid-state imaging element and manufacturing method of the same
JP5223883B2 (en) * 2010-05-17 2013-06-26 ソニー株式会社 Solid-state image sensor
JP5925711B2 (en) 2013-02-20 2016-05-25 浜松ホトニクス株式会社 Detector, PET apparatus and X-ray CT apparatus
JP7089931B2 (en) 2018-04-16 2022-06-23 浜松ホトニクス株式会社 Manufacturing method of backside incident type semiconductor photodetection
JP7148261B2 (en) * 2018-04-16 2022-10-05 浜松ホトニクス株式会社 Back-thinned semiconductor photodetector
JP7089930B2 (en) * 2018-04-16 2022-06-23 浜松ホトニクス株式会社 Semiconductor photodetector
JP7034816B2 (en) * 2018-04-16 2022-03-14 浜松ホトニクス株式会社 Backside incident type semiconductor photodetector
JP7364343B2 (en) * 2019-02-26 2023-10-18 浜松ホトニクス株式会社 Method for manufacturing a photodetection device and photodetection device
FR3094141A1 (en) * 2019-03-18 2020-09-25 Commissariat à l'Energie Atomique et aux Energies Alternatives method of manufacturing an optoelectronic component with optical transmission on the rear face

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128870A (en) * 1979-03-26 1980-10-06 Semiconductor Res Found Electrostatic induction thyristor and semiconductor device
JPH01205465A (en) * 1988-02-10 1989-08-17 Sony Corp Manufacture of solid-state image sensing device
JPH04286160A (en) * 1991-03-14 1992-10-12 Fujitsu Ltd Photodetector and manufacture thereof
JP4522531B2 (en) * 2000-04-04 2010-08-11 浜松ホトニクス株式会社 Semiconductor energy detector
JP3713418B2 (en) * 2000-05-30 2005-11-09 光正 小柳 Manufacturing method of three-dimensional image processing apparatus

Also Published As

Publication number Publication date
CN1653617A (en) 2005-08-10
DE10392637T5 (en) 2005-06-16
WO2003096427A1 (en) 2003-11-20
AU2003235925A1 (en) 2003-11-11
CN100388503C (en) 2008-05-14
JPWO2003096427A1 (en) 2005-09-15
DE10392637B4 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP4478012B2 (en) Back-illuminated photodiode array and manufacturing method thereof
US6933489B2 (en) Back illuminated photodiode array and method of manufacturing the same
EP1835539B1 (en) Photodiode array and method of manufacturing the same
KR100969123B1 (en) Sensor
US7420257B2 (en) Backside-illuminated photodetector
US7810740B2 (en) Back illuminated photodiode array, manufacturing method and semiconductor device thereof
KR101152568B1 (en) Photodiode array method for manufacturing same and radiation detector
EP1605515B1 (en) Photodiode array, method for manufacturing same, and radiation detector
CN110349982B (en) Semiconductor device and sensor including single photon avalanche diode SPAD structure
EP2353182A1 (en) Devices and methods for ultra thin photodiode arrays on bonded supports
JP4482455B2 (en) Back-illuminated photodiode array, manufacturing method thereof, and semiconductor device
JP4220818B2 (en) Photodiode array, method of manufacturing the same, and radiation detector
EP2665096B1 (en) A method of wafer-scale integration of semiconductor devices and semiconductor device
US20130334639A1 (en) Photodiode with reduced dead-layer region
De Vos et al. Hybrid backside illuminated CMOS imager for high-end Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4478012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees