JPH0525611A - Formation of reflection mirror made of synthetic resin - Google Patents

Formation of reflection mirror made of synthetic resin

Info

Publication number
JPH0525611A
JPH0525611A JP19888291A JP19888291A JPH0525611A JP H0525611 A JPH0525611 A JP H0525611A JP 19888291 A JP19888291 A JP 19888291A JP 19888291 A JP19888291 A JP 19888291A JP H0525611 A JPH0525611 A JP H0525611A
Authority
JP
Japan
Prior art keywords
synthetic resin
film
base plate
reflection mirror
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19888291A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
浩 池田
雅道 ▲ひじ▼野
Masamichi Hijino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP19888291A priority Critical patent/JPH0525611A/en
Publication of JPH0525611A publication Critical patent/JPH0525611A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the reflection mirror which is made of a synthetic resin and satisfies optical characteristics and durability by exposing a base plate to UV rays and gaseous ozone before the formation of the film for the reflection mirror. CONSTITUTION:The surface of the synthetic resin base plate 1 consisting of a polycarbonate resin is irradiated with the UV rays of 185nm wavelength for 30 to 120 seconds. After the base plate is pretreated by exposing the base plate to the ozone generated by the UV rays, the base plate is put into a vacuum chamber into which gaseous Ar is introduced at 3X10<-3> Torr under 5X10<-6> Torr vacuum degree. An Al film 2 is then formed at 60nm by a DC magnetron sputtering method of 200W throwing electric power. The reflection mirror having such rear surface has >=80% spectral reflectivity at 400 to 700m visible light region. The results of the test on adhesion after an initial adhesion test and environmental resistance test are good.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合成樹脂製基板上に金
属膜のコーティングを施した反射鏡の作成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a reflecting mirror in which a synthetic resin substrate is coated with a metal film.

【0002】[0002]

【従来の技術】近年、レンズ等の光学部品に合成樹脂製
部品を用いる頻度が高くなっており、特にカメラ用、A
V用として今後さらに要求が高くなると思われる合成樹
脂製部品の一つに表面反射鏡・裏面反射鏡などの反射鏡
がある。合成樹脂製部品には、ガラス製光学部品に比較
して複雑形状化,低コスト化および軽量化を図る事がで
き、プリズム形成などではガラス製のものよりも加工し
易いという利点も有している。
2. Description of the Related Art Recently, synthetic resin parts are frequently used for optical parts such as lenses, especially for cameras,
One of the synthetic resin parts for which V is expected to be in high demand in the future is a reflector such as a front reflector and a back reflector. Compared to glass optical parts, synthetic resin parts can have a more complicated shape, lower cost, and lighter weight, and also have the advantage that they can be processed more easily than glass parts in prism formation. There is.

【0003】ところで、合成樹脂製部品を反射鏡として
用いるためには、射出成形や切削等で合成樹脂を加工し
た後、任意の表面に表面鏡あるいは裏面鏡としてのコー
ティングが要求される。従来このコーティングにはガラ
スに用いるものと同様な真空蒸着法が用いられてきた。
By the way, in order to use a synthetic resin part as a reflecting mirror, it is required to coat synthetic resin on an arbitrary surface as a front surface mirror or a rear surface mirror after processing the synthetic resin by injection molding or cutting. Conventionally, the same vacuum deposition method as that used for glass has been used for this coating.

【0004】しかしながら、合成樹脂製光学部品の場
合、ガラスに用いるものと同様の蒸着材料,膜構成およ
び成膜方法でコーティングを行うと、成膜後にマイクロ
クラックが発生したり、基板に対する膜の密着強度が不
十分であったり、あるいは蒸着後には異常がなくとも対
環境試験後にマイクロクラックを発生してしまった。
However, in the case of synthetic resin optical parts, when coating is performed with the same vapor deposition material, film structure and film forming method as those used for glass, microcracks are generated after film formation and the film adheres to the substrate. The strength was insufficient, or even if there was no abnormality after vapor deposition, microcracks were generated after the environmental test.

【0005】因って、上記欠点を解決する方法として以
下の様な発明が提案されている。例えば、特開平2−6
6157号公報記載の発明においては、基板側から第1
層目に物理的膜厚d=100nmのCeF3 のような誘
電体層,第2層にd=100nmのAlのような金属膜
層,第3層にd=100nmのCeF3 のような誘電体
層というような膜構成をとる事によって実用レベルの膜
強度を得る方法が開示されている。
Therefore, the following inventions have been proposed as a method for solving the above-mentioned drawbacks. For example, Japanese Patent Laid-Open No. 2-6
In the invention described in Japanese Patent No. 6157, the first side from the substrate side
A dielectric layer such as CeF 3 with a physical film thickness d = 100 nm, a metal film layer such as Al with d = 100 nm for the second layer, and a dielectric film such as CeF 3 with d = 100 nm for the third layer. A method for obtaining a practical level of film strength by taking a film structure such as a body layer is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかるに、前記特開平
2−66157号公報記載の発明にように、基板と金属
反射膜との間に誘電体層を挟んで密着強度を上げようと
する場合、誘電体層を成膜することは材料費の増大およ
びタクトタイムの増加を招き、結果としてコストが増大
してしまう。従って、合成樹脂製基板を用いた場合の大
きな特徴であるコスト面でのメリットを充分に活かせな
いという結果になる。また、特に裏面反射鏡として用い
る場合は反射率の低下をも引き起こす。
However, as in the invention described in JP-A-2-66157, when a dielectric layer is sandwiched between the substrate and the metal reflection film to increase the adhesion strength, Forming the dielectric layer causes an increase in material cost and an increase in tact time, resulting in an increase in cost. Therefore, the result is that the advantage in terms of cost, which is a major feature of using the synthetic resin substrate, cannot be fully utilized. Further, when it is used as a back surface reflecting mirror, it causes a decrease in reflectance.

【0007】因って、本発明は前記従来技術における欠
点に鑑みて開発されたもので、誘電体層のアンダーコー
トなしに基本的な光学特性(分光反射率特性)を再現性
を含めて充分に満足するのみならず、密着性あるいは耐
久性試験後においても優れた性能を有する合成樹脂製反
射鏡の作成方法の提供を目的とする。
Therefore, the present invention was developed in view of the above-mentioned drawbacks of the prior art, and the basic optical characteristics (spectral reflectance characteristics) including the reproducibility are sufficient without the undercoat of the dielectric layer. It is an object of the present invention to provide a method for producing a synthetic resin reflecting mirror which satisfies not only the above, but also has excellent performance even after an adhesion test or a durability test.

【0008】[0008]

【課題を解決するための手段】本発明は、合成樹脂製基
板上に金属膜のコーティングを施す反射鏡の作成方法に
おいて、反射膜成膜の前に基板を紫外線およびオゾンガ
スにさらす方法である。
SUMMARY OF THE INVENTION The present invention is a method for producing a reflecting mirror in which a metal film is coated on a synthetic resin substrate, and the substrate is exposed to ultraviolet rays and ozone gas before the formation of the reflecting film.

【0009】[0009]

【作用】本発明では、合成樹脂製基板に紫外線を照射す
ることにより基板を構成する有機物のボンドが切られ
る。同時に、オゾンガスにさらされることにより低級分
子の酸化が起こり、基板表面に存在していた有機系不純
物が取り除かれる。また、紫外線によってボンドが切ら
れることにより、基板表面に活性基が形成され、金属と
の結合を起こし易くなる。このふたつの効果によって金
属反射膜と、合成樹脂製基板との密着強度を実用レベル
にまで向上させることができる。
According to the present invention, the organic substance constituting the substrate is cut off by irradiating the synthetic resin substrate with ultraviolet rays. At the same time, exposure to ozone gas causes oxidation of lower molecules, and organic impurities existing on the substrate surface are removed. Further, when the bond is broken by the ultraviolet rays, an active group is formed on the surface of the substrate, which facilitates bonding with a metal. Due to these two effects, the adhesion strength between the metal reflection film and the synthetic resin substrate can be improved to a practical level.

【0010】[0010]

【実施例1】本実施例では、入射角度45°の光に対す
る裏面反射鏡を形成した。
Example 1 In this example, a back reflector for light with an incident angle of 45 ° was formed.

【0011】屈折率n=1.58のポリカーボネート樹
脂(PC)からなる合成樹脂製基板の表面を波長185
nmの紫外線光源から20mmの位置に配し、空気中で
それぞれ30秒,60秒,90秒,120秒間紫外線を
照射することによって、紫外線およびその紫外線で空気
中の酸素から発生させたオゾンにさらす前処理を施した
のちに真空槽内にいれ、真空度5×10-6Torrに達
した後に、Arガスを3×10-3Torr導入し、投入
電力200WのDCマグネトロンスパッタリング法によ
ってAlを60nm成膜した。すなわち、図1に示すよ
うに、基板1上へ上記前処理を施したのちに第1層の膜
2を60nm成膜した。
A surface of a synthetic resin substrate made of a polycarbonate resin (PC) having a refractive index n = 1.58 has a wavelength of 185.
It is placed at a position of 20 mm from a UV light source of nm and exposed to UV rays and ozone generated from oxygen in the air by irradiating UV rays in the air for 30 seconds, 60 seconds, 90 seconds and 120 seconds, respectively. After pretreatment, put in a vacuum chamber, and after reaching a vacuum degree of 5 × 10 −6 Torr, introduce Ar gas at 3 × 10 −3 Torr, and apply Al to 60 nm by DC magnetron sputtering with an input power of 200 W. A film was formed. That is, as shown in FIG. 1, after performing the above-described pretreatment on the substrate 1, the first layer film 2 was formed to a thickness of 60 nm.

【0012】[0012]

【表1】 [Table 1]

【0013】以上の様にして得られた本実施例の裏面反
射鏡について、入射角45°に対する分光反射率を測定
したところ、図2のようになった。図2は縦軸に分光反
射率を、横軸に波長をそれぞれとったもので、図2から
わかるように本実施例の裏面反射鏡は初期性能としての
基本的な光学特性(可視光域400〜700nmで80
%以上の分光反射率)を有していた。
With respect to the rear surface reflecting mirror of this embodiment obtained as described above, the spectral reflectance at an incident angle of 45 ° was measured, and the result was as shown in FIG. FIG. 2 shows the spectral reflectance on the vertical axis and the wavelength on the horizontal axis. As can be seen from FIG. 2, the rear surface reflecting mirror of this embodiment has basic optical characteristics (visible light range 400) as initial performance. 80 at ~ 700 nm
% Or more).

【0014】また、本実施例の裏面反射鏡の膜表面にセ
ロハンテープ(幅18mm)を接着させた後、接着面と
約45°の角度でセロハンテープを取り除く密着性試験
をサンプル20個につき行った。
Further, after adhering cellophane tape (width 18 mm) to the film surface of the back reflecting mirror of this embodiment, an adhesion test for removing the cellophane tape at an angle of about 45 ° with the adhering surface was carried out on 20 samples. It was

【0015】さらに、本実施例の裏面反射鏡について、
対環境試験として、−20℃→常温(20〜25℃)→
+60℃を各温度で2時間保持し、5回繰り返す熱衝撃
試験を行った。
Further, regarding the rear surface reflecting mirror of this embodiment,
As an environmental test, -20 ° C → normal temperature (20 to 25 ° C) →
The temperature of + 60 ° C. was maintained for 2 hours at each temperature, and a thermal shock test was repeated 5 times.

【0016】表3には本実施例(実施例1)およびその
比較例として本実施例と同様の成膜法であるが紫外線オ
ゾン処理をしていない基板について、初期の密着性試験
および対環境試験後の密着性試験の結果を示す。
Table 3 shows the initial adhesion test and the environment resistance of the substrate of this example (Example 1) and its comparative example, which had the same film-forming method as this example but was not subjected to ultraviolet ozone treatment. The result of the adhesion test after the test is shown.

【0017】[0017]

【表3】 [Table 3]

【0018】表3からもわかるように、紫外線オゾン処
理を行ったものでは、成膜初期および対環境試験後の膜
剥離や異常はみられなかった。
As can be seen from Table 3, no peeling or abnormality was observed in the film subjected to the ultraviolet ozone treatment at the initial stage of film formation and after the environmental test.

【0019】[0019]

【実施例2】本実施例では、入射角45°の光に対する
表面反射鏡を形成した。
[Embodiment 2] In this embodiment, a surface reflecting mirror for light having an incident angle of 45 ° is formed.

【0020】屈折率n=1.53のアモルファスポリオ
レフィン樹脂(APO)からなる合成樹脂製基板の表面
を波長185nmの紫外線光源から20mmの位置に配
し、空気中でそれぞれ30秒,60秒,90秒,120
秒間紫外線を照射することによって、紫外線およびその
紫外線で空気中の酸素から発生させたオゾンにさらす前
処理を施したのちに真空槽内にいれ、真空度5×10-6
Torrに達した後に、抵抗加熱を用いた真空蒸着法に
よってAlを60nm成膜し、引き続き電子ビーム蒸着
法によりSiO2 を200nm成膜した。すなわち、図
3に示すように、基板3上へ上記前処理を施したのちに
第1層の膜4を60nm成膜し、さらに膜4の上に第2
層の膜5を200nm成膜した。
The surface of a synthetic resin substrate made of an amorphous polyolefin resin (APO) having a refractive index n = 1.53 is placed at a position 20 mm away from an ultraviolet light source having a wavelength of 185 nm, and is placed in air for 30 seconds, 60 seconds, and 90 seconds, respectively. Second, 120
By irradiating with ultraviolet rays for 2 seconds, it is exposed to ultraviolet rays and ozone generated from oxygen in the air by the ultraviolet rays. After pretreatment, it is placed in a vacuum chamber and the degree of vacuum is 5 × 10 -6
After reaching Torr, Al was deposited to a thickness of 60 nm by a vacuum vapor deposition method using resistance heating, and subsequently, SiO 2 was deposited to a thickness of 200 nm by an electron beam vapor deposition method. That is, as shown in FIG. 3, after performing the above-mentioned pretreatment on the substrate 3, a first layer film 4 is formed to a thickness of 60 nm, and a second layer 4 is formed on the film 4.
Layer film 5 was deposited to 200 nm.

【0021】[0021]

【表2】 [Table 2]

【0022】以上の様にして得られた本実施例の表面反
射鏡について、入射角45°に対する分光反射率を測定
したところ、図4のようになった。図4は縦軸に分光反
射率を、横軸に波長をそれぞれとったもので、図4から
わかるように本実施例の表面反射鏡は、初期性能として
の基本的な光学特性(可視光域400〜700nmで8
0%以上の分光反射率)を有していた。
With respect to the surface reflecting mirror of this embodiment obtained as described above, the spectral reflectance at an incident angle of 45 ° was measured, and the result was as shown in FIG. FIG. 4 shows the spectral reflectance on the vertical axis and the wavelength on the horizontal axis. As can be seen from FIG. 4, the surface reflecting mirror of this embodiment has basic optical characteristics (visible light range) as initial performance. 8 at 400-700 nm
It had a spectral reflectance of 0% or more).

【0023】また、本実施例の表面反射鏡の膜表面にセ
ロハンテープ(幅18mm)を接着させた後、接着面と
約45°の角度でセロハンテープを取り除く密着性試験
をサンプル20個につき行った。
Further, after adhering cellophane tape (width 18 mm) to the film surface of the surface reflecting mirror of the present embodiment, an adhesion test for removing the cellophane tape at an angle of about 45 ° with respect to the adhering surface was carried out on 20 samples. It was

【0024】さらに、本実施例の表面反射鏡について、
対環境試験として、−20℃→常温(20〜25℃)→
+60℃を角温度で2時間保持し、5回繰り返す熱衝撃
試験を行った。
Furthermore, regarding the surface reflecting mirror of this embodiment,
As an environmental test, -20 ° C → normal temperature (20 to 25 ° C) →
A thermal shock test was carried out by keeping + 60 ° C. at an angular temperature for 2 hours and repeating 5 times.

【0025】表3には本実施例(実施例2)およびその
比較例として本実施例と同様の成膜法であるが紫外線オ
ゾン処理をしていない基板について、初期の密着性試験
および対環境試験後の密着性試験の結果を示す。
Table 3 shows this example (Example 2) and its comparative example, which had the same film forming method as this example but was not subjected to ultraviolet ozone treatment. The result of the adhesion test after the test is shown.

【0026】[0026]

【表3】[Table 3]

【0027】表3からもわかるように,紫外線オゾン処
理を行ったものでは、成膜初期および対環境試験後の膜
剥離や異常は見られなかった。
As can be seen from Table 3, no peeling or abnormality was observed in the film subjected to the ultraviolet ozone treatment at the initial stage of film formation and after the environmental test.

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る合成
樹脂製反射鏡の作成方法によれば、誘電体層のアンダー
コートなしに基本的な光学特性(分光反射率特性)を満
足できるとともに、反射膜にマイクロクラックの発生が
ない。また、合成樹脂製基板の変形や劣化がなく、外観
特性が良好である。さらに、耐久性能試験後において
も、膜剥離やマイクロクラックの発生がなく、合成樹脂
製基板の変形や劣化もない。
As described above, according to the method for producing a synthetic resin reflecting mirror of the present invention, basic optical characteristics (spectral reflectance characteristics) can be satisfied without undercoating the dielectric layer. No microcracks are generated in the reflective film. In addition, the synthetic resin substrate is not deformed or deteriorated, and the appearance characteristics are good. Further, even after the durability performance test, film peeling and microcracks are not generated, and the synthetic resin substrate is neither deformed nor deteriorated.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示す部分断面図である。FIG. 1 is a partial cross-sectional view showing a first embodiment.

【図2】実施例1の光学特性を示すグラフである。FIG. 2 is a graph showing optical characteristics of Example 1.

【図3】実施例2を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a second embodiment.

【図4】実施例2の光学特性を示すグラフである。FIG. 4 is a graph showing optical characteristics of Example 2.

【符号の説明】[Explanation of symbols]

1,3 基板 2,4 第1層の膜 5 第2層の膜 1,3 Substrate 2,4 First layer film 5 Second layer film

Claims (1)

【特許請求の範囲】 【請求項1】 合成樹脂製基板上に金属膜のコーティン
グを施す反射鏡の作成方法において、反射膜成膜の前に
基板を紫外線およびオゾンガスにさらすことを特徴とす
る合成樹脂製反射鏡の作成方法。
Claim: What is claimed is: 1. A method for producing a reflecting mirror in which a synthetic resin substrate is coated with a metal film, wherein the substrate is exposed to ultraviolet rays and ozone gas before the formation of the reflecting film. How to make a resin mirror.
JP19888291A 1991-07-12 1991-07-12 Formation of reflection mirror made of synthetic resin Withdrawn JPH0525611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19888291A JPH0525611A (en) 1991-07-12 1991-07-12 Formation of reflection mirror made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19888291A JPH0525611A (en) 1991-07-12 1991-07-12 Formation of reflection mirror made of synthetic resin

Publications (1)

Publication Number Publication Date
JPH0525611A true JPH0525611A (en) 1993-02-02

Family

ID=16398499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19888291A Withdrawn JPH0525611A (en) 1991-07-12 1991-07-12 Formation of reflection mirror made of synthetic resin

Country Status (1)

Country Link
JP (1) JPH0525611A (en)

Similar Documents

Publication Publication Date Title
JP3808917B2 (en) Thin film manufacturing method and thin film
JPS5860701A (en) Reflection preventing film
US20020136877A1 (en) Reflection reducing coating
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH0525611A (en) Formation of reflection mirror made of synthetic resin
JPH10123303A (en) Antireflection optical parts
JP3497236B2 (en) Anti-reflection coating for high precision optical components
US5474851A (en) Thin film of gallium oxide and method of producing the film
JP2724260B2 (en) Optical member having antireflection film
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JP3320148B2 (en) Manufacturing method of metal mirror
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JP3509414B2 (en) Reflector and method of manufacturing the same
JPH05181005A (en) Prism and production thereof
JP3332271B2 (en) Reflecting mirror and manufacturing method thereof
JPS638605A (en) Reflection mirror consisting of synthetic resin member
JP3136845B2 (en) Infrared antireflection film and method of forming the same
JP2979327B2 (en) Anti-reflective coating deposited on low melting point substrate
JPH05313001A (en) Reflection preventing film for plastic made optical part
JP3278194B2 (en) Optical components
Asl et al. Study And Comparison Of Silver Mirrors Deposited On Different Substrates By Electron‐Beam Gun Method
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
JPH08165564A (en) Production of plastic film having antireflection film
JPS63172201A (en) Two-layer antireflection coating
JPH10282304A (en) Optical thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008