JPH05255189A - Production of alpha-keto acid ester - Google Patents

Production of alpha-keto acid ester

Info

Publication number
JPH05255189A
JPH05255189A JP5523792A JP5523792A JPH05255189A JP H05255189 A JPH05255189 A JP H05255189A JP 5523792 A JP5523792 A JP 5523792A JP 5523792 A JP5523792 A JP 5523792A JP H05255189 A JPH05255189 A JP H05255189A
Authority
JP
Japan
Prior art keywords
acid ester
alpha
manganese dioxide
keto acid
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5523792A
Other languages
Japanese (ja)
Inventor
Yoshiaki Iwasaki
義昭 岩崎
Fujinao Matsunaga
藤尚 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONSYU KAGAKU KOGYO KK
Original Assignee
HONSYU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONSYU KAGAKU KOGYO KK filed Critical HONSYU KAGAKU KOGYO KK
Priority to JP5523792A priority Critical patent/JPH05255189A/en
Publication of JPH05255189A publication Critical patent/JPH05255189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To easily and safely produce an alpha-keto acid ester on an industrial scale in high yield by using an alpha-hydroxycarboxylic acid ester as a raw material. CONSTITUTION:The objective compound is produced by contacting 1 pt.wt. of an alpha-hydroxycarboxylic acid ester of the formula R-CH(OH)-COOR' [R is H, alkyl or (substituted) phenyl; R' is alkyl] with 3-15 pts.wt. of gamma-manganese dioxide at 20-150 deg.C in a non-oxidizing organic solvent free from hydroxyl group or aldehyde group (e.g. hydrocarbon solvent, ketone or amide).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】α−ケト酸及びα−ケト酸エステ
ルは、種々の有機合成反応における合成中間体として、
また、香料、食品添加物、電子材料、医薬品原料等のフ
アインケミカルズ分野において重要な化学品である。本
発明は、このようなα−ケト酸エステルの製造方法に関
する。
BACKGROUND OF THE INVENTION α-Keto acids and α-keto acid esters are used as synthetic intermediates in various organic synthetic reactions.
It is also an important chemical in the field of fine chemicals such as fragrances, food additives, electronic materials and pharmaceutical raw materials. The present invention relates to a method for producing such an α-keto acid ester.

【0002】[0002]

【従来の技術】α−ケト酸エステルの製造方法として、
従来、(1)乳酸エステルを過マンガン酸カリウムで液
相酸化する方法(Organic Syntheses, Coll. Vol. lV.
467 項(1963年))、(2)乳酸エステルを三酸化タン
グステンの存在下に液相酸素酸化する方法(特開昭58
−062136号公報)、(3)乳酸エステルを二酸化
チタン、二酸化ジルコニウム及び五酸化ニオブの少なく
とも一種の存在下に液相酸素酸化する方法(特開昭63
−132859号公報)、(4)乳酸エステルを白金や
パラジウム等の貴金属触媒の存在下に液相酸素酸化する
方法(特開昭54−138514号公報)、(5)半融
したアルミナに保持させた鉄の酸化物とモリブデンの酸
化物とからなる触媒の存在下に乳酸エステルを気相酸化
脱水素する方法(特公昭38−3662号公報)、
(6)メタバナジン酸アンモニウム、シユウ酸及び水か
らなる混合物をpKa値3.8〜9.8の範囲にある担体に
付着させた後、焼成して得た触媒を用い、乳酸エステル
を気相酸化する方法(特公昭57−24336号公
報)、(7)リン酸塩で処理した銀触媒を用いて、45
0℃で乳酸エステルを酸化する方法(特開昭61−09
7247号公報)、(8)ルテニウム系触媒を用いて、
臭素酸塩で酸化する方法(特開平 1−305053号
公報)等が知られている。
As a method for producing an α-keto acid ester,
Conventionally, (1) Liquid phase oxidation of lactate with potassium permanganate (Organic Syntheses, Coll. Vol.
Item 467 (1963)), (2) Method of liquid-phase oxygen oxidation of lactate in the presence of tungsten trioxide (JP-A-58)
No. 062136), (3) Liquid-phase oxygen oxidation of lactic acid ester in the presence of at least one of titanium dioxide, zirconium dioxide and niobium pentoxide (JP-A-63-63).
-132859), (4) a method of liquid-phase oxygen oxidation of a lactate ester in the presence of a noble metal catalyst such as platinum or palladium (JP-A-54-138514), and (5) holding it in semi-molten alumina. Gas-phase oxidative dehydrogenation of a lactate ester in the presence of a catalyst composed of an iron oxide and a molybdenum oxide (Japanese Patent Publication No. 38-3662).
(6) A mixture of ammonium metavanadate, oxalic acid and water is attached to a carrier having a pKa value in the range of 3.8 to 9.8 and then calcined to use a catalyst obtained by gas phase oxidation of lactate ester. Method (JP-B-57-24336), (7) using a silver catalyst treated with a phosphate, 45
A method of oxidizing a lactate ester at 0 ° C. (JP-A-61-09
7247), (8) using a ruthenium-based catalyst,
A method of oxidizing with bromate (Japanese Patent Laid-Open No. 1-305053) is known.

【0003】しかし、上記した(1)の方法は高価な過
マンガン酸カリウムを必要とするうえに、反応後の処理
が工業的に困難である。上記(2)、(3)及び(4)
の方法は、ピルビン酸エステルの収率が低いうえに、ピ
ルビン酸エステルと乳酸エステルとが沸点が近接してい
るので、反応後、蒸留によつてそれぞれを分離すること
が非常に困難である。更に、(5)、(6)及び(7)
の方法においては、用いる触媒の寿命が短かいという問
題や、触媒の再生等を含めて、所要の設備が大規模にな
るという問題がある。(8)の方法は、高価な触媒と酸
化剤を用いており、工業的に安価にピルビン酸エステル
を製造する方法としては好ましいものではない。
However, the above method (1) requires expensive potassium permanganate and is industrially difficult to treat after the reaction. Above (2), (3) and (4)
In the method (1), since the yield of pyruvic acid ester is low and the boiling points of pyruvic acid ester and lactate ester are close to each other, it is very difficult to separate them by distillation after the reaction. Furthermore, (5), (6) and (7)
In the method (1), there is a problem that the life of the catalyst used is short, and that the required facilities including the regeneration of the catalyst are large in scale. The method (8) uses an expensive catalyst and an oxidizing agent, and is not preferable as a method for industrially inexpensively producing a pyruvic acid ester.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、上記し
たようなα−ケト酸エステルの従来の製造における問題
を解決するために鋭意研究した結果、α−ヒドロキシカ
ルボン酸エステルを特殊な溶媒中でγ−二酸化マンガン
と接触させることによつて、工業的に安全に且つ容易
に、しかも、高収率にてα−ケト酸エステルを製造し得
ることを見出して、本発明に至つたものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied in order to solve the problems in the conventional production of α-keto acid ester as described above, and as a result, α-hydroxycarboxylic acid ester was used as a special solvent. By contacting with γ-manganese dioxide in the above, it was found that an α-keto acid ester can be produced industrially safely and easily, and in high yield, and the present invention was achieved. Is.

【0005】[0005]

【課題を解決するための手段】本発明によるα−ケト酸
エステルの製造方法は、水酸基又はアルデヒド基を含有
しない非酸化性有機溶剤中において、一般式 R-CH(OH)-COOR' (式中、Rは水素、アルキル基、又は置換基を有してい
てもよいフエニル基を示し、R'はアルキル基を示す。)
で表わされるα−ヒドロキシカルボン酸エステル1重量
部とγ−二酸化マンガン3〜15重量部とを20〜15
0℃にて接触させることを特徴とする。
The method for producing an α-keto acid ester according to the present invention is carried out in a non-oxidizing organic solvent containing no hydroxyl group or aldehyde group, in which a compound of the general formula R-CH (OH) -COOR '(formula In the formula, R represents hydrogen, an alkyl group, or a phenyl group which may have a substituent, and R ′ represents an alkyl group.)
20 parts by weight of 1 part by weight of α-hydroxycarboxylic acid ester and 3-15 parts by weight of γ-manganese dioxide.
It is characterized in that they are contacted at 0 ° C.

【0006】本発明の方法においては、出発物質とし
て、一般式 R-CH(OH)-COOR' (式中、Rは水素、アルキル基、又は置換基を有してい
てもよいフエニル基を示し、R'はアルキル基を示す。)
で表わされるα−ヒドロキシカルボン酸エステルが用い
られる。
In the method of the present invention, the starting material is represented by the general formula R-CH (OH) -COOR '(wherein R represents hydrogen, an alkyl group, or a phenyl group which may have a substituent). , R'represents an alkyl group.)
The α-hydroxycarboxylic acid ester represented by is used.

【0007】上記一般式において、Rは水素、炭素数1
〜10のアルキル基、又は置換基を有していてもよいフ
エニル基であり、R'は炭素数1〜10のアルキル基であ
ることが好ましい。好ましくは、Rは、例えば、メチ
ル、エチル、n−プロピル、イソプロピル、ブチル等の
アルキル基、フエニル基又はトリル基等であり、R'は、
例えば、メチル、エチル、n−プロピル、イソプロピ
ル、ブチル等のアルキル基である。
In the above general formula, R is hydrogen and has 1 carbon atom.
It is preferably an alkyl group having 10 to 10 or a phenyl group which may have a substituent, and R ′ is preferably an alkyl group having 1 to 10 carbon atoms. Preferably, R is, for example, an alkyl group such as methyl, ethyl, n-propyl, isopropyl and butyl, a phenyl group or a tolyl group, and R ′ is
For example, it is an alkyl group such as methyl, ethyl, n-propyl, isopropyl and butyl.

【0008】本発明の方法によれば、D−α−ヒドロキ
シカルボン酸エステル、L−α−ヒドロキシカルボン酸
エステル及びDL−α−ヒドロキシカルボン酸エステル
のいずれにも適用できるもので、目的物の収率は、これ
ら異性体の区別による差が余りないことがガスクロマト
グラフ分析により確かめられている。本発明の方法にお
いて、後述するように、酸化剤として、γ−二酸化マン
ガンを用いるので、反応溶剤として、このγ−二酸化マ
ンガンによつて酸化される官能基である水酸基又はアル
デヒド基を含有しない非酸化性有機溶剤が反応溶剤とし
て用いられる。かかる非酸化性有機溶剤として、ベンゼ
ン、トルエン等の芳香族炭化水素溶剤、ヘキサン等のよ
うな脂環式炭化水素性溶剤、クロロホルム等のような脂
肪族ハロゲン化炭化水素系溶剤、ジオキサン、ジイソプ
ロピエーテル等のような脂肪族エーテル類、アセトン、
メチルエチルケトン等のような脂肪族ケトン類、酢酸エ
チル、酢酸ブチル等のような脂肪酸アルキルエステル
類、アセトニトリルのような脂肪族ニトリル類、ジメチ
ルホルムアミド、ジメチルイミダゾリジノン等のような
アミド類等を挙げることができる。これらの有機溶剤
は、単独で、又は混合物として用いられる。
The method of the present invention can be applied to any of D-α-hydroxycarboxylic acid ester, L-α-hydroxycarboxylic acid ester and DL-α-hydroxycarboxylic acid ester. It has been confirmed by gas chromatographic analysis that there is not much difference in the rate due to the distinction of these isomers. In the method of the present invention, as will be described later, since γ-manganese dioxide is used as the oxidizing agent, the reaction solvent does not contain a hydroxyl group or an aldehyde group which is a functional group oxidized by γ-manganese dioxide. An oxidizing organic solvent is used as the reaction solvent. Examples of such non-oxidizing organic solvents include aromatic hydrocarbon solvents such as benzene and toluene, alicyclic hydrocarbon solvents such as hexane, aliphatic halogenated hydrocarbon solvents such as chloroform, dioxane, and diisopropene. Aliphatic ethers such as ether, acetone,
Aliphatic ketones such as methyl ethyl ketone, fatty acid alkyl esters such as ethyl acetate, butyl acetate, etc., aliphatic nitriles such as acetonitrile, amides such as dimethylformamide, dimethylimidazolidinone, etc. You can These organic solvents are used alone or as a mixture.

【0009】本発明の方法においては、酸化剤として、
γ−二酸化マンガンを用いることが必要であつて、その
他のα、β、σ、ε、η等の二酸化マンガンを用いて
も、満足できる結果を得ることができない。γ−二酸化
マンガンは、二酸化マンガンの中の一つの結晶形態を有
するものであり、従来は、ルクランシエ電池用の減極剤
としてのみ、実用的に用いられている。これは比較的貧
弱に成長した結晶相を有する二酸化マンガンであつて、
これには、γ、γ' 、γ" 体の諸相があるが、本発明は
これらをγ−二酸化マンガンと総称することにする。こ
れらγ−二酸化マンガンは、温和な条件下での電解法に
よつて製造られるか、又は化学的な合成法によつて製造
されるが、典型的な結晶性をよく示すγ体は前者によつ
て好都合に生産されているので、本発明の方法において
は、そのような高結晶性のγ−二酸化マンガンを用いる
のが有利である。
In the method of the present invention, as the oxidizing agent,
It is necessary to use γ-manganese dioxide, and even if other manganese dioxides such as α, β, σ, ε, η are used, satisfactory results cannot be obtained. γ-Manganese dioxide has one crystal form among manganese dioxides, and has been practically used only as a depolarizer for a Lecragne battery in the past. This is manganese dioxide with a relatively poorly grown crystalline phase,
This has various phases of γ, γ ', and γ "forms, but in the present invention, these are collectively referred to as γ-manganese dioxide. These γ-manganese dioxides are used in the electrolysis method under mild conditions. Or a chemical synthetic method, the γ-form showing a typical crystallinity is conveniently produced by the former, so in the method of the present invention, It is advantageous to use such highly crystalline γ-manganese dioxide.

【0010】本発明の方法において、α−ヒドロキシカ
ルボン酸エステルとγ−二酸化マンガンとの使用量比
は、本発明の目的物の収率に影響するところが大きく、
重量比にして1:3〜15の範囲であることが必要であ
る。この範囲をはずれるときは、目的とするα−ケト酸
エステルの収率が極端に低下することが多い。更に、本
発明の方法において、反応温度は20〜150℃、特に
好ましくは、30〜140℃である。この温度範囲をは
ずれるときは、目的物を殆ど得ることができないか、又
は収率が極めて低くなる。 実施例 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。 実施例1 ヘキサン260gとベンゼン40gの混合物にγ−二酸
化マンガン240gを懸濁させた。この懸濁液に、攪拌
下に、20〜30℃にて、DL−乳酸メチル20.0g
(0.19mol)を滴下した後、還流下で3時間反応させ
た。次に、反応混合物から無機物を濾別した後、ヘキサ
ンとベンゼンを留去し、生成物を蒸留して、ピルビン酸
メチル10.2g(収率:52.1%、純度:99.0%)を
得た。精製物は、沸点:137℃、n25 D :1.4046
であつた。 実施例2 アセトン250gにγ−二酸化マンガン250gを懸濁
させた。この懸濁液に、攪拌下に、40〜50℃におい
て、L−乳酸エチル25.0g(0.21mol)を滴下した
後、室温で18時間反応させた。次に、反応混合物から
無機物を濾別した後、アセトンを留去し、生成物を蒸留
して、ピルビン酸エチル15.0g(収率:61.1%、純
度:99.2%)を得た。精製物は、沸点:155℃、n
25 D :1.4065であつた。 実施例3 アセトニトリル100gにγ−二酸化マンガン80gを
懸濁させた。この懸濁液に、攪拌下に、20〜30℃に
おいて、DL−乳酸イソプロピル10.0g(0.076mo
l)を滴下した後、室温で10時間反応させた。次に、反
応混合物から沈澱物を濾別した後、アセトニトリルを留
去し、生成物を蒸留して、ピルビン酸イソプロピル5.6
g(収率:55.7%、純度:98.3%)を得た。精製物
は、沸点:51℃/13mmHg、n25 D :1.4036であ
つた。 実施例4 ジオキサン150gにγ−二酸化マンガン70gを懸濁
させた。この懸濁液に、攪拌下に、20〜30℃におい
て、DL−α−ヒドロキシ酪酸エチル10.0g(0.07
6mol)を滴下した後、還流下で2時間反応させた。次
に、反応混合物から沈澱物を濾別した後、ジオキサンを
留去し、生成物を蒸留して、α−ケト酪酸エチル4.6g
(収率:45.4%、純度:97.5%)を得た。精製物
は、沸点:66℃/20mmHg、n20 D :1.1420であ
つた。 実施例5 クロロホルム150gにγ−二酸化マンガン150gを
懸濁させた。この懸濁液に、攪拌下に、20〜30℃に
て、DL−マンデル酸エチル11.0g(0.061mol)を
滴下した後、還流下で5時間反応させた。次に、反応混
合物から沈殿物を濾別した後、クロロホルムを留去し、
生成物を蒸留して、フエニルグリオキシル酸エチル4.5
g(収率:40.8%、純度:98.6%)を得た。精製物
は、沸点:138℃/18mmHg、n25 D :1.5190で
あつた。 比較例1 ヘキサン260gとベンゼン40gの混合物にβ−二酸
化マンガン240gを懸濁させた。この懸濁液に、攪拌
下に、20〜30℃において、DL−乳酸メチル20.0
g(0.19mol)を滴下した後、還流下で5時間反応させ
た。次に、反応混合物から沈澱物を濾別した後、反応混
合物をガスクロマトグラフ分析したところ、ピルビン酸
メチルが収率7%しか生成していないことが判明した。
In the method of the present invention, the amount ratio of the α-hydroxycarboxylic acid ester to the γ-manganese dioxide has a great influence on the yield of the object of the present invention.
It is necessary that the weight ratio is in the range of 1: 3 to 15. If the amount is out of this range, the yield of the desired α-keto acid ester is often extremely reduced. Further, in the method of the present invention, the reaction temperature is 20 to 150 ° C, particularly preferably 30 to 140 ° C. When the temperature is out of this range, the desired product can hardly be obtained or the yield becomes extremely low. EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Example 1 240 g of γ-manganese dioxide was suspended in a mixture of 260 g of hexane and 40 g of benzene. 20.0 g of DL-methyl lactate was added to this suspension with stirring at 20 to 30 ° C.
(0.19 mol) was added dropwise, and the mixture was reacted under reflux for 3 hours. Next, after filtering out inorganic substances from the reaction mixture, hexane and benzene were distilled off, and the product was distilled to obtain methyl pyruvate (10.2 g, yield: 52.1%, purity: 99.0%). Got The purified product has a boiling point of 137 ° C. and n 25 D of 1.4046.
It was. Example 2 250 g of γ-manganese dioxide was suspended in 250 g of acetone. To this suspension, 25.0 g (0.21 mol) of L-ethyl lactate was added dropwise at 40 to 50 ° C. with stirring, and the mixture was reacted at room temperature for 18 hours. Next, after filtering off inorganic substances from the reaction mixture, acetone was distilled off, and the product was distilled to obtain 15.0 g of ethyl pyruvate (yield: 61.1%, purity: 99.2%). It was The purified product has a boiling point of 155 ° C., n
Atsuta at 1.4065: 25 D. Example 3 80 g of γ-manganese dioxide was suspended in 100 g of acetonitrile. With stirring, at 20 to 30 ° C., 10.0 g (0.076 mol) of DL-isopropyl lactate was added to the suspension.
After l) was dropped, the mixture was reacted at room temperature for 10 hours. Then, the precipitate was filtered off from the reaction mixture, the acetonitrile was distilled off, and the product was distilled to obtain isopropyl pyruvate 5.6.
g (yield: 55.7%, purity: 98.3%) was obtained. The purified product had a boiling point of 51 ° C./13 mmHg and n 25 D of 1.4036. Example 4 70 g of γ-manganese dioxide was suspended in 150 g of dioxane. To this suspension, with stirring, at 20 to 30 ° C., 10.0 g (0.07) of ethyl DL-α-hydroxybutyrate was obtained.
(6 mol) was added dropwise, and the mixture was reacted under reflux for 2 hours. Next, the precipitate was filtered off from the reaction mixture, dioxane was distilled off, and the product was distilled to obtain 4.6 g of ethyl α-ketobutyrate.
(Yield: 45.4%, Purity: 97.5%). The purified product had a boiling point of 66 ° C./20 mmHg and n 20 D of 1.1420. Example 5 150 g of γ-manganese dioxide was suspended in 150 g of chloroform. To this suspension was added dropwise 11.0 g (0.061 mol) of DL-ethyl mandelate under stirring at 20 to 30 ° C., and then reacted under reflux for 5 hours. Then, after filtering the precipitate from the reaction mixture, the chloroform was distilled off,
The product was distilled to give ethyl phenylglyoxylate 4.5
g (yield: 40.8%, purity: 98.6%) was obtained. The purified product had a boiling point of 138 ° C./18 mmHg and n 25 D of 1.5190. Comparative Example 1 240 g of β-manganese dioxide was suspended in a mixture of 260 g of hexane and 40 g of benzene. DL-methyl lactate 20.0 was added to the suspension with stirring at 20 to 30 ° C.
After dropwise addition of g (0.19 mol), the mixture was reacted under reflux for 5 hours. Then, the precipitate was filtered off from the reaction mixture, and the reaction mixture was subjected to gas chromatographic analysis. It was found that methyl pyruvate had a yield of only 7%.

【0011】[0011]

【発明の効果】本発明の方法によれば、α−ヒドロキシ
カルボン酸エステルを非酸化性有機溶剤中にてγ−二酸
化マンガンと接触させて、酸化することによつて、工業
的に安全に且つ容易に高収率にてα−ケト酸エステルを
製造することができる。従つて、本発明の方法は、中間
体、香料、その他のフアインケミカルズ分野に需要が増
大しつつある高品質のα−ケト酸エステルを安定に供給
することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, α-hydroxycarboxylic acid ester is contacted with γ-manganese dioxide in a non-oxidizing organic solvent to oxidize the ester, which is industrially safe and The α-keto acid ester can be easily produced in high yield. Therefore, the method of the present invention can stably supply high-quality α-keto acid esters, which are in increasing demand in the fields of intermediates, fragrances, and other fine chemicals.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水酸基又はアルデヒド基を含有しない非酸
化性有機溶剤中において、一般式 R-CH(OH)-COOR' (式中、Rは水素、アルキル基、又は置換基を有してい
てもよいフエニル基を示し、R'はアルキル基を示す。)
で表わされるα−ヒドロキシカルボン酸エステル1重量
部とγ−二酸化マンガン3〜15重量部とを20〜15
0℃にて接触させることを特徴とするα−ケト酸エステ
ルの製造方法。
1. In a non-oxidizing organic solvent containing no hydroxyl group or aldehyde group, a compound represented by the general formula R-CH (OH) -COOR '(wherein R has hydrogen, an alkyl group, or a substituent) Represents a phenyl group, and R'represents an alkyl group.)
20 parts by weight of 1 part by weight of α-hydroxycarboxylic acid ester and 3-15 parts by weight of γ-manganese dioxide.
A method for producing an α-keto acid ester, which comprises contacting at 0 ° C.
【請求項2】前記一般式で表わされるα−ヒドロキシカ
ルボン酸エステルにおいて、Rが水素、炭素数1〜10
のアルキル基、又は置換基を有していてもよいフエニル
基であり、R'が炭素数1〜10のアルキル基であること
を特徴とする請求項1記載のα−ケト酸エステルの製造
方法。
2. In the α-hydroxycarboxylic acid ester represented by the above general formula, R is hydrogen and the carbon number is 1-10.
2. The method for producing an α-keto acid ester according to claim 1, which is an alkyl group of 1 or a phenyl group which may have a substituent, and R ′ is an alkyl group having 1 to 10 carbon atoms. ..
JP5523792A 1992-03-13 1992-03-13 Production of alpha-keto acid ester Pending JPH05255189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5523792A JPH05255189A (en) 1992-03-13 1992-03-13 Production of alpha-keto acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5523792A JPH05255189A (en) 1992-03-13 1992-03-13 Production of alpha-keto acid ester

Publications (1)

Publication Number Publication Date
JPH05255189A true JPH05255189A (en) 1993-10-05

Family

ID=12993002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5523792A Pending JPH05255189A (en) 1992-03-13 1992-03-13 Production of alpha-keto acid ester

Country Status (1)

Country Link
JP (1) JPH05255189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921186A3 (en) * 1997-12-08 2000-04-26 Firmenich Sa Use of ethyl 3-methyl-2-oxopentanoate as a perfuming ingredient
CN104860824A (en) * 2014-02-24 2015-08-26 中国科学院大连化学物理研究所 Method for preparing pyruvate through catalyzing oxygen to oxidize lactate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921186A3 (en) * 1997-12-08 2000-04-26 Firmenich Sa Use of ethyl 3-methyl-2-oxopentanoate as a perfuming ingredient
CN104860824A (en) * 2014-02-24 2015-08-26 中国科学院大连化学物理研究所 Method for preparing pyruvate through catalyzing oxygen to oxidize lactate

Similar Documents

Publication Publication Date Title
WO2007133976A2 (en) Process for the production of aromatic carboxylic acids in water
EP0418512B1 (en) Process for production of alpha-hydroxycarboxylic acid amide
JPH03204832A (en) Dehalogenation of alpha-halogenated carboxylic acid and dehalogenation catalyst
JPH05255189A (en) Production of alpha-keto acid ester
HU225027B1 (en) Process for the preparation of substituted aromatic amino compounds
EP0587107A1 (en) Process for the preparation of substituted indanones
US4420433A (en) Process for the preparation of fluorine-substituted carboxylic acid chlorides and their use
JP3087921B2 (en) Method for producing macrocyclic ketone
JPH05255190A (en) Production of alpha-keto acid ester
US6833472B2 (en) Process for the purification of aromatic carboxylic acids
EP0461850A1 (en) Process for producing alpha-hydroxycarboxylicacid amides
EP1544190B1 (en) Method for producing carboxylic acids
US3663589A (en) Process for the production of nitriles
EP0527642B1 (en) Process for simultaneously producing lactone and aromatic carboxylic acid
JP3923133B2 (en) Method for producing α, β-unsaturated aldehyde
JPH11189578A (en) Alpha-aminonnitrile derivative and production of alpha-amino acid
JP3038100B2 (en) Method for producing aromatic carboxylic acids
JPH10158209A (en) Production of 3-formylcycloalkenones
WO1996022269A1 (en) Process for producing quinones
JPS61207354A (en) Production of ketone
US6057474A (en) Preparation process for α, β-dicarbonylated compounds
JP4743975B2 (en) Method for producing lactone
JP3938049B2 (en) Method for producing 2-halogenocycloalkanone oxime
JPH06321845A (en) Production of carboxilic acid
JPH10237019A (en) Trimethylcatechol diester and its production